

Numerical simulation of streamflow process in a small headwater catchment in Hong Kong

Qian XU¹, Ji CHEN¹, Mervyn PEART² ¹ Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China ² Department of Geography, The University of Hong Kong, Pokfulam, Hong Kong, China

The model is run based at the 1-min time step. The basin was delineated into five subcatchments (Fig. 3a) and Fig. 3b and c shows the distribution of the topographic index. The upper and lower limits of the parameter values used in the calibration are shown in the table 1.

Table 1 Parameter boundary values									
Parameter	M(m)	LN(T0) (m ² h ⁻¹)	TD(h)	SRMAX (m)	RV(mh ⁻¹)	CHV (mh ⁻¹)			
Lower Bound	0.001	-10	0	0.001	100	100			
Upper Bound	0.1	10	10	0.1	5000	5000			
Initial Value	0.01	1	1	0.01	100	100			

The study demonstrates a parameter failed to search global optimum (Table 2) when model is in the ideal conditions.

Table 2 Calibrated values for the TOPMODEL parameters using SCE-UA								
Parameter		M(m)	LN(T0) (m ² h ⁻¹)	TD(h)	SRMAX (m)	RV(mh ⁻¹)	CHV(mh ⁻¹)	
#1	Global	0.09	1	1	0.06	1860	1900	
	SCE-UA	0.089	1	6.742	0.06	1856	1905	
#2	Global	0.06	3	1	0.01	660	900	
	SCE-UA	0.059	3.052	3.901	0.01	595	884	
#3	Global	0.032	9	3	0.07	2500	3000	
	SCE-UA	0.032	9.643	6.673	0.07	2545	2923	

Ten trials have been carried out for one flow series with different starting search positions.

Table 3 Calibrated values for the TOPMODEL parameters using SCE-UA method

	Parameter N		1 ТО		CHV RV		SRMAX	
	SCE-UA 0.0)89 1		1857.5	0.06		
	Table	e 4 Calibra	tion resul	ts from the	TOPMOE	DEL		
			Peak flo	F	Peak time			
Periods		Observ (m ³ /mi	ed Simula n) (m ³ /m	atedRelativein)error (%)	Observed(min)	Simulated (min)	Error	E
Calibration	12-19 6.200	7 3.5	2.8	20	20:48	20:46	2	0.85
	28-30 6.200	7 4.3	4.0	7	09:29	09:27	2	0.84
Validation	6-14 6.2008	9.8	10.4	4 6	11:57	11:57	0	0.86
	10-13 6.200	8 24.0	27.1	l 13	08:42	08:49	7	0.82

In the two calibrated flood events (Table 4), TOPMODEL behaves well in peak flow and the relative errors are controlled within 20%. For the E value, all results are over 0.8. TOPMODEL also gives acceptable results for the time lag. Fig. 5 and 6 shows the hydrographs of the simulation and observation.

Fig. 6 Topmodel validations (a) 6-14 June 2008, and (b) 10-13 July 2008

Using the observation during the period of 6-14 June 2008, the flood event was simulated at different temporal steps, such as 5-min, 10-min, 30-min and 1-hour (Table 5).

 Table 5 Peak observations in different time steps

		Peak flow	Peak time						
Periods	Observed (m ³ /min)	Simulated (m ³ /min)	Relative error (%)	Observed (min)	Simulated (min)	Error	E		
1-min	9.8	10.4	6	11:57	11:57	0	0.86		
5-min	9.5	9.7	2	12:00	12:00	0	0.83		
10-min	9.1	12.3	35	12:00	12:00	0	0.82		
30-min	7.9	10.0	27	12:30	12:00	30	0.82		
60-min	7.8	9.6	23	13:00	13:00	0	0.80		

- the global optimum.
- restricted within few hours.

Beven, K. J., and Kirkby, M. J. (1979). A physically based variable contributing area model of basin hydrology. *Hydrology Sciences Bulletin*, 24(1), 43-69. Duan, Q.Y., Sorooshian, S., and Gupta, V.K. (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28, 1015–1031. Li,Y. Q. (2009). Monitoring, analyzing and modeling hydrological processes over a headwater catchment in Hong Kong. The University of Hong Kong, HONG KONG.

This study is supported by the RGC GRF HKU 711008E Project.

5. Conclusions

. The SCE-UA algorithm could locate the global optimum parameter set in the idea data study conducted using 1-min time step data. In the 10 SCE-UA trials, five parameters can converge, and one parameter fails to find

2. TOPMODEL can simulate the streamflow components, including total discharge, peak flow and peak time, at 1-min time step.

3. According to the time resolution analysis through comparison of simulations at the temporal steps 1-min, 5-min, 10-min, 30-min, and 1hour, it is observed that 1-min time step rather than longer time step simulation is applicable to flash flood simulation whose duration is

Acknowledgements