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1 INTRODUCTION 

Numerous studies have investigated the relationship between the total resistance across street 
canyons. Ryu et al. (2007) showed that the friction factor is a function of the pitch ratio. It de-
creases with decreasing pitch-to-height ratio (PR) of the ribs when the PR is larger than 10 (Han 
1984, Liou and Hwang 1992). Whereas, those previous studies were rather limited to low aspect 
ratios (ARs, reciprocal of PR). In view of the dense buildings in urban areas nowadays, our cur-
rent understanding is not comprehensive enough to explain the drag in compact cities of high 
ARs. This study, using idealized two-dimensional (2D) street canyons as the hypothetical urban 
area, is thus conceived to elucidate the flows and resistance in isolated roughness (AR<0.3), 
wake interference (0.3<AR<0.7), and skimming flow (AR>0.7) regimes (Oke 1988). The friction 
factor is peaked at AR = 0.0909 and the flow behaves like a smooth wall when the street canyon 
is too wide or too narrow.  

 
In addition to the friction factor, the large-eddy simulation (LES) with one-equation sub-

grid-scale (SGS) model is performed for idealized urban areas to determine the ventilation and 
pollutant removal performance as functions of the AR. The ARs tested are 0.0667, 0.0909, 0.25, 
0.3333, 0.5, 0.6, 0.8, 1, and 2. The air (ACH) and pollutant (PCH) exchange rates are the param-
eters used to measure the ventilation and pollutant removal performance, respectively. The venti-
lation performance is found to be enhanced for street canyons of lower AR. The pollutant re-
moval performance, however, is not in line with the ventilation and does not exhibit a linear 
pattern with the ARs. Their mean and turbulent components are considered separately and the 
turbulent component is found to dominate the ventilation and the pollutant removal.  

2 METHODOLOGY 

To simulate the wind and pollutant transport, LES with the one-equation subgrid-scale (SGS) 
model is employed for investigating the ventilation and pollutant removal in idealized 2D street 
canyons of different ARs. The open-source computational fluid dynamics (CFD) code Open-
FOAM 1.6 (OpenFOAM, 2010) is adopted.  

2.1 Governing Equations 

The incompressible Navier-Stokes equations in isothermal conditions comprise of the continuity 
 
                                        (1) 
 

and the momentum conservation  
 
                      (2) 
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2.3 LES boundary conditions 

Periodic boundary conditions are applied to the flow field in the horizontal directions that repre-
sents infinitely long, repeating street canyons. A shear-free boundary is prescribed along the do-
main top while all the solid boundaries are parameterized using a wall model.  
 

Unlike the wind flow, the pollutant leaves the outlet without any reflection. The pollutant 
concentration is prescribed to zero at the inflow so no background pollutant is considered. All the 
solid boundaries at the domain bottom, including the leeward and windward building roofs and 
facades, and the ground, are set at constant pollutant concentration. Similar to the flow field, a 
periodic boundary condition is employed in the spanwise direction representing an infinitely long 
street canyon.   

3 THEORY 

Definitions and the physical meaning of the friction factor, ACH, and PCH are demonstrated be-
low. These values are integrated along the roof level from the ensemble-averaged 2D domain. 

3.1 Friction factor  

The prevailing wind flow is driven by the pressure difference ΔP. Counter-balancing the pres-
sure force, the shear stress τ on the domain bottom is calculated as follows 

 
.                                    (7) 
 

Here, H is the domain height and Δx the streamwise domain extent. Using the equivalent diame-
ter De (= 2AB/(A+B)) for a rectangular duct of width A and height B, air density ρ and mean flow 
speed in the shear layer U , the friction factor f is calculated from 
 
                         .                                                  (8) 
 
 
The physical meaning of the friction factor, as shown in equation (8), is the ratio of the shear 
force from the ground surface to the kinetic energy per unit volume. Alternatively, the friction 
factor measures the total force required or the total resistance for the flow to sustain a certain 
wind speed across the computational domain. The higher the friction factor, the higher the total 
resistance in the computational domain, the larger force is thus required to sustain the flows over 
the street canyons. 

3.2 Air exchange rate (ACH)  

The ventilation performance can be compared by the ACH (Cheng et al. 2009). It measures the 
rate of the air transfer across the roof level of the street canyons, i.e. the larger the ACH, the bet-
ter the ventilation. For incompressible conditions, the wind entraining down into the street can-
yon equals the wind de-entraining from it, i.e. the overall upward velocity is equal to the overall 
downward velocity in magnitude along the roof level. Moreover, the ACH has two components: 
the mean and turbulent components. The mean ACH is defined as the overall upward velocity

w  across the roof level 
 
                                                                           (9) 
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When the buildings are closely packed together in the skimming flow regime, a single, iso-
lated recirculation is spinning inside the street canyon. The pressure difference between the up-
stream inlet and the downstream outlet is then small leading to a lower total resistance. For more 
closely packed buildings, less energy is required to drive the recirculation in the street canyon by 
shear due to the narrower roof.  

4.2 ACH 

The relationship between the ACH (normalized by the maximum horizontal velocity and the 
length of the domain) and the AR is illustrated, together with the LES result and the k-ε solu-
tions from Liu et al. (2011), in Figure 3. All the ACH  and ACH” of the LES and k-ε solutions 
are consistent with each other for ARs smaller than or equal to 0.5. For ARs larger than 0.6 in the 
skimming flow regime, the ACH  compares well between the two numerical solutions, while 
the ACH”s deviate in which the ACH” obtained from the LES is smaller than that of the k-ε 
model. However all the total ACH, ACH , ACH” show a similar trend in the LES and k-ε results 
that decreases with increasing ARs.  
 

It is observed that the total ACH is inversely proportional to the AR that is consistent with 
the common presumption that ventilation is improved in a wider street. We focus on the increas-
ing rate of the ACH with the increasing street width. The ACH increases sharply when the AR is 
higher in the skimming flow regime. When the street is widened to the wake interference regime, 
the increasing rate of ACH slows down and is even flattened in the isolated roughness regime.  
  

Due to the fresh air entrainment, the ACH  in the isolated roughness regime acts more ef-
fectively than does in the wake interference and skimming flow regimes. The ACH  has some 
contribution to the ventilation performance with about 1/5 of the total ventilation rate. In a wider 
street, the ventilation behaves similarly to a smooth surface; and thus no substantial change in the 
airflow is observed. It is because most part of the street canyon falls into the redevelopment re-
gion in which the flow is parallel to the streamwise flow, with a small recirculation in the lee-
ward side. The air inside the street canyon then exchanges with the air aloft across the roof level 
in the redevelopment region, promoting to a better ventilation performance. The ACH is normal-
ized by the length of the computational domain; and thus the ACH does not have any noticeable 
oscillation in the isolated roughness regime.  
  

In both the wake interference and skimming flow regimes, the redevelopment region disap-
pears in which only one recirculation is observed in the street canyon. Therefore, when the street 
width is reduced, the ACH  plays an insignificant role in air exchange due to the tiny air en-
trainment from the roof down into the street canyon. The vertical mean flow along the roof be-
comes negligible as it only contributes 10% to the total ACH. The ACH” is therefore the major 
mechanism for the street canyon ventilation.  
  

Moreover, it is noteworthy that the turbulent component plays a more important role in 
street canyon ventilation. As the turbulence is generated by the shear stress of the leeward build-
ing, the area on the roof level for the generation of turbulence determines the quality of the venti-
lation. Subsequently, in both the wake interference and skimming flow regimes, the ACH” de-
creases with increasing ARs. Therefore, to enhance the ventilation performance, turbulence 
should be promoted in addition to mean wind speed.  
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