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On the threshold hyperbolic GARCH models∗

Wilson Kwan, Wai Keung Li and Guodong Li†

In the financial market, the volatility of financial assets
plays a key role in the problem of measuring market risk
in many investment decisions. Insights into economic forces
that may contribute to or amplify volatility are thus im-
portant. The financial market is characterized by regime
switching between phases of low volatility and phases of
high volatility. Nonlinearity and long memory are two salient
features of volatility. To jointly capture the features of long
memory and nonlinearity, a new threshold time series model
with hyperbolic generalized autoregressive conditional het-
eroscedasticity is considered in this article. A goodness of
fit test is derived to check the adequacy of the fitted model.
Simulation and empirical results provide further support to
the proposed model.
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1. INTRODUCTION

The volatility of financial returns has been shown to
exhibit long memory, and its correlations remain positive
for long lags and decay slowly to zero, see Greene and
Fielitz (1977), Ding, Granger and Engle (1993), Kokoszka
and Taqqu (1996), Cont (2001) and among others. Although
price changes appear to be unpredictable, the magnitude of
those changes, measured either by the absolute values or
the squares of the return series, appears to be predictable
in the sense that large changes are likely to be followed by
large changes – of either sign – whereas small changes are
likely to be followed by small changes. Price fluctuations are
then characterized by periods of low volatility irregularly
interspersed by periods of high volatility. This phenomenon
was first investigated by Mandelbrot (1963) for commod-
ity prices. The modeling of volatility has been presented in
a wide variety of financial assets such as stocks, market in-
dices and exchange rates, and the autoregressive conditional
heteroscedasticity (ARCH) model (Engle, 1982) or the gen-
eralized ARCH (GARCH) model (Bollerslev, 1986) is one of
the most popular tools.

∗Dedicated to Professor Howell Tong in celebration of his 65th birth-
day.
†Corresponding author.

The GARCH model can be rewritten as the following
ARCH(∞) form,

(1) et = εth
1/2
t , ht = γ +

(
1− δ∗(L)

β(L)

)
e2
t ,

where L is the back shift operator, and δ∗(·) and β(·) are
polynomials, see Davidson (2004). The standard GARCH
model was introduced originally to describe the dependence
structure of volatility, and failed to capture the long mem-
ory feature of volatility in the returns. Note that δ∗(L) =
(1 − L)δ(L) for the case of the integrated GARCH (Engle
and Bollerslev, 1986), i.e. x = 1 is the root of δ∗(x). Fol-
lowing the idea of the fractional integrated autoregressive
moving average (ARFIMA) model, Baillie, Bollerslev and
Mikkeslen (1996) extended the common GARCH model to
the fractional integrated GARCH (FIGARCH) model,

et = εth
1/2
t , ht = γ +

(
1− δ(L)

β(L)
(1− L)dF G

)
e2
t ,

where 0 < dFG < 1, and the item (1− L) in (1) is replaced
by (1− L)dF G . However, the FIGARCH process has always
infinite variance, and there also exists a paradox for the
definition of the long memory for ARCH(∞) processes. To
overcome these problems, Davidson (2004) derived a new
definition of the memory for ARCH(∞) processes based on
the concept of the near-epoch dependence, and proposed the
hyperbolic GARCH (HYGARCH) model,

et = εth
1/2
t , ht = γ+

(
1− δ(L)

β(L)
[1 + α((1− L)dF G − 1)]

)
e2
t .

The main motivation of the above model is that it nests
the FIGARCH and integrated GARCH models. For more
discussions about the HYGARCH models, we can refer to
Kwan, Li and Li (2010a).

In financial practice, the main feature for measuring risk
in many investment decisions is the volatility of financial
assets. Theoretical and observational insights into economic
forces that may contribute to or amplify volatility are thus
important. Lo and MacKinlay (1990) suggested a possible
relation with technical trading rules and stock market over-
reaction. Shefrin (2000) and Hirshleifer (2001) emphasized
the role of market psychology and investor sentiment in fi-
nancial markets. In the trading process, it is observed that
price changes are driven by a combination of news about fun-
damentals and evolutionary forces. Under different trading



strategies, expectations about future prices and dividends
of a risky asset, a nonlinear phenomenon structure may
occur in the price volatility caused by the interaction be-
tween traders, fundamentalists and technical analysts. The
financial market is thus characterized by an irregular regime
switching between phases of low volatility and phases of high
volatility, and some recent works can be referred to Schw-
ert (1989), Rabemanjara and Zakoian (1993) and Li and
Li (1996). This motivates us to propose a threshold HY-
GARCH model in section 2, and it allows for a different
HYGARCH structure for each regime.

In the process of modeling volatility with ARCH-type
models, more and more evidences have shown that many
financial time series may be so heavy-tailed that the distri-
bution of the innovation εt is far from normality, see Mikosch
and Starica (2000) and Hall and Yao (2003). The commonly
used Gaussian quasi-maximum likelihood estimation (MLE)
may be lack of efficiency, and the Student’s t MLE seems
preferable in analyzing finance and economic time series al-
though it is harder to be extended to the quasi-MLE in the-
ory, see Bollerslev (1987). Davidson (2004) also employed
the Student’s t MLE to fit the ARFIMA-HYGARCH mod-
els. Section 3 derives the asymptotic properties of its stu-
dent’s t MLE, and a diagnostic tool based on the squared
residual autocorrelations is considered to check whether the
fitted threshold HYGARCH model is adequate in section 4.
Two simulation experiments are performed in section 5, and
section 6 analyzes the daily exchange rates of Korean Won
against US dollar.

2. THE THRESHOLD ARFIMA-HYGARCH
MODELS

Let {yt} be a stationary and ergodic time series gener-
ated by the threshold ARFIMA-HYGARCH model with P
regimes,

(2) (1− L)d
(i)
ARF φ(i)(L)yt = ψ(i)(L)et, et = εth

1/2
t

and

(3) ht = γ(i) + {1− [1− α(i) + α(i)(1− L)d
(i)
F G ]

δ(i)(L)
β(i)(L)

}e2
t ,

as ri−1 ≤ zt−d < ri, where d is the delay parameter,
−∞ = r0 < · · · < rP = +∞, L is the back-shift opera-
tor, φ(i)(x) = 1 −∑p(i)

k=1 φ
(i)
k xk, ψ(i)(x) = 1 −∑q(i)

k=1 ψ
(i)
k xk,

δ(i)(x) = 1 −∑m(i)

k=1 δ
(i)
k xk, β(i)(x) = 1 −∑s(i)

k=1 β
(i)
k xk, p(i),

q(i), m(i) and s(i) with i = 1, ..., P are known positive in-
tegers, the innovation sequence {εt} is identically and inde-
pendently distributed (i.i.d.) with mean zero and variance
one, and

(1− L)d = 1−
∞∑

j=1

dΓ(j − d)
Γ(1− d)Γ(j + 1)

Lj as 0 < d < 1.

For the ith regime, denoting θ
(i)
V =

(γ(i), β
(i)
1 , ..., β

(i)

s(i) , δ
(i)
1 , ..., δ

(i)

m(i) , d
(i)
FG, α(i))′, we can rewrite

model (3) into the following ARCH(∞) form,

(4) ht = γ(i) + π(i)(L)e2
t = γ(i) +

∞∑

j=1

π
(i)
j e2

t−j

as ri−1 ≤ zt−d < ri, where the π
(i)
j ’s are functions of θ

(i)
V .

The threshold variable zt may be the observed time series
yt or the innovation sequence et, or even some exogenous
variable, see Tong (1990) and Liu, Li and Li (1997).

Assumption 1. For all 1 ≤ i ≤ P , α(i) ≥ 0, 0 < d
(i)
FG ≤ 1

and π
(i)
j ≥ 0 with j = 1, 2, ...; the polynomials δ(i)(x) and

β(i)(x) have no common root.
Davidson (2004) pointed out that one of the main mo-

tivations for using (3) is that it nests the FIGARCH and
integrated GARCH models. It is observed that when d

(i)
FG =

0, the conditional variance model becomes an ordinary
GARCH model. Thus, the focus of this article will be on
the range 0 < d

(i)
FG ≤ 1. As argued by Davidson (2004),

there are two kinds of memory to be recognized: hyperbolic
decaying memory and geometric decaying memory, with the
former being defined as long memory. For model (3), when
0 < d

(i)
FG < 1, π

(i)
j = O(j−1−d), i.e. the coefficients decay hy-

perbolically, and the conditional variance ht in (4) or (3) will
exhibit the long-memory effect. Conrad (2010) discussed the
non-negativity conditions for the conditional variance of a
HYGARCH process, and these constraints are required for
each regime to make sure that the conditional variance of
the threshold models (2) and (3) is always non-negative.

Assumption 2. For all 1 ≤ i ≤ P , d
(i)
ARF > −0.5;∑q(i)

k=1 |ψ(i)
k | < 1; and the polynomials φ(i)(x) and ψ(i)(x)

have no common root.
The parameter d

(i)
ARF is usually used to describe the

extent of long memory in the ARFIMA processes. The
ARFIMA process is short memory or long memory respec-
tively when d

(i)
ARF ∈ (−0.5, 0) or (0,∞), and is stationary

or nonstationary respectively when d
(i)
ARF ∈ (−0.5, 0.5) or

(0.5,∞), see Ling and Li (1997). However, it may be diffi-
cult to discuss the memory properties and the stationarity
of the models (2) and (3) since the effects are mixed for the
threshold models. We leave it for possible future research.
Note that the definition of long memory here is different
from that in the conditional variance in (3) or (4). The con-

dition maxi

∑q(i)

k=1 |ψ(i)
k | < 1 is sufficient to make sure that

the threshold model given by (2) and (3) is invertible, see
Ling and Tong (2005) and Ling, Tong and Li (2007).

In the following sections, we will concentrate our discus-
sion on two-regime threshold models, i.e. P = 2 in models
(2) and (3), and the notation r1 is replaced by r for simplic-
ity.
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3. ESTIMATION OF THRESHOLD
ARFIMA-HYGARCH MODELS

As in Bollerslev (1987) and Davidson (2004), this section
will consider a Student’s t MLE for the threshold ARFIMA-
HYGARCH models proposed in the previous section.

Let θ
(i)
M = (φ(i)

1 , ..., φ
(i)

p(i) , ψ
(i)
1 , ..., ψ

(i)

q(i) , d
(i)
ARF )′ with i =

1 and 2, θM = (θ(1)′
M , θ

(2)′
M )′, θV = (θ(1)′

V , θ
(2)′
V )′ and θ =

(θ′M , θ′V )′. Denote by Θ a suitable compact set in Rl with
l =

∑2
i=1(p

(i) + q(i) + r(i) + s(i)) + 8. Suppose that the
delay parameter d and the threshold value r are known, and
y1, ..., yn are generated by the threshold models (2) and (3)
with the true parameter vector θ0, an interior point of Θ.
Define functions

et(θ) =[
q(1)∑

k=1

ψ
(1)
k et−k(θ) + (1− L)d

(1)
ARF φ(1)(L)yt]I(zt−d < r)

+ [
q(2)∑

k=1

ψ
(2)
k et−k(θ) + (1− L)d

(2)
ARF φ(2)(L)yt]

· I(zt−d ≥ r)

and

ht(θ) =[γ(1) +
∞∑

j=1

π
(1)
j e2

t−j(θ)]I(zt−d < r)

+ [γ(2) +
∞∑

j=1

π
(2)
j e2

t−j(θ)]I(zt−d ≥ r).

Note that the above two functions are all dependent on past
observations infinitely far away, however, there are only n

values available in real applications. Hence, some initial val-
ues are needed, and we may simply assume ys = es(θ) = 0
for s ≤ 0. The effect of the initial values can be shown to be
negligible asymptotically, see Weiss (1986) and Ling and Li
(1997). Without loss of generality, we assume that the val-
ues ys for s ≤ 0 are all observable in deriving the asymptotic
results in this and the next sections.

Suppose the innovation εt follows tν0 , where tν is the
normalized Student’s t distribution with mean zero, variance
one, and ν degrees of freedom, and its density is given by

fν(x) =
Γ((ν + 1)/2)√
π(ν − 2)Γ(ν/2)

(
1 +

x2

(ν − 2)

)−(ν+1)/2

,

where ν > 2. Then the log likelihood function of y1, ..., yn,

conditional on y0, y−1, ..., is

Ln(θ, ν)

=
n∑

t=1

[
log fν

(
et(θ)√
ht(θ)

)
− 1

2
log ht(θ)

]

= n log
Γ((ν + 1)/2)√
π(ν − 2)Γ(ν/2)

− 1
2

n∑
t=1

[
log ht(θ) + (ν + 1) log

(
1 +

e2
t (θ)

(ν − 2)ht(θ)

)]
,

and the MLE can be defined as

τ̂n = (θ̂′n, ν̂n)′ = argmax
θ∈Θ,ν∈V

Ln(θ, ν),

where V ⊂ (2,∞) is a compact set, and the true degrees of
freedom ν0 is an interior point of V .

Define

c1(x) =
∂

∂ν
log fν0(x), c2(x) =

∂

∂x
log fν0(x)

and c3(x) = −0.5[1 + xc2(x)]. It holds that E[c1(εt)] =
0, E[c2(εt)] = 0, E[c3(εt)] = 0, E[c1(εt)c2(εt)] = 0,
E[c2(εt)c3(εt)] = 0,

E[c2
2(εt)] =

ν0(ν0 + 1)
(ν0 − 2)(ν0 + 3)

and E[c2
3(εt)] =

ν0

2(ν0 + 3)
,

see Kwan, Li and Li (2010a). For quantities E[c2
1(εt)] and

E[c1(εt)c3(εt)], it is difficult to get their explicit forms, and
we may calculate them using sample averages.

Consider the derivative functions of the likelihood func-
tion Ln(θ, ν),

∂Ln(θ0, ν0)
∂ν

=
n∑

t=1

c1(εt)

and

∂Ln(θ0, ν0)
∂θ

=
n∑

t=1

[
c2(εt)

1√
ht

∂et

∂θ
+ c3(εt)

1
ht

∂ht

∂θ

]
.

Then, the Fisher information matrix is denoted by

Iτ =
(

Iθ J
J ′ E[c2

1(εt)]

)
,

where

Iθ = E[c2
2(εt)]E

[
1
ht

∂et

∂θ

∂et

∂θ′

]
+ E[c2

3(εt)]E
[

1
h2

t

∂ht

∂θ

∂ht

∂θ′

]
,

and

J = E[c1(εt)c3(εt)]E
[

1
ht

∂ht

∂θ

]
.
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Suppose that the process {yt} generated by models (2)
and (3) is strictly stationary and ergodic with finite fourth
moment, and Assumptions 1 and 2 are satisfied. Then it
holds that Iτ < ∞. By a method similar to Ling and Li
(1997) and Straumann (2005), we can show that the infor-
mation matrix Iτ is also positive definite. By the Taylor
expansion and the routine arguments for MLEs, we have
the following asymptotic results.

Theorem 3.1. Suppose {yt} is strictly stationary and er-
godic with finite fourth moment. If Assumptions 1 and 2
hold, then

√
n(τ̂n − τ0) −→ N(0, I−1

τ )

in distribution as n →∞, where τ0 = (θ′0, ν0)′.

When the delay parameter d and the threshold value r
are unknown, we may estimate them by

(d̂, r̂) = argmax
d∈D,r∈[a,b]

Ln(θ̂n, ν̂n),

where D is a set including all possible values of d, and [a, b]
is a predetermined interval, say 0.1 and 0.9-quantiles of the
observed sequence, see Tong (1990).

In the Fisher information matrix Iτ , the quantities
E[c2

1(εt)], E[c2
2(εt)], E[c2

3(εt)] and E[c1(εt)c3(εt)] are all
functions of ν0, and can be estimated in practice by replacing
ν0 by ν̂n. Let ε̂t = et(θ̂n)/h

1/2
t (θ̂n). We may alternatively es-

timate these four quantities by their respective sample aver-
ages, e.g. using n−1

∑n
t=1 c2

1(ε̂t) and n−1
∑n

t=1[c1(ε̂t)c3(ε̂t)]
respectively to estimate E[c2

1(εt)] and E[c1(εt)c3(εt)], where
ν0 is replaced by ν̂n. Furthermore,

1
n

n∑
t=1

1

ht(θ̂n)

∂et(θ̂n)
∂θ

∂et(θ̂n)
∂θ′

= E

[
1
ht

∂et

∂θ

∂et

∂θ′

]
+ op(1),

1
n

n∑
t=1

1

h2
t (θ̂n)

∂ht(θ̂n)
∂θ

∂ht(θ̂n)
∂θ′

= E

[
1
h2

t

∂ht

∂θ

∂ht

∂θ′

]
+ op(1),

and

1
n

n∑
t=1

1

ht(θ̂n)

∂ht(θ̂n)
∂θ

= E

[
1
ht

∂ht

∂θ

]
+ op(1).

Correspondingly, we can consistently estimate Iτ by Îτ .

4. DIAGNOSTIC CHECKING

Residual autocorrelations from traditional autoregressive
moving average models have been found useful in model di-
agnostic checking, see Box and Jenkins (1976). Li and Mak
(1994) derived the asymptotic distribution of the square
residual autocorrelations, and constructed a diagnostic tool
for the adequacy of the conditional heteroscedastic mod-
els, see also Li (2004). Following their ideas, we derive

a portmanteau test to check whether the fitted threshold
ARFIMA-HYGARCH model is adequate.

Without confusion, we use the notations et(τ) and ht(τ)
in this section, and denote et(τ̂n) and ht(τ̂n) respectively
by êt and ĥt for simplicity, where τ = (θ′, ν)′ and τ̂n is the
Student’s t MLE in section 3. It is observed that et(τ) and
ht(τ) do not depend on ν and further et(τ) does not de-
pend on θV . Hence, ∂et(τ)/∂ν = 0, ∂et(τ)/∂θV = 0 and
∂ht(τ)/∂ν = 0. Note that {êt/ĥ

1/2
t } is the residual sequence

for models (2) and (3), n−1
∑n

t=1(êt/ĥ
1/2
t ) = op(1) and

n−1
∑n

t=1(ê
2
t /ĥt) = 1+op(1). Then, for a positive integer k,

the lag-k squared residual autocorrelation is

r̂k =
∑n

t=k+1(ê
2
t /ĥt − 1)(ê2

t−k/ĥt−k − 1)
∑n

t=1(ê
2
t /ĥt − 1)2

.

Let R̂ = (r̂1, ..., r̂K)′, and we next consider the asymptotic
distributions of R̂.

Let Ĉ = (Ĉ1, ..., ĈK)′ and C = (C1, ..., CK)′, where

Ĉk =
1
n

n∑

t=k+1

(
ê2
t

ĥt

− 1
) (

ê2
t−k

ĥt−k

− 1

)
,

and Ck = n−1
∑n

t=k+1(ε
2
t−1)(ε2

t−k−1) is the corresponding
values when τ̂n in Ĉk is replaced by the true parameter
vector τ0. Note that n−1

∑n
t=1(ê

2
t /ĥt − 1)2 = κ1 + op(1),

where κ1 = E(ε4
t )−1 = 6(ν0−4)−1 +2. Then it is sufficient

to derive the asymptotic distribution of Ĉ. Taking the Taylor
expansion, we can obtain that

(5) Ĉ = C + X ′(τ̂n − τ0) + op(n−1/2),

where X = (X1, ..., XK), and Xk = −E[h−1
t (e2

t−k/ht−k −
1)(∂ht/∂τ)]. It holds that, by Theorem 3.1,

√
n(τ̂n − τ0)

= I−1
τ · 1√

n

n∑
t=1

[
c1(εt) +

c2(εt)√
ht

∂et

∂τ
+

c3(εt)
ht

∂ht

∂τ

]

+ op(1),

(6)

where ci(εt) with i = 1, 2 and 3 are defined as in section
3. Note that E[(ε2

t − 1)(ε2
t−k − 1)c1(εt)] = 0 for k > 0,

E[(ε2
t − 1)c2(εt)] = 0 and E[(ε2

t − 1)c3(εt)] = 1. By (5),
(6), the central limit theorem and the Cramér-Wold device,
under the conditions of Theorem 3.1, we can show that

√
nR̂ → N(0,Σ)

in distribution as n →∞, where

Σ = I − 1
κ2

1

X ′I−1
τ X.
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Table 1. Estimation result from 500 simulated series of model
1

regime γ β α dFG δ ν

n = 1000
Bias 1 0.0239 0.0877 0.1083 0.0862 0.0232 0.3464√
MSE 0.0439 0.1975 0.1498 0.2076 0.1623 1.8189
Bias 2 0.0215 0.0757 0.1095 0.1464 -.0668√
MSE 0.0465 0.2319 0.1548 0.2538 0.2176

n = 2000
Bias 1 0.0188 0.0771 0.1048 0.0704 0.0178 0.1401√
MSE 0.0338 0.1697 0.1135 0.1638 0.1290 1.5796
Bias 2 0.0156 0.0748 0.1033 0.1374 -.0595√
MSE 0.0404 0.2023 0.1225 0.2164 0.1940

n = 4000
Bias 1 0.0163 0.0697 0.1046 0.0694 0.0172 0.1376√
MSE 0.0272 0.1726 0.0912 0.1560 0.1223 1.3321
Bias 2 0.0056 0.0725 0.1017 0.1356 -.0349√
MSE 0.0319 0.1792 0.1037 0.1926 0.1428

Denote X̂ = (X̂1, ..., X̂K), where

X̂k = − 1
n

n∑

t=k+1

1

ĥt

(
ê2
t−k

ĥt−k

− 1

)
∂ht(τ̂n)

∂τ
.

It can be shown that X̂ = X + op(1). Let κ̂1 = 6(ν̂n −
4)−1 + 2, and then we can construct consistent estimators
of Σ, denoted by Σ̂. Based on the asymptotic normality of
R̂, we consider the portmanteau test,

QR(K) = nR̂′Σ̂−1R̂.

Under the conditions of Theorem 3.1, if the threshold
ARFIMA-HYGARCH model proposed in this paper is cor-
rectly specified, the quantity QR(K) will be asymptotically
distributed as χ2

K , the chi-square distribution with K de-
grees of freedom. Similarly, we can consider the portman-
teau test based on the residual autocorrelations, however, it
is usually less powerful in detecting departures of the condi-
tional variance specifications, see Li and Li (2008). Hence,
we concentrate on QR(K) only.

5. SIMULATION RESULTS

In this section, we conduct two simulation experiments to
demonstrate the usefulness of the asymptotic results. The
following threshold HYGARCH(1,dFG,1) model is consid-
ered in both experiments, yt = εth

1/2
t ,

ht = γ(1)+
(

1− 1− δ(1)L

1− β(1)L

(
1− α(1) + α(1)(1− L)d

(1)
F G

))
e2
t ,

if yt−1 ≤ 0, and

ht = γ(2)+
(

1− 1− δ(2)L

1− β(2)L

(
1− α(2) + α(2)(1− L)d

(2)
F G

))
e2
t ,

Table 2. Estimation result from 500 simulated series of model
2

regime γ β α dFG δ ν

n = 1000
Bias 1 0.0242 0.0725 0.1171 0.0794 0.0138 0.3705√
MSE 0.0455 0.1656 0.3588 0.2519 0.1835 1.7752
Bias 2 0.0220 0.0473 0.1113 0.0763 -.0068√
MSE 0.0458 0.2244 0.3922 0.2726 0.2419

n = 2000
Bias 1 0.0208 0.0579 0.1123 0.0735 0.0103 0.2099√
MSE 0.0369 0.1590 0.3110 0.2144 0.1576 1.5142
Bias 2 0.0186 0.0540 0.1090 0.0601 -.0041√
MSE 0.0409 0.1966 0.3315 0.2481 0.2088

n = 4000
Bias 1 0.0201 0.0697 0.1121 0.0732 0.0085 0.1850√
MSE 0.0258 0.1292 0.2835 0.1891 0.1301 1.2535
Bias 2 0.0146 0.0594 0.1067 0.0535 -.0017√
MSE 0.0294 0.1507 0.2757 0.2184 0.1698

if yt−1 > 0, where εt follows Student’s t distribution with
mean zero, variance one and ν degrees of freedom. Note
that the conditional variance can be rewritten as ht =
γ(1) +

∑∞
k=1 π

(1)
k e2

t−k if yt−d ≤ 0, or γ(2) +
∑∞

k=1 π
(2)
k e2

t−k

if yt−d > 0. In practice, some truncations are often applied
to π(i)(L) =

∑∞
k=1 π

(i)
k Lk, see Chung (1999) and Lombardi

and Gallo (2002). It is remarked that 50 terms of π
(i)
k are

used.

Table 3. Estimation result from 500 simulated series of model
3

regime γ β α dFG δ ν

n = 1000
Bias 1 0.0162 0.1108 0.1342 0.0463 0.0750 0.3604√
MSE 0.0449 0.2109 0.3045 0.2478 0.1982 1.8102
Bias 2 0.0179 0.0488 0.1248 0.0474 -.0184√
MSE 0.0459 0.2184 0.3591 0.2984 0.2473

n = 2000
Bias 1 0.0155 0.0818 0.1268 0.0458 0.0480 0.2051√
MSE 0.0376 0.1678 0.2531 0.1993 0.1562 1.5358
Bias 2 0.0163 0.0457 0.1215 0.0442 -.0142√
MSE 0.0399 0.1904 0.2931 0.2749 0.2253

n = 4000
Bias 1 0.0118 0.0509 0.1228 0.0347 0.0291 0.1717√
MSE 0.0245 0.1128 0.2361 0.1587 0.1337 1.2453
Bias 2 0.0117 0.0404 0.1200 0.0419 -.0102√
MSE 0.0310 0.1621 0.2539 0.2613 0.1873

In the first experiment, three sub-models of the threshold
HYGARCH(1, dFG, 1) are considered, and the values of the
parameter vector θ(i) = (γ(i), β(i), α(i), d

(i)
FG, δ(i)) and θ =

Threshold HYGARCH model 5



(θ(1); θ(2); ν) are listed as follows,

Model 1: (0.1, 0.1, 0.80, 0.45, 0.4; 0.1, 0.3, 0.80, 0.45, 0.6; 10),
Model 2: (0.1, 0.1, 0.80, 0.20, 0.4; 0.1, 0.3, 0.80, 0.45, 0.6; 10),
Model 3: (0.1, 0.1, 0.80, 0.45, 0.4; 0.1, 0.3, 0.65, 0.45, 0.6; 10).

We consider three different sample sizes, 1000, 2000 and
4000, and there are 500 replications for each sample size.
The Student’s t likelihood-based MLE in section 3 were cal-
culated, and the biases (Bias) and the empirical root mean
squared errors (

√
MSE) are summarized in Tables 1-3. It is

observed that the biases are generally small. As sample size
increases, all biases and empirical root mean squared errors
decrease.

The second experiment is conducted to check the empir-
ical sizes and powers of the test statistic QR(K) in section
5. The generating processes are

Pair 1:
θ = (0.1, −, 0.80, 0.25, −; 0.1, −, 0.80, 0.45, −; 10),
or (0.1, 0.1, 0.80, 0.45, 0.4; 0.1, 0.3, 0.80, 0.45, 0.6; 10),

Pair 2:
θ = (0.1, 0.1, 0.80, 0.20, −; 0.1, 0.3, 0.80, 0.45, −; 10),
or (0.1, 0.1, 0.80, 0.20, 0.4; 0.1, 0.3, 0.80, 0.45, 0.6; 10),

Pair 3:
θ = (0.1, 0.1, −, −, 0.4; 0.1, 0.3, −, −, 0.6; 10),
or (0.1, 0.1, 0.80, 0.45, 0.4; 0.1, 0.3, 0.65, 0.45, 0.6; 10),

where, for each pair, the first model is called the true model,
and the second one is the misspecified model. We gener-
ated the samples by both the true model and the misspeci-
fied model, however the generated samples were always es-
timated by the true model. For samples generated by the
misspecified models, the estimated results are expected to
be worse since a sub-model was considered to fit the sam-
ples, and hence they are used to assess the powers. Note that
the first two pairs correspond to the misspecification of δ,
while the last pair correspond to the misspecification of the
α and dFG. As in the first experiment, the sample sizes are
set to be 500, 1000, or 2000, and there are 500 replications
for each sample size. We consider five different values for
K: 3, 6, 10, 15 and 25. The empirical sizes and powers are
presented in Table 4 for QR(K), and they are based on the
upper fifth percentile of the chi-squared distribution with
the corresponding degrees of freedom. It can be seen that
all empirical sizes are close to the nominal value 0.05, and
the test is more powerful as the sample size n increases.

As is well known, the proposed test statistic can be re-
garded as a pure significance test and hence its power would
not be very high with general departures from the null

Table 4. Empirical size and power of QR(K)

Size Power
n 500 1000 2000 500 1000 2000

Pair 1
QR(3) 0.040 0.044 0.044 0.624 0.634 0.642
QR(6) 0.040 0.046 0.046 0.622 0.632 0.646
QR(10) 0.046 0.050 0.050 0.618 0.624 0.638
QR(15) 0.042 0.054 0.050 0.622 0.628 0.634
QR(25) 0.042 0.050 0.050 0.622 0.628 0.634

Pair 2
QR(3) 0.042 0.044 0.044 0.622 0.636 0.644
QR(6) 0.044 0.044 0.044 0.624 0.634 0.642
QR(10) 0.042 0.044 0.046 0.618 0.628 0.640
QR(15) 0.046 0.046 0.046 0.620 0.628 0.638
QR(25) 0.040 0.040 0.046 0.624 0.626 0.634

Pair 3
QR(3) 0.040 0.042 0.042 0.628 0.646 0.656
QR(6) 0.042 0.042 0.042 0.636 0.648 0.654
QR(10) 0.052 0.048 0.048 0.644 0.650 0.656
QR(15) 0.046 0.054 0.054 0.632 0.646 0.652
QR(25) 0.044 0.046 0.052 0.648 0.654 0.660

model. Like many of the tests proposed for testing linear-
ity (Luukkonen, Saikkonen and Terasvirta, 1988; Saikkonen
and Luukkonen, 1988), its power might be substantially im-
proved if it can be shown to be equivalent to some classical
tests under certain alternative hypotheses.

6. EMPIRICAL RESULTS

In the asset pricing model, temporary bubbles with prices
deviating from the fundamental may arise when the frac-
tions of traders believing in those bubbles is sufficiently
large. Driven by evolutionary competition between different
trading strategies, the model generates excess volatility, see
Timmermann (1993, 1996), Routledge (1999) and Farmer
and Joshi (2002). Traders may believe that, in a hetero-
geneous world, prices will deviate from their fundamental
value. Traders can be recognized into two main types: fun-
damentalists and trend followers. Fundamentalists are Effi-
cient Market Hypothesis (EMH) believers. The EMH states
that it is impossible, except through luck, to consistently
outperform the market by using any information that the
market already knows. Trend followers are chartists. They
extrapolate the latest observed price change. Fundamental-
ists believe that prices will move towards its fundamental
rational expectations (RE) value. In contrast, the trend fol-
lowers are not entirely unaware of the fundamental price.
When prices move far away from the fundamental value,
they start believing that a price correction towards the fun-
damental price is about to occur. The fractions of the two
different trader types change over time upon price devia-
tions from the RE fundamental value. The financial market
is thus characterized by an irregular regime switching.
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Figure 1. Log-returns of the daily exchange rates of the
Korean Won again the US dollar from 2 January, 1999 to 3

January, 2007.

In this section, we apply the proposed threshold HY-
GARCH model to the daily exchange rates of the Korean
Won against the US dollar. There are 2089 observed values
for the Won/USD exchange rates from 2 January, 1999 to 3
January, 2007.

We consider a self-excited threshold model, and the
threshold value is assumed to be zero. In Kwan, Li and Ng
(2010b), it is found that the value of the delay parame-
ter, d, equals to one is a natural choice. The purpose here
is to measure the asymmetric behavior of positive returns
and negative returns. In practice, the threshold value is not
too far from zero. As in Kwan, Li and Li (2010a), the long
memory characteristic is found in the volatility. The fitted
threshold model is yt = εth

1/2
t , where

ht =2.826× 10−6
0.0880×10−6

+
{

1− 1− 0.03160.0181L

1− 0.07940.0388L

· (
1 + 2.82030.9882

[
(1− L)0.10380.0436 − 1

])}
y2

t

if yt−1 ≤ 0, or

ht =1.129× 10−6
0.1070×10−6

+
{

1− 1− 0.84040.3024L

1− 0.80740.3859L

· (
1 + 1.29220.3462

[
(1− L)0.31150.1028 − 1

])}
y2

t

if yt−1 > 0, the fitted degrees of freedom is 3.85740.2191

and the standard errors are given in the corresponding sub-
scripts. The fitted conditional variances ĥt are plotted in
Figure 2.
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Figure 2. Fitted conditional variance, multiplied by 104, of
the daily exchange rates of the Korean Won again the US

dollar from 2 January, 1999 to 3 January, 2007.

The diagnostic tool QR(K) was also performed here, and
the calculated p-values for K = 3, 6, 10, 15 and 25 are re-
spectively 0.89, 0.97, 0.99, 0.97 and 0.99. This result shows
that the exchange rates possess an hyperbolic memory. The
log likelihood has the value of 8204.28 for the fitted thresh-
old model, while it is 8185.57 for the HYGARCH model as
stated in Kwan, Li and Li (2010a). A likelihood ratio test
was performed with the null hypothesis of no threshold, and
the calculated p-value is 0.0022. This demonstrates that the
threshold HYGARCH model is better than the model with-
out threshold in this application.

7. CONCLUSION

In this article, a threshold HYGARCH model is proposed,
and some properties, estimation and a diagnostic procedure
were presented. The application of this model to the ex-
change rates of Korean Won against US dollar seems to
suggest that the long-memory phenomenon with a thresh-
old structure may exist in the volatility of some financial
time series. In other words, the volatility exhibits a nonlin-
ear long memory feature. This phenomenon may also exist in
many other time series. The proposed threshold HYGARCH
model should be useful in modeling time series that exhibit
nonlinear long memory feature.
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