Re-submitted to:Chemosphere (CHEM19045R1)Date:September 15, 2010

Biodegradation and Biotransformation of Wastewater Organics as Precursors of Disinfection Byproducts in Water

Jin-lin Liu and Xiao-yan Li*

Environmental Engineering Research Centre, Department of Civil Engineering,

The University of Hong Kong, Pokfulam Road, Hong Kong, China

*Corresponding Author:

Phone:	(852) 2859-2659
Fax:	(852) 2559-5337
Email:	xlia@hkucc.hku.hk
Homepage:	http://web.hku.hk/~xlia/

Abstract

Laboratory experiments were carried out to investigate wastewater organics as the 2 3 precursors of disinfection byproducts (DBPs) in drinking water supply. The focus was on the change in wastewater DBP precursors during biological degradation under simulated natural 4 conditions. The wastewater and its treated secondary effluent were characterized for DBP 5 formation potential (DBPFP) and DBP speciation profile, including trihalomethanes, 6 haloacetic acids, chloral hydrate, and nitrogen-containing DBPs. Several model organic 7 8 compounds, including humic acid, tannic acid, glucose, starch, glycine, and bovine serum albumin (BSA), were used to represent the different types of organic pollutants in wastewater 9 discharge. The results show that the DBPFP of wastewater decreased after biodegradation, 10 11 but the remaining organic matter had a greater DBPFP yield with chlorine. Different model organics displayed different changes in DBPFP during biodegradation. The DBPFP remained 12 largely unchanged for the glycine solution, decreased greatly for the tannic acid and BSA 13 14 solutions, and increased nearly 3-fold for the glucose and starch solutions after 10 d of biodegradation. Meanwhile, the DBPFP yield increased from 3 for glycine to 51 µg DBP 15 mg^{-1} C for its degradation residue, and from 1 for glucose and starch to 87 and 38 µg DBP 16 mg⁻¹ C for their organic residues, respectively. Although biodegradation may effectively 17 18 remove some DBP precursors, biotransformation during the process produces new DBP precursors in the form of soluble microbial products (SMPs). The experimental results reveal 19 20 that SMPs may be an important source of wastewater-derived DBP precursors in natural 21 waters.

22

Keywords: Biodegradation; disinfection byproducts (DBPs); DBP precursors; drinking water
 quality; wastewater organics; water reuse.

1. Introduction

Organic matter in the raw water supply is the primary precursor of disinfection 27 byproducts (DBPs) in finished drinking water. The main organic DBP groups of concern 28 include trihalomethanes (THMs) and haloacetic acids (HAAs) (Singer, 1999; Xie, 2004). It 29 30 has been found that THMs, some HAA species such as dichloroacetic acid (DCAA), and other chlorinated DBPs are carcinogenic, mutagenic, and teratogenic (Bull, 1993; Koivusalo 31 et al., 1997; Waller et al., 1998; Xie, 2004). Natural organic matter (NOM) is the major 32 reservoir of organic DBP precursors in surface water (Singer, 1999; Chang et al., 2001; Hua 33 34 and Reckhow, 2007). Numerous studies have been conducted on the characteristics, reactivity, and DBP yield of NOM following water chlorination (Singer, 1999; Xie, 2004). 35

Due to the worldwide decline of water resources, treated wastewater now represents a 36 37 growing portion of the water supply. Many surface water bodies, such as rivers, lakes, and reservoirs, are used for both the disposal of treated wastewater and the withdrawal of fresh 38 water for human consumption. The regulations for wastewater disposal were generally 39 developed to protect the quality of the receiving waters and people using such waters for 40 recreational purposes. However, there is limited information about the DBP precursors arising 41 from wastewater discharge. Organic matter in wastewater effluent is likely to contribute to 42 the DBP precursors of the receiving water, resulting in greater DBP formation in drinking 43 water (Galapate et al., 1997; Galapate et al., 1999; Rostad et al., 2000; Chu et al., 2002; 44 Krasner et al., 2009a; Krasner et al., 2009b). Hence, to ensure the safety of the drinking water 45 supply, the problem of wastewater-derived DBP formation needs to be specifically addressed. 46 Moreover, discharged wastewater organics undergo further biodegradation in the 47

receiving water under natural conditions. During the biotransformation process, wastewater 48 organics are expected to change in terms of their reactivity with chlorine and their DBP 49 formation characteristics (Chang et al., 2001; Chen et al., 2009). In this experimental study, 50 wastewater organics were characterized for their DBP formation potential (DBPFP) and the 51 resulting DBP speciation in chlorinated water. The process of biological organic degradation 52 was conducted under laboratory conditions, and several model organics, including 53 carbohydrates, proteins, humic acid, tannic acid, and glycine, were used to simulate organic 54 pollutants. The aims of the study were to determine the DBPFP of different types of organic 55 56 substances in wastewater and the resulting DBP species, and to investigate the changes in the DBP formation behavior of different wastewater organics during the biodegradation process. 57

58

2. Materials and Methods

60

61

59

2.1 Wastewater samples

Wastewater samples of raw sewage and secondary effluent were collected from a 62 full-scale municipal biological sewage treatment plant (Stanley Sewage Treatment Works, 63 Hong Kong). The activated sludge process was adopted in the treatment system, which had a 64 sludge age of around 15 d and produced an effluent with a BOD of around 5 mg L^{-1} and a 65 suspended solids (SS) concentration of about 5 mg L^{-1} . The raw sewage influent had a BOD 66 of 130 mg L⁻¹, an SS of about 70 mg L⁻¹, a dissolved organic carbon (DOC) of 40 mg L⁻¹, and 67 a UV absorbance at 254 nm (UV₂₅₄) of 0.201 cm⁻¹. The secondary effluent had a DOC of 14 68 mg L^{-1} and a UV₂₅₄ of 0.077 cm⁻¹. The wastewater samples were filtered immediately after 69

71

collection through 0.45 μ m filter paper to remove any suspended matter, and the filtrates were stored in a refrigerator at 4 °C for later experimental use.

72

73 2.2 Model wastewater organic compounds

Six types of model organic chemicals were chosen to simulate the typical organic 74 components found in municipal wastewater. They included humic acid (product no. 2S101H, 75 IHSS Suwannee River Standard, St. Paul, MN, USA), tannic acid (Sigma, St. Louis, NC, 76 USA), glucose (Unichem, Haw River, MO, USA), starch (Riedel-de Haen, Seelze, Hanover, 77 Germany), glycine (BDH, Yorkshire, UK), and bovine serum albumin (BSA) (USB, 78 Cleveland, OH, USA). Humic acid usually results from organic degradation and plant 79 mineralization, and tannic acid is one of the humic precursors in organic degradation. Both 80 types of chemical substances have been found at various levels in wastewater (Dignac et al., 81 2000). Carbohydrates and proteins are believed to be the two predominant organic groups in 82 wastewater (Dignac et al., 2000; Dignac et al., 2001). In this study, glucose and starch were 83 used to represent the carbohydrate group. Glucose is the simplest carbohydrate molecule, and 84 starch is a polymeric carbohydrate with the molecular structure $(C_6H_{10}O_5)_n$. BSA is a typical 85 protein used in numerous commercial products, and the amino acid glycine 86 (NH₂-CH₂-COOH) is one of the simplest protein degradation products. Each model organic 87 was dissolved in water to make a synthetic wastewater solution sample for the DBP study. 88 The water used for making the organic solutions was ultrapure water produced by the Milli-Q 89 water purification system (Millipore, Billerica, MA, USA). The initial DOC concentrations of 90 the humic acid and tannic acid solutions were set at 3 and 10 mg L^{-1} , respectively, and the 91

initial DOC concentrations of the other four organic solutions were all 80 mg L^{-1} .

93

94 2.3 Organic degradation experiment

The natural degradation of the wastewater organics and the model organic compounds 95 was simulated in a temperature-controlled incubator at 20 °C. The setup and approach of the 96 biodegradation experiment were similar to those used for the conventional BOD test. The 97 biodegradation of the sample solutions was carried out in a batch reactor with an initial water 98 volume of 5 L and placed in a BOD incubator (Velp Scientifica, Usmate, Italy). N, P and 99 100 trace nutrients were added to the model organic solutions according to the guidelines given by Velp Scientifica for running the BOD test with its incubation setup. The activated sludge 101 from the sewage treatment works was dosed as the seed biomass into the bio-reactors at an 102 initial SS concentration of 2 mg L⁻¹. Aeration was conducted by air pumps to provide oxygen 103 to the water, and the water pH was controlled at about 7 with a phosphate buffer consisting of 104 8.5 g L⁻¹ KH₂PO₄, 33.4 g L⁻¹ Na₂HPO₄·7H₂O, and 21.7 g L⁻¹ K₂HPO₄. During the 105 106 biodegradation experiment, mixed solution samples were collected from a bioreactor after 1, 2, 3, 4, 5, 7, and 10 d. Two duplet samples of 250 mL each were withdrawn each time from a 107 reactor. The samples were filtered through 0.45 µm membranes to remove any suspended 108 solids before the subsequent DBP formation potential tests. 109

110

111 2.4 Determination of the DBPFP

112 The DBPFP of the wastewater organics was measured for the water samples after 113 different periods of biodegradation. DBP formation tests were carried out on the filtered

114	water samples upon chlorine disinfection in accordance with the Standard Methods (APHA,
115	1998). For each DBPFP test, a 100 mL water sample was chlorinated with NaOCl, and the
116	resulting solution incubated for 7 d at pH 7.0±0.2 with a 0.5 M phosphate buffer. The dose of
117	NaOCl was determined such that a free chlorine residue of between 3 and 5 mg L^{-1} in the
118	water would be ensured by the end of the incubation period (APHA, 1998). After chlorination,
119	the samples were sealed without headspace in a container with a Teflon-lined screw cap and
120	incubated in the dark at 25 \pm 0.5 °C. Immediately after the 7-d incubation, excess chlorine in
121	the water samples was quenched with 10% Na ₂ SO ₃ , and the DBP compounds formed were
122	extracted and measured.
123	An HP 6890 gas chromatograph (GC) (Agilent, Santa Clara, CA, USA) coupled with an
124	HP electron capture detector was used to analyze the DBP compounds (Li and Chu, 2003).
125	The GC system was equipped with a DB-35MS capillary column (Agilent) with a
126	configuration of 30 m \times 0.32 mm and a film thickness of 0.25 $\mu m.$ An HP 6890 Series
127	automatic liquid sampler was used for the sample injection, and an HP GC ChemStation was
128	used for the data processing. For the liquid-liquid extraction and GC procedure, the samples
129	were analyzed for the following types of DBP compounds: THMs such as chloroform (CF),
130	HAAs such as DCAA and trichloroacetic acid (TCAA), trihaloacetaldehydes such as chloral
131	hydrate (CH), halopropanones such as trichloropropanone (TCP), and nitrogen-containing
132	DBPs (N-DBPs) including haloacetonitriles such as dichloroacetonitrile (DCAN) and
133	trihalonitromethanes such as trichloronitromethane (TCNM).
134	The method of liquid-liquid extraction and GC analysis for the THMs,

135 trihaloacetaldehydes, halopropanones, and N-DBPs was developed according to EPA Method

136	551.1 (USEPA, 1995) that had been used by others (Weber et al., 2005; Hua et al., 2006).
137	Methyl tert-butyl ether (MTBE) was used as the solvent for liquid extraction, and the
138	chemicals extracted in the solvent were analyzed by the GC. One μL of the extract solution
139	was introduced into the GC by splitless injection at 200 °C. The carrier gas was N_2 , which
140	was delivered at a constant flow-rate of 0.8 mL min ⁻¹ . The initial oven temperature was set at
141	35 °C and held for 9 min. The temperature was gradually increased first to 40 °C at a rate of 2
142	°C min ⁻¹ , then to 80 °C at 20 °C min ⁻¹ , then to 160 °C at a rate of 40 °C min ⁻¹ , held for 4 min,
143	and finally to 200 °C, held for 2 min. The detector temperature was set at 290 °C for detection
144	of the four THM compounds, trihaloacetaldehydes, halopropanones, and haloacetonitriles and
145	trihalonitromethanes.
146	The method used to analyze the HAA compounds was developed based on EPA Method
147	552.3 (USEPA, 2003) with some modifications by others (Xie et al., 2002; Domino et al.,
148	2004). In brief, the HAAs in the water samples were extracted with MTBE. Derivatization
149	was then performed on the extract by adding acidic methanol at a 1:1 (v/v) ratio. One μL of
150	the sample was introduced into the GC by splitless injection at 200 °C. The carrier N_2 gas was
151	maintained at a flow-rate of 0.9 mL min ⁻¹ . The temperature program began at 35 °C for 10
152	min and increased at a rate of 5 °C min ⁻¹ to 70 °C, where it was held for 10 min, then to 120
153	°C for 5 min, then to 135 °C for 10 min, and finally to 170 °C, where it was held for 5 min.
154	The detector temperature was 260 °C for the HAA detection.
155	

- 155
- 156 2.5 Analytical methods

The SS concentration for the biomass content in a bioreactor during the wastewater

158	biodegradation process was measured in accordance with the Standard Methods (APHA,
159	1998). The UV_{254} and DOC of the organic content were measured for each water sample after
160	filtration. UV_{254} has been used as an index of aromatic structures, which are closely related to
161	the DBPFP of a water sample (Reckhow et al., 1990). A UV-visible spectrophotometer
162	(UV/VIS Lambda 12, Perkin Elmer, Waltham, MA, USA) with a 1 cm cuvette cell was used
163	to determine the $UV_{\rm 254}.$ The DOC was determined by a TOC analyzer (IL550, Lachat,
164	Loveland, CO, USA) using the catalytic combustion-infrared method.
165	
166	3. Results and Discussion
167	
168	3.1 Initial DBP formation characteristics of the wastewater and model organic compounds
169	Seven DBP species were detected at a significant level in the water samples tested,
170	including CF for the THMs, DCAA and TCAA for the HAAs, CH for the
171	trihaloacetaldehydes, TCP for the halopropanones, DCAN for the haloacetonitriles, and
172	TCNM for the trihalonitromethanes. The last two are both N-DBPs. According to the DBPFP
173	test, the raw wastewater and its secondary effluent and the six model organics - humic acid,
174	tannic acid, glucose, starch, glycine, and BSA - had rather different DBPFP values upon
175	chlorination in terms of the DBPFP yield per unit amount of DOC (Fig. 1a). Humic acid had
176	the highest DBPFP yield at 493 μ g mg ⁻¹ DOC, suggesting a strong DBP formation reactivity
177	with chlorine. The DBPFP yields of tannic acid (365 $\mu g~mg^{\text{-1}}$ DOC) and BSA (193 $\mu g~mg^{\text{-1}}$
178	DOC) were comparably lower. The other three model organics – glucose, starch, and glycine
179	– had much lower DBPFP yields with values of 1, 1, and 3 μ g mg ⁻¹ DOC, respectively.

180	The organic matter in the actual wastewater had a DBPFP yield that was significantly
181	lower than that of humic acid, tannic acid, and BSA but much higher than that of glucose,
182	starch, and glycine. In comparison, the DBPFP yield of the organic in the treated wastewater
183	effluent (47 μ g mg ⁻¹ DOC) was higher than that of the raw wastewater (37 μ g mg ⁻¹ DOC).
184	Sirivedhin and Gray (2005) tested the DBPFP of the secondary wastewater effluent and found
185	a THM yield of around of 23 μ g mg ⁻¹ DOC and a HAA yield of about 21 μ g mg ⁻¹ DOC.
186	While their THM result is comparable to the value obtained for the secondary effluent in the
187	present study, their HAA result is higher than the value of this study, probably due to the
188	different organic composition of the wastewater effluents tested.
189	The speciation of the DBPs formed also varied among the model organics (Fig. 1b). For
190	humic acid and tannic acid, the important DBPs formed included CF, CH, DCAA, and TCAA.
191	More specifically, for humic acid CF and TCAA were the predominant DBPs, whereas tannic
192	acid had more TCAA and DCAA than CF. For the carbohydrate organics (glucose and starch),
193	CF was the predominant DBP, and no N-DBPs were formed due to the absence of nitrogen in
194	the precursor molecules. In contrast, glycine produced abundant N-DBPs (DCAN and TCNM)
195	due to the high nitrogen content in the precursor. For BSA, HAA species (TCAA and DCAA)
196	were predominant, followed by CF and CH at similar levels of abundance, and then N-DBPs.
197	As for the raw wastewater and its secondary effluent, the DBP speciation profiles were
198	similar and the chlorinated DBPs formed were both dominated by CF, followed by HAAs and
199	CH, which is consistent with the findings of Dotson et al. (2009).
200	

3.2 Organic transformation and DBPFP dynamics during biodegradation

203

3.2.1 Wastewater influent and effluent

204	Various changes in organic content and related DBPFP values were observed after 10 d
205	of biodegradation for the actual wastewater samples and most of the model organic solutions
206	(Figs. 2-5). The actual wastewater influent had an initial DOC concentration of 40 mg L^{-1} and
207	a DBPFP of 1466 μ g L ⁻¹ . The wastewater effluent had a much lower DOC of 14 mg L ⁻¹ and a
208	low DBPFP of 627 μ g L ⁻¹ (Fig. 2). These initial wastewater DBPFP values are comparable to
209	those reported by Chu et al. (2002), with the raw wastewater and its secondary effluent THM
210	formation potentials (THMFP) of around 1000 and 600 μ g L ⁻¹ , respectively.
211	The DOC of the wastewater influent decreased quickly to 21 mg L^{-1} in the first day of
212	biological incubation, and it then decreased at a relatively slower rate to 11 mg L^{-1} eventually
213	(Fig. 2a). This implies easily-degraded organics in raw wastewater were utilized firstly and
214	refractory ones were degraded gradually thereafter. The UV_{254} decreased at a nearly constant
215	rate (Fig. 2b). Similar to UV_{254} , the total DBPFP of the wastewater influent decreased
216	gradually to 897 μ g L ⁻¹ after the biodegradation (Fig. 2c). However, the mass-based DBPFP
217	yield of the wastewater organic increased from 37 to 81 μ g mg ⁻¹ DOC (Fig. 2d). The increase
218	in DBPFP yield indicates that the organic residues after biodegradation had a higher DBP
219	formation reactivity with chlorine. The DBP speciation of the wastewater influent was
220	dominated by CF, followed by HAAs and CH, throughout the biodegradation process (Fig.
221	2e).

EVALUATE: For the wastewater effluent, its DOC decreased mainly in the first day of biodegradation and showed no further degradation afterward (Fig. 2a). The UV_{254} value also decreased only

224	at the beginning of the biodegradation incubation (Fig. 2b). Compared to the wastewater
225	influent, the organic in the secondary effluent was much more refractory to biodegradation.
226	The total DBPFP of the effluent decreased from 627 to 495 μ g L ⁻¹ after the biodegradation
227	(Fig. 2c), whereas the DBPFP yield of the residual organic increased from 47 to 82 μ g mg ⁻¹
228	DOC (Fig. 2d). Similar to the influent results, DBPFP speciation of the secondary effluent
229	was dominated by CF and then HAAs and CH (Fig. 2f). Chen et al. (2009) investigated the
230	fate and transport of effluent organic materials as DBP precursors in an effluent-dominated
231	stream. They also found that the DBP precursor materials could be removed to various
232	degrees along the length of the river.
233	In general, the results of wastewater biodegradation experiments indicate that biological
234	wastewater treatment can effectively reduce the DBPFP of wastewater, which is essential for
235	the protection of water resources. However, the organic residues after biodegradation become
236	more recalcitrant with a greater mass-based DBPFP yield compared to the organics in raw
237	wastewater.
238	
239	3.2.2 Humic acid and tannic acid
240	Humic acid is the main component of NOM that is not considered to be biodegradable

Humic acid is the main component of NOM that is not considered to be biodegradable. As expected, the humic acid content remained largely constant throughout the biodegradation process in terms of DOC concentration, UV_{254} absorbance, and DBPFP (Fig. 3). The humic acid solution with a DOC of 3 mg L⁻¹ had a high DBPFP of 1428 µg L⁻¹. The large DBPFP yield of humic acid is attributed to its abundant aromatic rings, which have been identified as a major DBP-forming molecular structure (Arora et al., 1997; Liang and Singer, 2003; Archer and Singer, 2006). Humic acid gave rise to the formation of all seven DBP species detected in
this study. The DBPFP speciation was dominated by THMs (CF), followed by HAAs (TCAA
and DCAA), and then CH, and the speciation profile was not affected by the biodegradation
treatment. The DBP formation result is similar to that reported by Reckhow et al. (1990) on
NOM, which had an order of DBP abundance of CF ~ TCAA > DCAA (Fig. 3e).

Tannic acid is apparently readily biodegradable, and its degradation was nearly 251 completed in the first 3 days. Tannic acid also contains abundant aromatic rings, as indicated 252 by its high initial UV₂₅₄ value and large DBPFP yield. The tannic acid solution with a DOC 253 of 9 mg L^{-1} had an initial DBPFP as high as 3138 μ g L^{-1} . With effective biodegradation, the 254 UV_{254} and DBPFP values of the tannic acid solution decreased greatly after 3 d and remained 255 at a low level thereafter (Fig. 3). The DBPFP was reduced to 500 μ g L⁻¹ or lower by 256 biodegradation, which was achieved mainly by a decrease in HAA formation potential 257 (TCAA and DCAA). The CH formation potential also decreased to a certain extent, whereas 258 the THMFP (CF) showed little change during the biodegradation process. By the end of the 259 10-d degradation period, CF became the dominant DBP, followed by TCAA, resulting in a 260 DBPFP profile rather similar to that of humic acid (Fig. 3f). The DBPFP yield of the organics 261 in the tannic acid solution increased slightly during the biodegradation process. 262

263

264

3.2.3 Glucose and starch

265 Carbohydrates are believed to be the major components of wastewater organics (Dignac 266 et al., 2000). Both of the model carbohydrate organics – glucose and starch – were readily 267 degraded by microorganisms. The DOC of the organic solutions decreased rapidly from a

268	high level of 80 to around 10 mg L^{-1} after 4 d of biodegradation, and decreased only slightly
269	thereafter (Fig. 4). However, the UV_{254} of the model organic solutions increased during the
270	biodegradation process. The UV_{254} increase suggests a possible biological transformation of
271	the carbohydrates to other organic molecules with an aromatic or double-bonding structure.
272	In agreement with the low initial UV_{254} values, the DBPFP values of the pure glucose (54
273	$\mu g L^{-1}$) and starch (74 $\mu g L^{-1}$) solutions were much lower than those of the other model
274	organic solutions. However, the DBPFP values of the glucose and starch solutions increased
275	considerably during the biodegradation process (Fig. 4). The DBPFP of the glucose solutions
276	first increased more than 15 times to over 800 μ g L ⁻¹ after 2 d of biodegradation and then
277	decreased to a level of between 200 and 300 μ g L ⁻¹ . The DBPFP of the starch solution
278	increased to about 400 μ g L ⁻¹ after 2 d and then decreased to the level of 200-300 μ g L ⁻¹ . For
279	both model waste organics, there was a remarkable peak of DBPFP on day two of
280	biodegradation. The increase in the DBPFP of the model organic solutions is believed to be
281	related to the soluble microbial products (SMPs) produced during the biological process.
282	SMPs are classified as a pool of organic compounds that are released by microorganisms into
283	solution from substrate metabolism and biomass decay (Barker and Stuckey, 1999). SMPs are
284	much more complicated organic compounds than the model carbohydrates, and thus the
285	biotransformation of the model organics to SMPs would apparently increase the DBPFP of
286	the water (Park et al., 2005). Dotson et al. (2009) also reported that SMPs derived from algal
287	and bacterial cultures would result in more formation of DPBs, especially the N-DBPs,
288	during drinking water treatment. In the present study, the final DBPFP yields of the organic
289	residues increased greatly from an initial value of less than 1 μ g mg ⁻¹ DOC to 87 and 38 μ g

 mg^{-1} DOC for the glucose and starch solutions, respectively (Fig. 4).

Pure glucose resulted in the formation of only THM (CF), whereas starch produced 291 mainly CF and trace amounts of CH and HAAs (DCAA and TCAA). During biodegradation, 292 the CF and CH formation potentials of the organic solutions increased significantly, and the 293 formation of other DBPs were also observed. Under biodegradation, the CF and CH 294 formation potential in the glucose solution increased to 330 and 280 μ g L⁻¹, respectively, on 295 day two, resulting in a dramatic DBPFP increase. A similar trend of CF and CH formation 296 increases were also observed, although to a lesser extent, for the starch solution. The CF and 297 298 CH formation potential eventually decreased from the peak levels, but other types of DBP species were strongly detected, including N-DBPs in the later phase of biodegradation (Fig. 299 4). Considering that there was no nitrogen in the two model carbohydrates, N-DBP precursors 300 301 in the solutions can be assumed to contribute to the production of SMPs during the biodegradation process. 302

303

304 3.2.4 Glycine and BSA

Both glycine and BSA are biodegradable N-containing organics. BSA was rapidly degraded from 70 to a low level of 6 mg DOC L⁻¹ after just 2 d (Fig. 5). For glycine, biodegradation began to take place after 2 d and was completed rapidly in the following 2 d. During the degradation process, UV_{254} decreased for the BSA solution and increased somewhat for the glycine solution.

The glycine solution had a moderate initial DBPFP of $176 \ \mu g \ L^{-1}$, and contained all seven of the DBP species (Fig. 5). The DBPFP of the glycine solution did not change significantly

through the biodegradation process, despite the substantial organic reduction. The DBPFP 312 yield of the organics in the model solution increased from 3 to 51 μ g mg⁻¹ DOC. It appears 313 that the SMPs formed during glycine biodegradation had a much higher DBPFP yield than 314 that of glycine. BSA had an extremely high initial DBPFP of 13475 μ g L⁻¹, probably due to 315 316 its abundant aromatic content. The dominant DBP species included HAAs (TCAA and DCAA), THM (CF), and CH. In direct connection to its rapid biodegradation within the first 317 2 d, the DBPFP of the BSA solution decreased dramatically to less than 1000 μ g L⁻¹. Most of 318 the DBPFP reduction was achieved through great decreases in the TCAA, DCAA, CF, and 319 320 CH formation potential. In comparison, the SMPs in the BSA solution after degradation had a lower DBPFP yield (134 μ g mg⁻¹ DOC) than pure BSA (193 μ g mg⁻¹ DOC) (Fig. 5). It would 321 appear that biodegradation can effectively destruct and remove DBP precursors derived from 322 323 proteins and other similar organics in wastewater.

324

325

3.3 Transformation of wastewater-derived DBP precursors during organic degradation

Substantial organic degradation was achieved in the artificial wastewater samples after 326 the 10-d biodegradation for all of the model organics except for humic acid. More importantly, 327 biodegradation led to changes in the DBPFP for most of the model organic solutions (Figs. 328 2-5). The DBPFP remained largely unchanged for the glycine solution, despite of its great 329 degree of degradation. In contrast, the DBPFP of the tannic acid and BSA solutions decreased 330 significantly as a result of biodegradation. It is interesting to note that the DBPFP increased 331 nearly 3-fold for the starch and glucose solutions after biodegradation. These results indicate 332 that the organic residues after biological degradation of the model organics changed greatly in 333

terms of DBP formation reactivity. In other words, although the biodegradation process
effectively removes some DBP precursors from wastewater, such as tannic acid and proteins,
it may also produce new DBP precursors from carbohydrates and other similar organics with
a low initial DBPFP, such as starch and glucose.

Microbial activity played an important role in the transformation of wastewater DBP 338 precursors under simulated natural degradation conditions (Chen et al., 2009; Dotson et al., 339 2009; Krasner et al., 2009b). The organic transformation results and related DBPFP values in 340 this study differed significantly among the different types of wastewater organic compounds. 341 342 The DBPFP of humic-like organic matter, which is refractory to biodegradation, was not affected by biological treatment. However, for some of the biodegradable organics with a 343 high DBPFP in wastewater, such as tannic acid and BSA, biodegradation may have destroyed 344 345 the DBP precursors, thereby greatly reducing the DBPFP of the wastewater. For other biodegradable organics with a low DBPFP, such as glucose and starch, the biological process 346 may have increased both the DBPFP of the wastewater and the DBPFP yield of the organic 347 residues. The final DBPFP of wastewater is probably thus attributable to two sources: the 348 humic-like residue of the organics originally present in the wastewater and the SMPs that are 349 formed during the biodegradation process. 350

The 10-d biological incubation changed the DBP formation characteristics of the organics in the model solutions and wastewater samples. Initially, the DBPFP yields differed remarkably for different organic DBP precursors. After the biodegradation, owing to the production of SMPs, the DBPFP yields of the organic residues in the four readily biodegradable model organic solutions – glucose, starch, glycine, and BSA – became rather

comparable. The resulting DBPFP yield values were similar to those of the wastewater
 influent and effluent organics and somewhat lower than the DBPFP yields of humic
 substances in the humic and tannic acid solutions (Fig. 6a).

The importance of SMP production during organic degradation to the formation of DBP 359 precursors in natural waters demands more investigations. In general, biodegradation is 360 beneficial to the removal of organic pollutants and the reduction of the DBPFP of water. 361 However, the SMPs formed during biodegradation may give rise to new DBP precursors. For 362 the biodegradable organics tested in this study, except for BSA, the DBPFP yields of the 363 364 remaining organic substances after 10 d of degradation in the water samples all increased. In terms of DBP speciation, the final species profiles for the remaining organics became more 365 comparable with each other than the initial DBP species profiles for the model organics. It is 366 367 apparent that the SMPs produced in the four model organic solutions - glucose, starch, glycine, and BSA – had a similar DBP speciation that was dominated by CF and had a similar 368 level of DCAA and TCAA (Fig. 6b). The comparison suggests that the SMPs, as the final 369 DBP precursors in the model organic solutions after biodegradation, had similar DBP 370 formation characteristics. The resulting DBP species profiles were largely similar to that of 371 wastewater organics, but different from that of pure humic substances which had more TCAA 372 than DCAA (Fig. 6b). 373

Wastewater organic-derived DBP precursors are greatly related to biological activity and SMP production. The DBPFP of the glucose and starch solutions increased significantly within the first 2 d of biodegradation, which corresponded to a rapid organic degradation (Fig. 7a). It is known that SMPs are produced by microorganisms during substrate metabolism for

378	microbial growth (Barker and Stuckey, 1999; Cheng and Chi, 2003). Hence, it is likely that
379	SMP production during the early stages of dynamic organic degradation contributed to the
380	large DBPFP increase. A similar trend of rapid organic degradation and N-DBPFP increase
381	was also observed in the glycine solution in the early phase of biodegradation. The final
382	DBPFP of the four model organic solutions with the same initial DOC concentration took the
383	order BSA > glucose > starch > glycine. This is in general agreement with the biomass
384	concentrations in the four bioreactors (Fig. 7b). Such a correlation gives further support for
385	the effect of SMP production during organic degradation and transformation on the formation
386	new DBP precursors.
387	For actual wastewater, the organic matter consists of different types of organic groups.
388	The DBP formation behavior of the wastewater organic under the natural biodegradation
389	condition should be a combination of the contributions from all of the different organic
390	compounds (Chen et al., 2009; Krasner et al., 2009a; Krasner et al., 2009b), including the
391	model organics tested in this study. Biodegradation of the organic pollutants results in DBPFP
392	reduction, whereas the new DBP precursor production, like SMPs, would give rise to more
393	DBP reactivity with chlorine. Thus, SMPs can be an important source of DBP precursors in
394	water resources. For the complex mixture of organics in wastewater, the present study
395	provides a new insight into the dynamic transformation of wastewater-derived DBP
396	precursors in natural waters receiving wastewater discharge.
397	

4. Conclusions

The DBPFP of the raw wastewater influent and secondary effluent samples decreased 400 after the simulated biological organic degradation process, but the remaining organic matter 401 had a higher potential for DBP formation with chlorine. Different model wastewater organics 402 behaved differently in terms of the change in wastewater DBPFP during organic degradation. 403 404 The DBPFP of the glycine solution remained largely unchanged, that of the tannic acid and BSA solutions decreased greatly, and that of the glucose and starch solutions increased nearly 405 3-fold following biodegradation. Thus, although biological organic degradation may 406 effectively remove some DBP precursors from wastewater, the process may also produce new 407 DBP precursors from carbohydrates and other organic pollutants. The DBPFP yield of the 408 organics in the BSA solution decreased from 193 for pure BSA to 134 µg mg⁻¹ DOC for the 409 organic residue after the biodegradation process. However, the DBPFP yield of the organics 410 in the glycine solution increased from 3 to 51 μ g mg⁻¹ DOC for its degradation residue, and 411 the corresponding yield in the glucose and starch solutions increased from 1 to 87 and 38 μ g 412 mg^{-1} DOC, respectively, for their organic residues after biodegradation. 413 414 The biodegradation of organic pollutants in water produces soluble microbial products, and some SMP materials may become new DBP precursors with a greater DBPFP than the 415

original biodegradable organic compounds. For the DBPs formed from SMPs, THMs were
the predominant species, followed by HAAs, chloral hydrate, and then N-containing DBPs.
These results indicate that SMPs may be an important source of wastewater-derived DBP
precursors in natural waters that receive wastewater discharge. Thus, for the wastewater
effluent reused directly or indirectly into any drinking water resources, more stringent
discharge standards need to be adopted. In addition, advanced treatment modules with a great

422	organic removal capability, such as membrane filtration and activated carbon adsorption, may
423	be applied to the wastewater effluent or raw water intake for minimization of the
424	wastewater-derived DBP problems in drinking water supply.
425	
426	Acknowledgements
427	This research was supported by grants HKU7149/E06 and HKU7144/E07 from the
428	Research Grants Council (RGC) of the Hong Kong SAR Government and the SRT funding
429	for Sustainable Water from The University of Hong Kong. The technical assistance of Mr.
430	Keith C. H. Wong is greatly appreciated.
431	
432	References
433	APHA, 1998. Standard Methods for the Examination of Water and Wastewater. 20 th ed.
434	American Public Health Association: Washington D.C., USA.
435	Archer, A.D., Singer, P.C., 2006. Effect of SUVA and enhanced coagulation on removal of
436	TOX precursors. J. Am. Water Works Assoc. 98(8), 97-107.
437	Arora, H., LeChevallier, M.W., Dixon, K.L., 1997. DBP occurrence survey. J. Am. Water
438	Works Assoc. 89(6), 60-68.
439	Barker, D.J., Stuckey, D.C., 1999. A review of soluble microbial products (SMP) in
440	wastewater treatment systems. Water Res. 33, 3063-3082.
441	Bull, R.J., 1993. Toxicity of disinfectants and disinfection byproducts. in: Craun, G.F. (Eds.),
442	Safety of Water Disinfection: Balancing Chemical and Microbial Risks. ILSI Press,
443	Washington D.C., USA, pp. 239-256.

444	Chang, E.E., Chiang, P.C., Ko, Y.W., Lan, W.H., 2001. Characteristics of organic precursors
445	and their relationship with disinfection by-products. Chemosphere 44, 1231-1236.
446	Chen, B.Y., Nam, S.N., Westerhoff, P.K., Krasner, S.W., Amy, G., 2009. Fate of effluent
447	organic matter and DBP precursors in an effluent-dominated river: A case study of
448	wastewater impact on downstream water quality. Water Res. 43, 1755-1765.
449	Cheng, W.P., Chi, F.H., 2003. Influence of eutrophication on the coagulation efficiency in
450	reservoir water. Chemosphere 53, 773-778.
451	Chu, H.P., Wong, J.H.C., Li, X.Y., 2002. Trihalomethane formation potentials of organic
452	pollutants in wastewater discharge. Water Sci. Technol. 46(11-12), 401-406.
453	Dignac, M.F., Ginestet, P., Bruchet, A., Audic, J.M., Derenne, S., Largeau, C., 2001. Changes
454	in the organic composition of wastewater during biological treatment as studied by NMR
455	and IR spectroscopies. Water Sci. Technol. 43(2), 51-58.
456	Dignac, M.F., Ginestet, P., Rybacki, D., Bruchet, A., Urbain, V., Scribe, P., 2000. Fate of
457	wastewater organic pollution during activated sludge treatment: Nature of residual
458	organic matter. Water Res. 34, 4185-4194.
459	Domino, M.M., Pepich, B.V., Munch, D.J., Fair, P.S., 2004. Optimizing the determination of
460	haloacetic acids in drinking waters. J. Chromatogr. A 1035, 9-16.

- Dotson, A., Westerhoff, P., Krasner, S.W., 2009. Nitrogen enriched dissolved organic matter
 (DOM) isolates and their affinity to form emerging disinfection by-products. Water Sci.
 Technol. 60(1), 135-143.
- 464 Galapate, R.P., Agustiani, E., Baes, A.U., Ito, K., Okada, M., 1999. Effect of HRT and MLSS
- 465 on THM precursor removal in the activated sludge process. Water Res. 33, 131-136.

466	Galapate, R.P., Kitanaka, A., Ito, K., Mukai, T., Shoto, E., Okada, M., 1997. Origin of
467	trihalomethane (THM) precursors in Kurose River, Hiroshima, Japan. Water Sci. Technol.
468	35(8), 15-20.
469	Hua, G.H., Reckhow, D.A., 2007. Characterization of disinfection byproduct precursors based
470	on hydrophobicity and molecular size. Environ. Sci. Technol. 41, 3309-3315.
471	Hua, G.H., Reckhow, D.A., Kim, J.S., 2006. Effect of bromide and iodide ions on the
472	formation and speciation of disinfection byproducts during chlorination. Environ. Sci.
473	Technol. 40, 3050-3056.
474	Koivusalo, M., Pukkala, E., Vartiainen, T., Jaakkola, J.J.K., Hakulinen, T., 1997. Drinking
475	water chlorination and cancer - a historical cohort study in Finland. Cancer Cause
476	Control 8, 192-200.
477	Krasner, S.W., Westerhoff, P., Chen, B.Y., Rittmann, B.E., Amy, G., 2009a. Occurrence of
478	disinfection byproducts in United States wastewater treatment plant effluents. Environ.
479	Sci. Technol. 43, 8320-8325.
480	Krasner, S.W., Westerhoff, P., Chen, B.Y., Rittmann, B.E., Nam, S.N., Amy, G., 2009b.
481	Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP
482	precursors in effluent organic matter. Environ. Sci. Technol. 43, 2911-2918.
483	Li, X.Y., Chu, H.P., 2003. Membrane bioreactor for the drinking water treatment of polluted
484	surface water supplies. Water Res. 37, 4781- 4791.
485	Liang, L., Singer, P.C., 2003. Factors influencing the formation and relative distribution of
486	haloacetic acids and trihlomethanes in drinking water. Environ. Sci. Technol. 37,
487	2920-2928.

488	Park, N., Kwon, B., Kim, I.S., 2005. Biofouling potential of various NF membranes with
489	respect to bacteria and their soluble microbial products (SMP): Characterizations, flux
490	decline, and transport parameters. J. Membrane Sci. 258, 43-54.
491	Reckhow, D.A., Singer, P.C., Malcolm, R.L., 1990. Chlorination of humic materials:
492	Byproduct formation and chemical interpretations. Environ. Sci. Technol. 24, 1655-1664.
493	Rostad, C.E., Martin, B.S., Barber, L.B., Leenheer, J.A., Daniel, S.R., 2000. Effect of a
494	constructed wetland on disinfection byproducts: Removal processes and production of
495	precursor. Environ. Sci. Technol. 34, 2703-2710.
496	Singer, P.C., 1999. Formation and Control of Disinfection By-products in Drinking Water.
497	American Water Works Association, Denver, CO, USA.
498	Sirivedhin, T., Gray, K.A., 2005. Comparison of the disinfection by-product formation
499	potentials between a wastewater effluent and surface waters. Water Res. 39, 1025-1036.
500	Velp Scientifica. BOD System Operation Manual. Usmate, Italy,
501	http://www.velp.com/en/default.asp.
502	USEPA, 1995. Methods for The Determination of Organic Compounds in Drinking Water -
503	Supplement III, EPA-600/R-95/131, Environmental Monitoring and System Laboratory,
504	United States Environmental Protection Agency, Cincinnati, OH, USA.
505	USEPA, 2003. Method 552.3: Determination of Haloacetic Acids and Dalapon in Drinking
506	Water by Liquid – Liquid Microextraction, Derivatization and Gas Chromatography with
507	Electron Capture Detection. Environmental Monitoring and System Laboratory, United
508	States Environmental Protection Agency, Cincinnati, OH, USA.
509	Waller, K., Swan, S.H., DeLorenze, G., Hopkins, B., 1998. Trihalomethanes in drinking water

and spontaneous abortion. Epidemiology 9, 134-140.

- Weber, W.J., Huang, Q.G., Pinto, R.A., 2005. Reduction of disinfection byproduct formation
 by molecular reconfiguration of the fulvic constituents of natural background organic
 matter. Environ. Sci. Technol. 39, 6446-6452.
- 514 Xie, Y.F., 2004. Disinfection Byproducts in Drinking Water: Formation, Analysis, and
 515 Control. CRC Press, Boca Raton, Florida, USA.
- 516 Xie, Y.F., Rashid, I., Zhou, H.J., Gammie, L., 2002. Acidic methanol methylation for HAA
- 517 analysis: Limitations and possible solution. J. Am. Water Works Assoc. 94(11), 115-122.

519 **Figure captions**

- Fig. 1. (a) Initial DBPFP yield and (b) mass-based DBPFP speciation of the wastewater
 and model organic solutions: HA humic acid, TA tannic acid, Glu glucose,
 Star starch, Gly glycine, BSA bovine serum albumin, Inf wastewater
 influent, Eff secondary wastewater effluent.
- 524 **Fig. 2.** (a) DOC, (b) UV_{254} absorbance, (c) DBPFP, and (d) DBPFP yield of the 525 wastewater influent and effluent, and DBPFP species in (e) the wastewater 526 influent and (f) the wastewater effluent during biodegradation.
- 527 **Fig. 3.** (a) DOC, (b) UV_{254} absorbance, (c) DBPFP, and (d) DBPFP yield of the humic 528 acid and tannic acid solutions, and DBPFP species in (e) the humic acid solution 529 and (f) the tannic acid solution during biodegradation.
- Fig. 4. (a) DOC, (b) UV_{254} absorbance, (c) DBPFP, and (d) DBPFP yield of the glucose and starch solutions, and DBPFP species in (e) the glucose solution and (f) the starch solution during biodegradation.
- Fig. 5. (a) DOC, (b) UV_{254} absorbance, (c) DBPFP, and (d) DBPFP yield of the glycine and BSA solutions, and DBPFP species in (e) the glycine solution and (f) the BSA solution during biodegradation.
- Fig. 6. (a) Final DBPFP yield and (b) mass-based DBPFP speciation of the wastewater
 and model organic solutions after 10 d of biodegradation: HA humic acid, TA –
 tannic acid, Glu glucose, Star starch, Gly glycine, BSA bovine serum
 albumin, Inf wastewater influent, Eff secondary wastewater effluent.
- Fig. 7. (a) Biomass concentration during the biodegradation of the glucose and starch
 solutions, (b) final DBPFP and biomass concentration in the four model organic
 solutions after biodegradation: Glu glucose, Star starch, Gly glycine, BSA –
 bovine serum albumin.

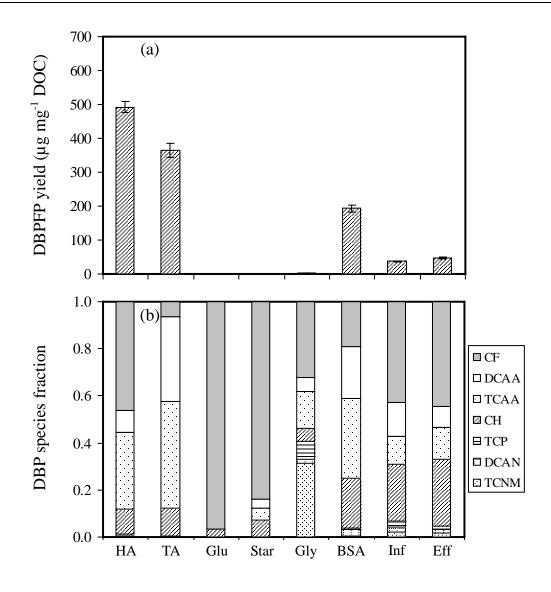


Fig. 1. (a) Initial DBPFP yield and (b) mass-based DBPFP speciation of the wastewater and model organic solutions: HA – humic acid, TA – tannic acid, Glu – glucose, Star – starch, Gly – glycine, BSA – bovine serum albumin, Inf – wastewater influent, Eff – secondary wastewater effluent.

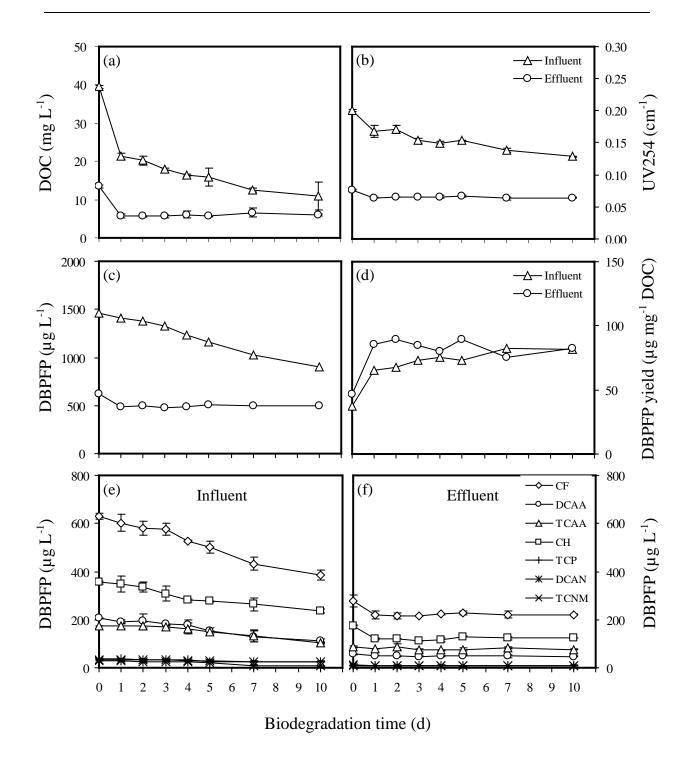
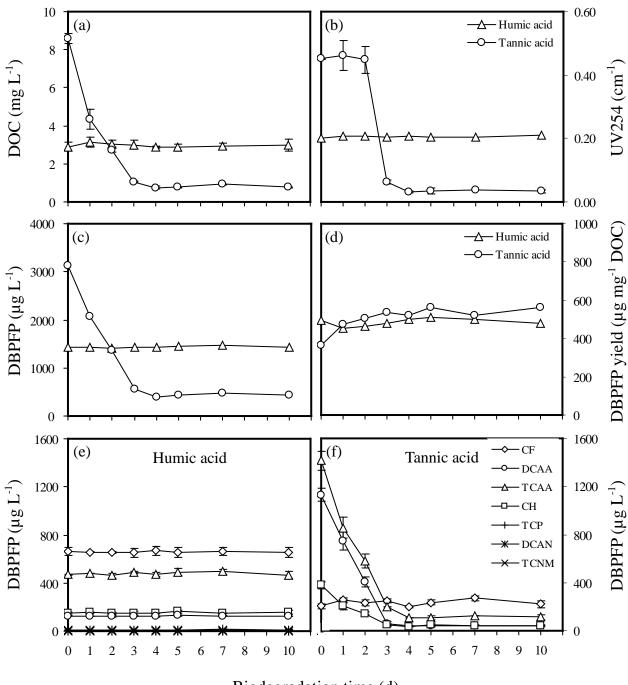



Fig. 2. (a) DOC, (b) UV_{254} absorbance, (c) DBPFP, and (d) DBPFP yield of the wastewater influent and effluent, and DBPFP species in (e) the wastewater influent and (f) the wastewater effluent during biodegradation.

Biodegradation time (d)

Fig. 3. (a) DOC, (b) UV_{254} absorbance, (c) DBPFP, and (d) DBPFP yield of the humic acid and tannic acid solutions, and DBPFP species in (e) the humic acid solution and (f) the tannic acid solution during biodegradation.

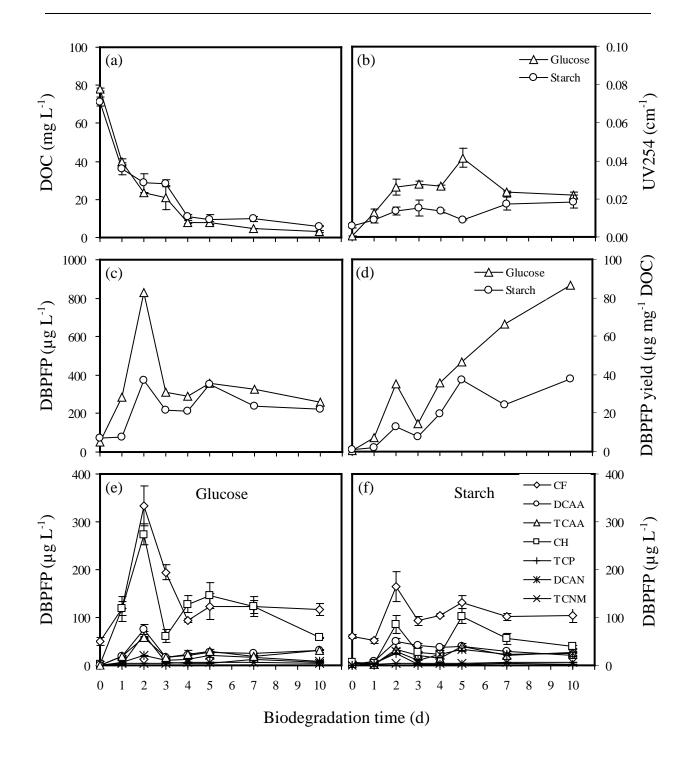
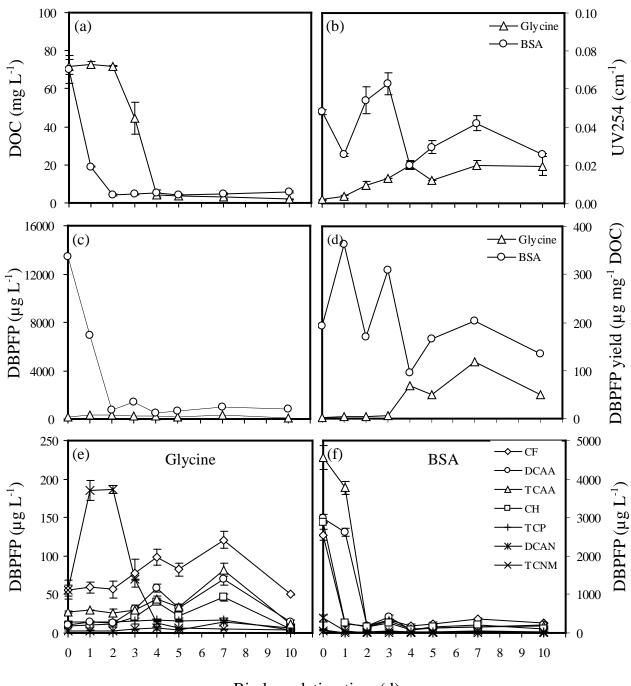



Fig. 4. (a) DOC, (b) UV_{254} absorbance, (c) DBPFP, and (d) DBPFP yield of the glucose and starch solutions, and DBPFP species in (e) the glucose solution and (f) the starch solution during biodegradation.

Biodegradation time (d)

Fig. 5. (a) DOC, (b) UV_{254} absorbance, (c) DBPFP, and (d) DBPFP yield of the glycine and BSA solutions, and DBPFP species in (e) the glycine solution and (f) the BSA solution during biodegradation.

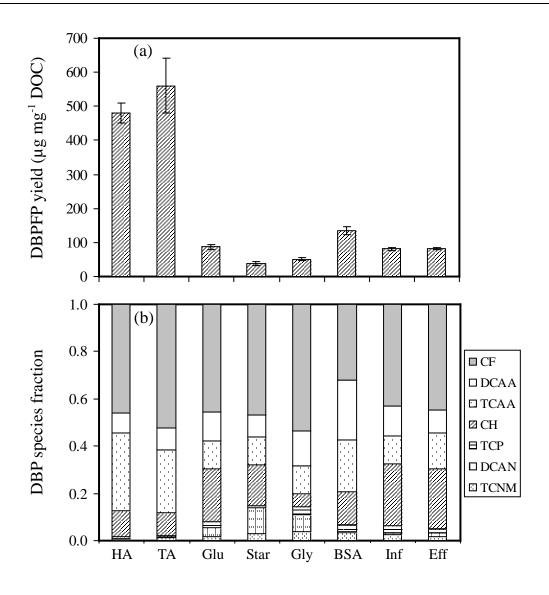


Fig. 6. (a) Final DBPFP yield and (b) mass-based DBPFP speciation of the wastewater and model organic solutions after 10 d of biodegradation: HA – humic acid, TA – tannic acid, Glu – glucose, Star – starch, Gly – glycine, BSA – bovine serum albumin, Inf – wastewater influent, Eff – secondary wastewater effluent.

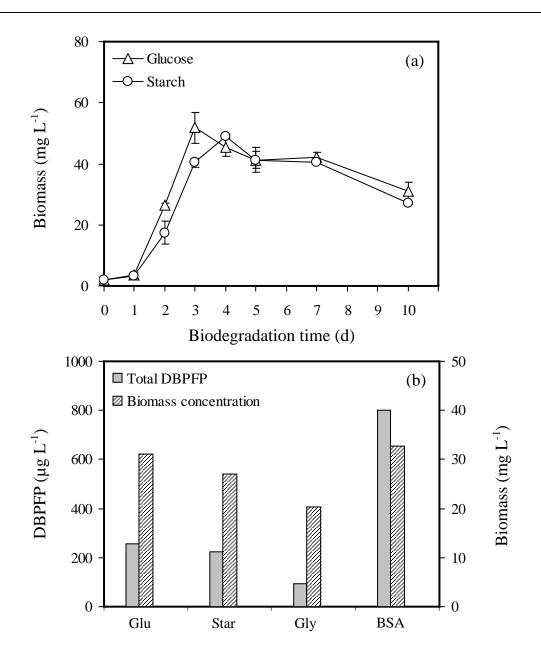


Fig. 7. (a) Biomass concentration during the biodegradation of the glucose and starch solutions, (b) final DBPFP and biomass concentration in the four model organic solutions after biodegradation: Glu – glucose, Star – starch, Gly – glycine, BSA – bovine serum albumin.