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Abstract 

Exact, doubly periodic standing wave patterns of the Davey – Stewartson 

equations (DS) are derived in terms of rational expressions of elliptic functions. 

In fluid mechanics, DS govern the evolution of weakly nonlinear, free surface 

wave packets when long wavelength modulations in two mutually perpendicular, 

horizontal directions are incorporated. Elliptic functions with two different 

moduli (periods) are necessary in the two directions. The relation between the 

moduli and the wave numbers constitutes the ‘dispersion relation’ of such waves. 

In the long wave limit, localized pulses are recovered.    
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1 Introduction 

The properties of hydrodynamic wave packets under the competing 

influences of dispersion, long wavelength modulations and weak nonlinearity 

have been studied intensively. The relevant fluid physics is the evolution of the 

wave envelope in water of finite depth. The governing model describing the 

propagation of wave envelope to leading order is the nonlinear Schrödinger 

equation [1, 2]. Extensions to higher spatial dimensions, where modulations in 

two mutually perpendicular, horizontal directions are permitted, have also been 

conducted by many investigators. The generalized evolution equations have 

commonly been termed the ‘Davey – Stewartson’ equations (DS) [3] (although 

preliminary forms of such equations actually appeared slightly earlier [1]):  
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Here A is the (complex valued) envelope of the wave packet associated with the 

fast oscillations, and Q is the induced mean flow, x and y are the slow, horizontal 

scales parallel and perpendicular to the fast oscillations respectively, while t is 

the slow time in the group velocity frame. As usual, irrotational flow of an 

inviscid fluid is studied, and A is connected with the velocity potential. The 

coefficients in system (1, 2) have been normalized, and the original values will 
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depend on the physical properties of the fluid configuration [1 – 3]. The constant 

λ measures the cubic nonlinearity. Of particular significance is the parameter σ, 

and σ
2
 = +1 (σ = 1), and σ

2 
= –1 (σ = i) are termed Davey – Stewartson I 

equations (DSI) and DSII respectively. DSI and DSII correspond to the 

situations where the governing equation of the mean flow is hyperbolic / elliptic 

respectively. 

The main objective of the present work is to deduce further exact solutions 

of (1, 2), and thus remarks on the background and development of DS are in 

order: 

 

(A) Significance in fluid dynamics: Since the derivation of DS in the period of 

1969 – 1974, additional fluid physics and effects have been incorporated. 

Surface tension can be taken into account [4], and perspectives in terms of wave 

collapse have been considered [5]. This coupling of the envelope with the mean 

flow has also been studied for internal waves [6]. For an infinite or semi–infinite 

fluid, the induced mean flow becomes a delicate issue, and the evolution 

equations for interfacial waves in the presence of uniform shear currents (i.e. the 

Kelvin Helmholtz instability) have been investigated [7]. 

Modern applications of DS are often closely related to oceanic waves. One 

example is the formation of freak waves [8], or large surface displacements from 

an otherwise tranquil background. Here modulation instabilities, or Benjamin – 
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Feir instabilities, will lead to periodic focusing of waves, which is associated 

with the existence of ‘breathers’, or oscillating modes. The long term evolution 

is often dictated by the Fermi – Pasta – Ulam recurrence.  The presence of 

bottom friction might lead to DS system with energy gain and loss [9].  

In a two–layer fluid, DS system is a good starting point for considering 

amplification of nonlinear surface waves by wind [10]. Quite remarkably, DS 

system is also relevant in sound propagating in bubbly fluids [11].   

 

(B) Exact solutions of DS from the viewpoint of nonlinear dynamics: Given the 

importance of DS, it is not surprising that exact solutions have been documented 

over the years. In fact DS constitute one of the simplest (2+1) (2 spatial and 1 

temporal) dimensional extensions of the well known nonlinear Schrödinger 

equation (NLS), just like the role the Kadomtsev – Petviashvili equation serves 

for the classical Korteweg – de Vries equation. ‘Solitons’, localized pulses of 

permanent form, have been obtained by standard techniques of the modern 

theory of nonlinear waves, e.g. scattering formulation [12] and the Hirota 

bilinear method [13].  

Singly or doubly periodic solutions of DS can be obtained from soliton 

solutions by employing a pair of complex conjugate wave numbers [14]. 

The main objective here is to utilize theta and elliptic functions to deduce 

further exact solutions of DS. Elliptic functions have been employed frequently 
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in solid mechanics [15] and the present work would be an illustrative example in 

fluid mechanics. Although elliptic functions have been applied earlier to a large 

variety of envelope equations in many works [16], mainly one dimensional 

modes are found, whereas surface wave profiles with independent variations in 

both x and y are presented here.  

The motivation comes from the discovery of a class of ‘doubly periodic’ 

solutions of the nonlinear Schrödinger equation in the early 1990s [17]. 

Although these solutions come from a special ‘first order relation’ between the 

real and imaginary parts of NLS, these doubly periodic waves are readily re–

derived by the Hirota bilinear method. Since most integrable equations have 

known bilinear forms, the corresponding formulation for extracting doubly 

periodic patterns can then be extended in a straightforward manner [18, 19]. 

The structure of the paper can now be explained. The basic ingredients, 

the bilinear transformation and simple representative doubly periodic solutions 

are first elucidated (Section 2). Two new, special classes of solutions of DS are 

presented (Sections 3, 4). The solitary wave, or long wave, limits are discussed 

(Section 5) and conclusions follow (Section 6).  

  

2 Background 

The nonlinear Schrödinger equation  

iAt + Axx – 2 A
2
A* = 0 
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possesses a doubly periodic (periodic in both x and t) solution 
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where the wave number in the t direction, ‘s’, and the modulus of the elliptic 

function there, k1, are related to their counterparts in the x component, r and k 

respectively, as  
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Although the solution is expressed in a more compact form here using Jacobi 

elliptic functions, the intermediate calculations are actually performed using 

theta functions [20]. The Hirota bilinear transform and Hirota derivatives of theta 

functions have been discussed in the Ref. [21] and [19] respectively. The bilinear 

form of DS is (Dx, Dt,, Dx
2
 and Dy

2
 are the Hirota operators)  

A = G/f,  Q = 2 (log f )xx,  f real, σ
2
 = ±1, λ, N0 = constant, 
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Several families of such solutions are given in earlier works [18, 19], and here 

two more families of solutions are presented. As the methods of calculations are 

now known in the literature, only the final form of the two new solutions will be 
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given in the main text. Nevertheless, for completeness, a brief outline of the 

calculations is given in the Appendix. 

 

3 The first new exact solution 

The first new exact solution for DS has envelope A given by,  
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where parameters S, C, D and C1 are defined in terms of the three Jacobi elliptic 

functions, sn, cn, dn: 
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with the corresponding wave numbers  r, s and elliptic moduli k, k1 in the x, y 

directions respectively. The wave number (p) and frequency (Ω) in the phase of 

A are related to r, s, k and k1 by 
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where K and E are the complete elliptic integrals of the first and second kind 

respectively:  
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The amplitude A0 is  
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The most important expression is the connection among the wave numbers r, s, 

and moduli of the elliptic functions, k, k1 (closely connected to the periods of the 

Jacobi elliptic functions), roughly a ‘dispersion relation’ in the present context: 
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The intermediate calculations are outlined in the Appendix. 

The remarkable difference from the previous families of solutions is that 

the necessary sign of σ
2
, i.e. σ = 1 or σ = i, is not determined yet from (12). 

Indeed, depending on the choice of k and k1, σ
 
can be ±1 or ±i, and thus the 

expressions (5 – 12) can be a valid solution for both DSI and DSII. From the 

structural form of (5), this solution for the envelope A represents standing waves. 

The doubly periodic nature of the intensity |A|
2
 versus x and y is clearly 

illustrated in Figure 1. The validity of the new solution is also verified 
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independently by direct differentiation of (5 – 12) with the computer algebra 

software MATHEMATICA and substitution into the original system (1, 2).  

 

 

Fig. 1 Intensity 
2

A of the complex envelope for the first exact solution, Equation 

5, r = 1.2, s = 2, k = 0.4, k1 = 0.4, λ = –2, σ = 1 (DSI). 

 

4 The second new exact solution 

Along the same line of reasoning, another extensive search leads to the 

second new exact solution, with symbols bearing similar interpretations as the 

previous section (Jacobi functions again given by (7)): 
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where D1 is defined by 
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and the ‘dispersion relation’ is 
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The doubly periodic nature of this standing wave pattern is again clearly 

depicted in a graph of intensity |A|
2
 versus the horizontal coordinates (Figure 2). 

This set of solutions, (13 – 19), may apply to either the DSI (σ = 1) or the DSII 

(σ = i) regime, depending on the values of k and k1. The validity of (13 – 19) is 

also verified by direct differentiation with a computer algebra software and 

direct substitution into the system (1, 2). 
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Fig. 2 Intensity 
2

A of the complex envelope for the second exact solution, 

Equation 13, r = 1.126, s = 2, k = 0.4, k1 = 0.8, λ = –2, σ = i (DSII). 

 

5 Long wave limits 

In the long wavelength regime, these complicated expressions of elliptic 

functions reduce to the elementary functions under the scheme, (sn x, cn x, dn x) 

→ (tanh x, sech x, sech x) as k → 1. Physically, solitary or localized pulses are 

expected to be recovered. 

 

(A) Long wave limit of the first solution 

The only nontrivial balance is the combination of k → 1, k1 → 0, and an 

order one parameter m such that  

22

1
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and this results in the long wave limit of 
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Hence, with proper selections of the values of m and λ, this solution may apply to 

either DSI or DSII. Figure 3 shows a very peculiar behavior for some typical 

values of the parameters. The intensity of the envelope, |A|
2
, displays the features 

of a ‘dark soliton’ [22, 23] in the x direction, i.e. approaching a constant in the 

far field (|x|→∞), but possessing local minima at certain fixed locations. In the y 

direction, however, the cosine function causes periodic modulation and generates 

many turning points within the ‘valley’ or ‘trough’ of the ‘dark soliton’. 
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Fig. 3 Intensity 
2

A of the complex envelope for the first long wave limit, 

Equation 20, r = 1.871, s = 2, m = 0.25, λ = –2, σ = 1 (DSI). 

 

(B) Long wave limit of the second solution 

Similarly the nontrivial limit here is the combination of k, k1 → 1, with a 

parameter m such that 
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                                                   222
smpr σ−= ,                                   (31) 

2222
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The symmetry among the parameters displayed in the sets (22 – 25) and 

(29 – 32) is striking. Figure 4 shows that the expressions (26 – 32) just constitute 

an ordinary ‘dark’ 2–soliton solution (collision of two dark solitons). These 

calculations confirm that the two families of doubly periodic solutions (Sections 

3, 4) are indeed different, as they have different long wave limits. 

 

 

Fig. 4 Intensity 
2

A of the complex envelope for the second long wave limit, 

Equation 27, r = 1.414, s = 2, m = 0.25, λ = –2, σ = i (DSII). 

 

6 Conclusions  

Solitons, i.e. permanent, nonlinear localized modes of dispersive systems, 

have received tremendous attention both in optics [22, 23] and hydrodynamics 
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[24 – 26]. Solitary waves for generalized nonlinear long wave (Whitham – Broer 

– Kaup) models [25] and two–layer fluids [26] have been studied intensively. 

Here we focus on the finite depth fluid configuration, and allow for modulations 

in two mutually perpendicular, horizontal directions, i.e. the Davey – Stewartson 

equations (DS). Quite remarkably, DS can also arise in optics as well [27]. DS 

possess a variety of exact solutions, e.g. solitons [13], exponentially localized 

(dromions) [28] and periodic [18, 19] solutions, and we focus on the periodic 

ones in this paper. 

Exact, doubly periodic standing wave patterns are obtained in terms of 

rational functions of elliptic functions. Moduli of the elliptic functions employed 

in the two horizontal directions are different. The relation among the moduli and 

the wave numbers constitutes a ‘dispersion relation’, as it measures the 

constraints on the spatial periods. Two families of exact solutions are derived, 

and they can be applied to both the DSI (hyperbolic governing equation for the 

induced mean flow) and DSII (elliptic governing equation for the induced mean 

flow) regimes.  

The long wave limit will yield ‘dark’ localized modes (employing 

terminology borrowed from optics), which approach nonzero asymptotic states 

in the far field. The dark localized mode for the first family of exact solutions is 

especially novel, as periodic maxima and minima occur along the ‘trough’ or 
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‘valley’ of the wave profiles. The long wave limit for the second family of exact 

solutions just yields the collision of two (ordinary) dark solitons. 

There are many possible further directions for fruitful research. In the 

Korteweg – de Vries / Boussinesq regimes, viscosity and bottom friction can be 

very important [29]. The same idea can be studied here. Mathematically, further 

searches might yield still further solutions. Given the tremendous scope and 

range of applications of DS (Section 1), these periodic and localized modes will 

prove to be beneficial and instructive in modeling and understanding oceanic 

phenomenon.  

 

Appendix: Derivation for the first solution (Equations (5 – 12)) 

The classical Jacobi elliptic functions can be expressed as ratios of the 

theta functions, which are Fourier expansions with exponentially decaying 

coefficients. Theta functions have a huge variety of identities, and one such class 

of identities will be used to express the Hirota derivatives of theta functions in 

terms of theta functions themselves. As an illustrative example, by 

differentiating  
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where the auxiliary result θ1'(0) = θ2(0)θ3(0)θ4(0) has been used. Many such 

identities have been derived in our earlier works [18, 19].  

We now search for solutions of the bilinear DS, i.e. Eqs. (3) and (4) by 

taking G and f respectively as 
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1231410

tΩiipxyxiyxAG −+= τβθταθτβθταθ , (A1) 
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where parameters α, β, p, Ω and A0 will be determined below.  

Substituting (A1), (A2) into (3), and employing identities for Hirota 

derivatives of theta functions, one now proceeds to a two-step decomposition in 
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In arriving at Eqs. (A6 – A8), the identities for theta functions of  

)()0()()0()()0(
2

2

2

4

2

4

2

2

2

1

2

3
xxx θθθθθθ −= ,  )()0()()0()()0( 2

4

2

4

2

2

2

2

2

3

2

3
xxx θθθθθθ += , 

have been used to eliminate ),(
1

2

1
τβθ y  and ),(

1

2

3
τβθ y in terms of ),(

1

2

2
τβθ y  and 

).,(
1

2

4
τβθ y On continuing to use the linear independence of theta functions and 

setting the coefficients of θ1(αx,τ)θ4(αx,τ), θ2(αx,τ)θ3(αx,τ), θ1(αx,τ)θ2(αx,τ) and 

θ3(αx, τ)θ4(αx, τ) in Eqs.(A3 – A5) to be zero respectively, one obtains 

0
1

=C ,     0
2

=C ,     0
3

=C , 

i.e. 

0),0(),0(),0(
1

2

41

2

2

222

4
=− τθτθβσταθp ,  

0),0(
),0(

),0(
2

),0(

),0(

),0(

),0( 2

0

22

1

4

4

12

122

3

3

2

2 =−−+







+

′′
+







 ′′
+

′′
pΩNβστθ

τθ

τθ
α

τθ

τθ

τθ

τθ
,  

0),0(2
),0(

),0(

),0(

),0(

),0(

),0(

),0(

),0( 2

0

2

2

22

14

14

12

122

4

4

3

3 =−−++






 ′′
+

′′
+







 ′′
+

′′
pΩNp ταθβσ

τθ

τθ

τθ

τθ
α

τθ

τθ

τθ

τθ
 

   (A9) 

and the remaining job is to convert these theta formulas to the notations of the 

classical Jacobi functions. This can be accomplished via standard formulas from 

tables and thus details will not be pursued here. This completes the treatment of 

Eq. (3). 
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Along exactly the same line of reasoning, one first substitutes (A1, A2) 

into the bilinear equation (4). On using formulas for the Hirota derivatives of 

theta functions, one now performs a two-step decomposition. The coefficients of 
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The first new solution given in Section 3 is obtained by solving these algebraic 

equations, (A9, A10), and converting them back into notations of the Jacobi 

elliptic functions. The solution described in Section 4 can be obtained along the 

same line of reasoning.  
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