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Abstract

We consider a war of attrition in which the winner is determined according to the

unobservable state of nature on a stochastic deadline and players can acquire infor-

mation about the state at any time during the game. We study how the players’

incentive to acquire information interacts with the verifiability of the acquired infor-

mation. When the information is verifiable, players only have an incentive to free ride

on the opponent’s information acquisition and, thus, there is excessive delay. When

the information is unverifiable, an informed player obtains information rents. This

provides an incentive for players to acquire information more quickly, thereby reduc-

ing delay. However, an uninformed player catches up on information acquisition so

as not to be exploited by the informed player, which creates redundant duplication in

information acquisition. We show that in the most natural class of equilibria the two

effects cancel each other out and, thus, the players’ payoffs are identical, regardless

of whether information is verifiable. We also show that, in our model, the faster the

deadline arrives, the longer the conflict lasts.

JEL Classification Numbers: C78, D82, D83.

Keywords : Information Acquisition; War of Attrition; Information Rent; Free

Riding.

1 Introduction

In many economic problems, information has to be acquired, rather than exogenously given,

as typically assumed in the literature. In addition, it has been shown that costly information
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acquisition may have a significant impact on the economic outcome in a variety of situations.

Examples include auctions (Matthews, 1984; Persico, 2000; and Dang, 2007), bargaining

(Shavell, 1994; and Dang, 2008), committee design (Li, 2001; and Persico, 2004), principal-

agent models (Crémer and Khalil, 1992; and Crémer, Khalil, and Rochet, 1998a, 1998b),

reputation games (Ely and Välimäki, 2003; and Liu, 2010), and strategic experimentation

(Bolton and Harris, 1999; and Keller, Rady, and Cripps, 2006).

When information has to be acquired, a key question is whether it can be acquired

efficiently. There are two fundamental non-cooperative incentives concerning information

acquisition. First, information reduces uncertainty for everyone and, therefore, has a public-

good property. Players have an incentive to free ride on others’ information acquisition (the

free-riding incentive). This incentive leads to underinvestment in information acquisition.

Second, if acquired information remains private, then an informed player collects information

rents. The incentive to obtain information rents (the information-rent incentive) leads to

overinvestment in information acquisition. In most existing studies, only one of these two

incentives is operative. For example, the committee-design literature and the strategic-

experimentation literature exclusively focus on the free-riding problem. In bargaining and

auctions, the focus typically shifts to issues related to information rents. The purpose of this

paper is to demonstrate how the two fundamental non-cooperative incentives interact with

each other when they are both present.

The context is a war of attrition with a deadline. In the standard war of attrition, the

game ends only when at least one of the players concedes. In ours, the game exogenously

terminates on a (random or deterministic) deadline, with the termination payoffs depending

on the unobservable state of nature.1 When deciding whether to continue (before the arrival

of the deadline), players have an incentive to learn about the state of nature: the opportunity

cost of concession is larger to a player who is favored by the state and, thus, acquiring

information allows a player to avoid regrettable concession (when the state is favorable) as

well as unnecessary delay (when the state is unfavorable).

To focus more on economic forces, we consider the simplest form of information acquisi-

tion: a player observes the state if he incurs a positive cost. In addition, we concentrate on

the case where both the deadline and information acquisition are most relevant: the deadline

does not arrive too slowly, so that in the absence of information acquisition the conflict is

resolved only by the arrival of the deadline, and information acquisition is not too costly, so

1In the literature on deadline effects, the deadline is often assumed to be the moment at which the
potential surplus dissipates or depreciates (see, e.g., Spier (1992), Fershtman and Seidmann (1993), Ma and
Manove (1993), and Ponsati (1995)). In our model, the deadline is the moment at which the winner of the
game is determined according to the unobservable state. Since the deadline essentially reveals the state, we
will also refer to the deadline as the “public signal.”
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that players have a non-trivial incentive to acquire information.

We study and compare two versions of the model.2 The two cases differ with respect to

whether the acquired information is verifiable. The two non-cooperative incentives regarding

information acquisition are manifested differently in the two cases. When information is

verifiable, as in the disclosure game,3 private information is unraveled: it is strictly dominant

for an informed player to reveal favorable information and, thus, if an informed player does

not disclose his private information, the opponent can infer that the state is favorable to him.

Consequently, acquired information is essentially public and only the free-riding incentive

is operative. When information is not verifiable, unraveling does not necessarily occur and

an informed player obtains positive information rents. In other words, the weak type (who

knows that the state is unfavorable to him) can always mimic the strong type and, thus, an

informed player must be compensated in order to reveal his type.

In each case, there are many equilibria, as in the standard war of attrition and essentially

for the same reason: players are indifferent between acquiring information and waiting at

any point in time, including the beginning of the game. We fully characterize the set of all

equilibria but mainly focus on the most natural class of equilibria in which no player acquires

information with a positive probability at the beginning of the game.4

We show that the game ends faster when information is unverifiable, but the players’

expected payoffs are identical in the two cases. As explained before, when information is

verifiable, only the free-riding incentive is operative, which causes excessive delay in in-

formation acquisition. When information is not verifiable, the free-riding incentive is still

operative, but is (partially) offset by the information-rent incentive. This translates into less

delay with unverifiable information.

When information is unverifiable, however, there is another source of inefficiency: dupli-

cation in information acquisition. When an informed player attempts to extract information

rents, an uninformed player can respond by acquiring information himself, that is, he can

catch up on acquiring information to protect himself from being exploited. Such duplication

never occurs with verifiable information but does occur with unverifiable information. It

turns out that the positive effect from less delay exactly cancels out the negative effect from

duplication. As a result, the verifiability of the acquired information significantly affects

equilibrium behavior but not the players’ payoffs.

We caution that the payoff equivalence does not hold if all equilibria are considered.

The most efficient equilibrium in each case is the one in which one player, say player 1,

2A player’s action of acquiring information is observable by the opponent. We discuss this assumption in
Section 8.

3See Grossman (1981) and Milgrom (1981) for seminal contributions.
4See Section 6 for several reasons why such equilibria are more appealing than others.
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acquires information for sure at the beginning of the game. Player 1’s expected payoff is

the same as in the equilibrium in which no player acquires information at the beginning,

but player 2’s expected payoff is maximized among all the equilibria. Comparing the two

cases, player 2’s expected payoff is strictly higher when information is verifiable. This is

because there is no delay in the most efficient equilibria (no free-riding effect), while the

information-rent problem that is present only when information is unverifiable still causes

excessive information acquisition.

Although our analysis is mainly theoretically motivated, our model fits into several appli-

cations. Many economic problems can be represented by wars of attrition, such as litigation

(Ordover and Rubinstein, 1986), oligopolistic competition with the option to exit (Fuden-

berg and Tirole, 1986; Ghemawat and Nalebuff, 1985; and Kreps and Wilson, 1982), patent

races (Fudenberg, Gilbert, Stiglitz, and Tirole, 1983), and public-good provision (Bliss and

Nalebuff, 1984; and Bulow and Klemperer, 1999). The conflicts are often resolved by an

exogenous force. In a legal conflict, the trial eventually determines whether the defendant is

guilty. In a competition over a technology standard, the government may intervene or public

signals that prove clear superiority of one technology over the other may arrive. Our model

captures in a simple way the problems facing agents in such situations.

Our analysis provides novel insights for such applications. Our main result suggests

that whether the government (or society) should require agents involved in a conflict to

disclose their information or provide a verification service for their information depends on

the objective of the government (or society). If the objective is to maximize the agents’ joint

surplus, as in civil charges, a mandatory disclosure rule or a verification service would not

help. If the objective is, in addition, to have the right agent win, as in criminal charges

or technology standard competitions, then a mandatory disclosure rule and a verification

service are marginally useful.5 If the objective also includes ending the conflict as quickly as

possible, as in the public-good-provision problem, then a mandatory disclosure rule should

not be imposed and a verification service should not be provided.

Our model can also be used to address other policy issues in such applications. For

example, in a legal conflict, the government may regulate attorney fees or impose a stricter

deadline. In a technology standard competition, the government may intervene to control

the costs of the participants or invest in research to evaluate the merits of each technology.

Our results provide simple answers to these questions.

One particularly interesting result is that the shorter the deadline is, the longer the

conflict lasts (regardless of whether the information is verifiable). Increasing the arrival rate

of the deadline/public signals directly speeds up the resolution of a conflict. However, in our

5With unverifiable information, a wrong winner may be selected, but the probability is negligible.
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model, where players can acquire information about the state, such a rate increase has the

indirect effect of crowding out the players’ incentive to acquire information. The players’

incentive to free-ride on information acquisition comes from the possibility that the public

signal may arrive soon or that the opponent may acquire information first, both of which

help them avoid the information-acquisition costs. Therefore, as the arrival rate of public

signals increases, players are less willing to acquire information. In our model, this indirect

effect is at least twice as large as the direct effect6 and, thus, shortening deadlines delays the

resolution of a conflict.

Related Literature

The literature on the war of attrition and its applications is too large to summarize here.

Let us introduce only a few seminal contributions. The game is first proposed by Maynard

Smith (1974). The analysis of the game with complete information is generalized by Bishop

and Cannings (1978) and, subsequently, by Hendricks, Weiss, and Wilson (1988). Various

versions of the game with incomplete information are also studied (for example, Bishop,

Cannings, Maynard Smith (1978), Riley (1980), Milgrom and Weber (1985), Nalebuff and

Riley (1985), and Ponsati and Sákovics (1995)). Bulow and Klemperer (1999) generalize the

game into the case with N+k players and N winners. Our model is unique in that the game

begins with complete information but turns into a game with incomplete information once

a player acquires information, that is, asymmetric information is endogenized.

The closest papers to ours are those by Ordover and Rubinstein (1986) and Morath

(2010). Ordover and Rubinstein (1986) study a war of attrition between an informed player

and an uninformed player. As in our paper, the information of the informed player is about

who wins at the (deterministic) deadline. The crucial difference is that, in our model,

the information is endogenous and both players can learn about the state at any point

in time, while in Ordover and Rubinstein (1986), the information is exogenous and the

uninformed player does not have the ability to acquire information. Our analysis reveals that

both the endogeneity of information and the uninformed player’s access to the information-

acquisition technology have significant effects on the equilibrium outcome. Morath (2010)

studies the model in which players can acquire information about the cost of fighting at (and

only at) the beginning of the game. He is mainly interested in the strategic value of (not)

acquiring information and, therefore, considers the case where the players’ values of losing

6From an individual player’s viewpoint, the arrival of the public signal and the opponent’s information
acquisition are perfect substitutes. Therefore, for both players to remain indifferent after the increase in the
arrival rate, each player’s concession rate must decrease by at least as much as the increase in the arrival
rate. See Section 7 for more-detailed arguments.
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are independent and information acquisition is costless.

A few papers study the situations in which the free-riding and information-rent incentives

interact. Grossman and Stiglitz (1980) study the competitive market in which investors can

acquire information about the return of a risky asset. Investors, if they become informed, can

receive arbitrage profits (information rents). However, the uninformed players can infer about

the information of the informed investors through competitive prices and, thus, investors also

have a free-riding incentive. They show that this conflict between the two incentives leads to

competitive prices only partially reflecting the information of the informed investors. Jansen

(2008) considers the oligopoly setting in which firms may acquire information about the

demand curve. If firms must disclose their acquired information, then, due to the free-riding

incentive, too little information is acquired. If firms cannot credibly disclose their acquired

information, then, due to the information-rent incentive, too much information is acquired.

If firms can choose whether or not to disclose, then, due to the conflict between the two

incentives, firms’ expected payoffs may be higher (and lower) than under no disclosure or

full disclosure.

The remainder of this paper is organized as follows. Section 2 presents and analyzes the

benchmark model in which information acquisition is not allowed. Section 3 presents the

model with information acquisition. Section 4 and Section 5 analyze the case where acquired

information is verifiable and the case where it is not, respectively. Section 6 highlights the role

of the verifiability of the information by comparing the two models. Section 7 demonstrates

that shortening the deadline delays the resolution of a conflict. Section 8 concludes by

discussing two particularly interesting extensions.

2 War of Attrition with Deadlines

2.1 Setup

Our underlying model is the standard war of attrition. There are two players, player 1

and player 2. Each player chooses the time to concede, ti ∈ R+. If player j concedes first

(tj < ti), then player i receives utility e−rtjh, while player j receives utility e−rtj l, where

h > l > 0. In other words, at time min{t1, t2}, the loser (who conceded) receives l and the

winner receives h, and the common discount rate is r > 0. For simplicity, we assume that

if ti = tj, both players obtain e−rtil.7 Let d denote the undiscounted reward to the winner,

that is, d ≡ h− l.
7This is without loss of generality, as the event that both players concede simultaneously occurs with

probability 0 in all of the cases we consider.
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Unlike the standard game, our game can also terminate exogenously. More specifically,

there is an underlying state of nature, ω ∈ {1, 2}. The state ω is initially unknown, but

a public signal that reveals the state arrives according to a Poisson rate λ > 0. Upon the

arrival of the signal, the game ends and player i receives utility h (l) if ω = i (j). It is

commonly known that ω = 1 with probability p1 ∈ [0.5, 1) and ω = 2 with probability

p2 = 1− p1.

Within each time interval [t, t+ dt), the timing of the game is as follows: a public signal

arrives with probability 1− e−λdt. If it arrives, then the game ends according to the revealed

state. If not, the players simultaneously decide whether or not to concede. Although we

study a continuous-time model, the model can be interpreted as the limit of the discrete-time

models in which players move only at t = ∆, 2∆, .... We use this discrete-time version to

clarify some of our results.

2.2 Characterization

Let a distribution function Gi : R+ → [0, 1] represent player i’s concession strategy, where

Gi(t) is the cumulative probability that player i concedes by time t. By standard argument,

Gi has no atom in its interior. In addition, unless the equilibrium is degenerate (a player

concedes at the beginning of the game), the supports of equilibrium G1 and G2 are common

and take an interval starting from time 0. Let gi denote the density of Gi over the interior

of its support.

As in the standard war of attrition, at each t in the interior of the support, players must

be indifferent between conceding and waiting an instant more. Therefore, for each i = 1, 2

and j 6= i,

rl =
gj(t)

1−Gj(t)
d+ λpid.

The left-hand side is player i’s marginal cost of waiting an instant more, while the right-hand

side is the corresponding marginal benefit.8 Player i receives l if he concedes. His marginal

8The analogous indifference condition in the discrete-time model is

l =
Gj(t)−Gj(t−∆)

1−Gj(t−∆)
h+

1−Gj(t)
1−Gj(t−∆)

e−r∆
(
(1− e−λ∆)(l + pid) + e−λ∆l

)
.

The left-hand side is player i’s payoff by conceding, while the right-hand side is his payoff by waiting one
more period. If player i does not concede, then player j concedes with probability Gj(t)−Gj(t−∆)

1−Gj(t−∆) in this
period. With the complementary probability, the game moves to the next period. In the next period, a
public signal arrives with probability 1 − e−λ∆, in which case player i receives h with probability pi and l
with probability 1−pi. If a signal does not arrive, for a small enough ∆, player i is again indifferent between
conceding and waiting one more period and, thus, player i’s expected payoff is l. It is straightforward to
show that this discrete-time condition converges to the continuous-time condition as ∆ tends to zero.
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cost of staying an instant more is the discounting cost of collecting the payoff an instant

later. If player i wait an instant more, he obtains an additional payoff d under the following

two contingencies: (1) player j concedes before t + dt, whose arrival rate is
gj(t)

1−Gj(t)
; (2) a

public signal arrives and the state is revealed to be favorable to player i (that is, ω = i).

The arrival rate of the signal is λ and the probability that ω = i is pi.

If rl < λpid, then the marginal benefit is always larger than the marginal cost. Therefore,

player i never concedes. If rl ≥ λpid, then the indifference condition has a closed-form

solution:

Gj(t) = 1− (1−Gj(0)) exp

(
−
(
rl − λpid

d

)
t

)
,

where Gj(0) ∈ [0, 1] is unknown.

There are essentially three cases to consider. If rl < λp2d, then no player is willing to

concede. In this case, it is the unique equilibrium that both players wait for a public signal

forever. If λp2d < rl < λp1d, then player 1 never concedes and, given player 1’s strategy,

player 2 strictly prefers conceding immediately. It is the unique equilibrium that player 2

concedes immediately.

If rl > λp1d, then both G1 and G2 are well-defined. One restriction for the two unknowns,

G1(0) and G2(0), is that at least one of them must be equal to 0. This is because if player

i concedes with a positive probability at time 0, then player j strictly prefers waiting an

instant more to conceding immediately. There is no further restriction on G1(0) and G2(0)

and, therefore, Gi(0) can take any value in [0, 1] as long as Gj(0) = 0.

In the third parameter case, where rl > λp1d, as is familiar in the war-of-attrition litera-

ture, there are also degenerate equilibria: one player does not concede forever or until after

a sufficiently long time, and the opponent concedes immediately. Such equilibria are essen-

tially irrelevant, because their equilibrium outcomes coincide with those in which Gi(0) = 1

for some i. For clarity of exposition, we ignore all such degenerate equilibria throughout the

paper.

The following proposition summarizes the findings for the model without information

acquisition.

Proposition 1 (i) If rl < λp2d, then there is a unique equilibrium in which both players

wait for a public signal forever. Player i’s expected payoff is λ
r+λ

(l + pid).

(ii) If λp2d < rl ≤ λp1d, then it is the unique equilibrium outcome that player 2 concedes

immediately. Player 2 obtains l, while player 1 obtains h.9

9If λp2d = rl ≤ λp1d, then there is a continuum of equilibria. If rl < λp1d, then for any α ∈ [0, 1], it is an
equilibrium that player 2 concedes with probability α at date 0 and never concedes with the complementary
probability, and player 1 never concedes. Player 2’s expected payoff is always l = λ

r+λ (l+ p2d), while player
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(iii) If rl > λp1d, there is a continuum of equilibria. For any G1(0), G2(0) ∈ [0, 1] such

that G1(0)G2(0) = 0, it is an equilibrium that player i concedes according to distribution

function Gi(t) = 1 − (1−Gi(0)) exp
(
−
(
rl−λpjd

d

)
t
)

for both i = 1, 2. Each player can

obtain any expected payoff in [l, h], provided that the opponent receives l.

Intuitively, if a public signal arrives sufficiently fast (λ is high), players are sufficiently

patient (r is small), or the winning reward is sufficiently large (d is large), as in Case (i),

players are unwilling to concede and, therefore, wait forever. In the opposite case, as in Case

(iii), public signals are essentially irrelevant and, thus, the game is almost identical to the

standard war of attrition. In the asymmetric case (p1 > p2), there is an intermediate case

(Case (ii)): a public signal arrives fast enough, so that player 1 is willing to wait, but not

too fast, so that player 2 does not want to bear delay costs. In that case, player 2 concedes

immediately and player 1 obtains the highest possible payoff.

3 The Model with Information Acquisition

The players have an incentive to learn about the state ω in order to avoid regrettable conces-

sions and unnecessary delay. In this section, we allow players to acquire information about

ω. Information acquisition is costly: each player must incur a cost c > 0 in order to observe

the state ω.

Within each time interval [t, t+ dt), the timing of the game is as follows:

1. Signal stage: a public signal arrives with probability 1 − e−λdt. If it arrives, then the

game terminates according to the state.

2. Information-acquisition stage: Players simultaneously decide whether or not to acquire

information. Players observe whether the opponent has acquired information.

3. Disclosure stage: If acquired information is verifiable, then the player who acquired

information can disclose his information. Otherwise, this stage is skipped.

4. Concession stage: Players simultaneously decide whether or not to concede.

We focus on the case where both deadline and information acquisition are most relevant.

Formally, we make use of the following two assumptions.

Assumption 1

λpid > rl, i = 1, 2.

1 can obtain any utility between [l, h]. If rl = λp1d, the roles of the players can be switched and, thus, both
players can obtain any expected payoff in [l, h], provided that the opponent obtains l.
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This assumption states that a public signal arrives fast enough (λ is high), the reward of

winning is large enough (d is large), or the players are patient enough (r is small), so that

both players are unwilling to forgo the opportunity to win the game. Under this assumption,

if no player acquires information, by Proposition 1 (Case (i)), both players wait forever and

the game ends only upon the arrival of a public signal.

Assumption 2

c <
rl

λ
.

To understand this assumption, suppose that no player would acquire information and both

players would wait forever. If a player believes that the state is favorable to him with

probability p, then his expected payoff is λ
r+λ

(l + pd). Now suppose the player acquires

information and the game terminates according to the true state. In this case, the player’s

expected payoff is −c+ l+ pd. The assumption states that the latter payoff is strictly larger

than the former, as long as the player does not strictly prefer conceding immediately to

acquiring information, that is, −c+ l+ pd > λ
r+λ

(l+ pd) for any p such that −c+ l+ pd ≥ l.

Intuitively, this assumption guarantees that the cost of information acquisition is not too

large, so players have a non-trivial incentive to acquire information.

For notational simplicity, we will refer to a player who has acquired information and

found that the state is favorable (unfavorable) to him as the “strong” (“weak”) type.

4 Information Acquisition with Verifiable Information

This section considers the case where players can verify acquired information.

We begin with three immediate results. First, the game ends immediately once at least

one player acquires information. This is because it is a dominant strategy for the strong type

to disclose the acquired information. If an informed player does not disclose the information,

then the opponent would know that the state is favorable to him and, therefore, would never

concede. The weak informed player would then immediately concede. Second, the game

endogenously concludes only when at least one player acquires information. This is because,

by Assumption 1, if no player acquires information, then both players would wait forever.

Third, if player j never acquires information, then player i acquires information immediately.

This is because, by Assumptions 1 and 2, player i’s expected payoff by acquiring information

−c+ l + pid is strictly larger than his expected payoff by waiting forever λ
r+λ

(l + pid).

The above results imply that the only strategic problem is who acquires the information.

Since the information is verifiable, information unraveling prevents players from extracting

any information rents. Therefore, only the free-riding incentive is present and the game is
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essentially a war of attrition. The difference from the standard war of attrition is that now

it is not about who concedes first, but who acquires the information first.

For a formal description of the equilibrium, let a distribution function Fi : R+ → [0, 1]

represent player i’s information-acquisition strategy, where Fi(t) is the cumulative probability

that player i acquires information by time t. By standard argument, Fi has no atom in its

interior. Let fi denote the density of Fi over the interior of its support. As familiar, if t is in

the interior of the support of Fi, player i must be indifferent between acquiring information

and waiting an instant more. Therefore,

r (−c+ l + pid) =

(
λ+

fj(t)

1− Fj(t)

)
c. (1)

The left-hand side is player i’s marginal cost of delaying information acquisition an instant,

while the right-hand side is the corresponding marginal benefit.10 The marginal cost is his

discounting cost of collecting the payoff by acquiring information, −c + l + pid, an instant

later. The marginal benefit comes from the fact that during that instant, a public signal

may arrive, at an arrival rate of λ, or the opponent may acquire information, at an arrival

rate of
fj(t)

1−Fj(t)
. Under both contingencies, player i avoids the information-acquisition cost c.

Solving the first-order ordinary differential equation,

Fj(t) = 1− (1− Fj(0)) exp

(
−
(
r
−c+ l + pid

c
− λ
)
t

)
,

where Fj ∈ [0, 1] is unknown. Under Assumptions 1 and 2, the function is always well-

defined. One restriction for the two unknowns F1(0) and F2(0) is that at least one of them

must be equal to zero, that is, F1(0)F2(0) = 0. Similarly to the standard argument, this is

because if a player acquires information with a positive probability at date 0, then the other

player strictly prefers waiting an instant. As in Section 2, there is no further restriction

for the two unknowns. Therefore, F1(0) and F2(0) can take any values in [0, 1] as long as

F1(0)F2(0) = 0.

The following proposition summarizes the findings. Given the characterization above,

the proof is straightforward and thus omitted.

Proposition 2 When acquired information is verifiable, there is a continuum of equilib-

ria: for each F1(0), F2(0) ∈ [0, 1] such that F1(0)F2(0) = 0, there is an equilibrium in

10The discrete-time analog to this equation is

−c+ l+ pid =
Fj(t)− Fj(t−∆)

1− Fj(t−∆)
(l+ pid) +

1− Fj(t)
1− Fj(t−∆)

e−r∆
(
(1− e−λ∆)(l + pid) + e−λ∆(−c+ l + pid)

)
.
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which player i acquires information according to the distribution function Fi(t) = 1 − (1 −
Fi(0)) exp

(
−
(
r
−c+l+pjd

c
− λ
)
t
)

for both i = 1, 2. The set of the players’ expected payoffs is

given by

{(v1, v2) : vi ∈ [−c+ l + pid, l + pid], and (v1 − (−c+ l + p1d))(v2 − (−c+ l + p2d)) = 0} ,

that is, player i can achieve any payoff in [−c + l + pid, l + pid] as long as the opponent

receives −c+ l + pjd.

5 Information Acquisition with Unverifiable Informa-

tion

This section studies the case where acquired information is not verifiable. The difference

from the previous section is that there is no disclosure stage (or the disclosed information is

not credible).

We first characterize the outcome of a game in which one player is informed about

the state and the other is not. This is the subgame immediately following one player’s

information acquisition. We use the outcome of this game to characterize the equilibrium in

the original game.

5.1 Subgame in which one player is informed

This game is similar to that of Ordover and Rubinstein (1986). The difference lies in the

uninformed player’s strategy set. In Ordover and Rubinstein (1986), the uninformed player

can choose only whether or not to concede, while in our game the uninformed player can

acquire information. We show that this difference makes the equilibrium dynamics of our

game significantly different from those of Ordover and Rubinstein (1986).

For expositional clarity, consider the discrete-time version of the model. We begin with

two results concerning the equilibrium behavior of the weak informed player in the first period

of the subgame. First, the weak informed player must concede with a positive probability.

Otherwise, the uninformed player would either acquire information or wait for a public

signal, and then, due to discounting, the weak informed player would get strictly less than l.

Second, the weak informed player does not concede with probability 1. If he concedes with

probability 1, then in the next period the uninformed player would believe that he is facing

a strong type with probability 1 and, therefore, concedes without acquiring information for

sure. But the weak informed player would then strictly prefer waiting to conceding in the
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first period, which is a contradiction.

The fact that the weak informed player stays with a positive probability but still ob-

tains l implies the following two results regarding the uninformed player’s behavior in the

second period. First, the uninformed player must concede without acquiring information

with a certain probability. Otherwise, the weak informed player would receive only l in the

second period, regardless of whether the uninformed player acquires information or waits

forever. This is a contradiction because he could have received the same payoff in the first

period. Second, the concession probability of the uninformed player must be small enough.

Otherwise, the weak informed player would strictly prefer waiting to conceding in the first

period.

In equilibrium, the weak informed player randomizes between conceding and waiting

in the first period. The uninformed player randomizes between acquiring information and

conceding in the second period. They do so with just enough probabilities so that both the

weak informed player and the uninformed player are indifferent between their two actions.

The game ends for sure in the second period.

Formally, let α be the probability that the weak informed player concedes in the first

period. Also, let β be the probability that the uninformed player acquires information in

the second period. The following two conditions must be satisfied:

1. Weak informed player i’s indifference:

l = e−r∆
(
(1− e−λ∆)l + e−λ∆ (βl + (1− β)h)

)
.

If the weak informed player does not concede, then in the next period a public signal

arrives with probability 1−e−λ∆, in which case the player receives l. Conditional on the

event that a signal does not arrive, the uninformed player acquires information with

probability β and concedes with the complementary probability. The weak informed

player receives l and h in each event. Solving this equation,

β = 1− (1− e−r∆)l

e−(r+λ)∆d
.

This value is well-defined as long as ∆ is sufficiently small.

2. Uninformed player j’s indifference:

−c+ l +
pj(1− α)

pi + pj(1− α)
d = l.

The left-hand side is player j’s expected payoff by acquiring information in the second
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period. Conditional on the event that player i did not concede in the first period, by

Bayes’ rule, player j’s belief over the state is
pj(1−α)

pi+pj(1−α)
. The right-hand side is his

payoff by conceding. Solving the equation,

α = 1− pic

pj(d− c)
.

This probability is also well-defined because, by Assumptions 1 and 2,

c <
r

λ+ r
(l + pjd) <

r

λ+ r

(
λpjd

r
+ pjd

)
= pjd.

Probability α is independent of ∆, while β approaches one as ∆ tends to zero. Therefore,

in the equilibrium of the continuous-time model, the weak informed player immediately

concedes with probability α. If the informed player does not concede, then an instant later

the uninformed player acquires information with probability 1. One may wonder why the

weak informed player does not prefer conceding immediately to waiting, given that the

uninformed player acquires information with probability 1 in the next period and, thus,

the weak informed player cannot obtain more than l even if he waits. This is because

in continuous time the cost of waiting an instant is negligible. In compensating the weak

informed player’s cost of waiting an instant, it is enough for the uninformed player to concede

with negligible probability. In turn, this is why the uninformed player must remain indifferent

between acquiring information and conceding, even if in equilibrium he acquires information

with probability 1.

Proposition 3 (Subgame outcome) In the subgame in which only player i is informed about

the state, there is a unique equilibrium. In equilibrium, weak player i concedes with probability
pjd−c
pj(d−c) . If informed player i does not concede, then uninformed player j acquires information

and terminates the game. Strong (weak) player i obtains h (l). Player j’s expected payoff is

l +
pjd−c
d−c d.

Proof. See the Appendix.

Let us quantify the amount of information rents and the value of the uninformed player’s

information-acquisition opportunity.

Information rents If player i is informed but his opponent is not, then his expected

payoff is l + pid. If the opponent is informed but player i is not, then his expected payoff

is l+ pid−c
d−c d. Therefore, the additional payoff player i collects by acquiring information first
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amounts to

(l + pid)−
(
l +

pid− c
d− c

d

)
=

(1− pi)cd
d− c

. (2)

The value of the opportunity to acquire information Suppose the uninformed player

cannot acquire information. The game is then essentially the stochastic deadline version of

Ordover and Rubinstein (1986). In this game, the weak informed player concedes with a

positive probability in the first period. From the second period on, he strictly prefers waiting

to conceding and, therefore, never concedes. The uninformed player strictly prefers waiting

to conceding in the first period and is indifferent between conceding and waiting from the

second period forward. Therefore, in equilibrium, the weak informed player concedes only

in the first period, while the uninformed player gradually concedes starting from the second

period.

Let α be the probability that weak informed player i concedes in the first period. Also, let

a distribution function Gj : R+ → [0, 1] represent uninformed player j’s concession strategy.

Then the following two conditions must be satisfied:

1. Uninformed player j’s indifference: Uninformed player j is indifferent between conced-

ing and waiting at each point in time, except at the beginning of the game. Therefore,

rl = λ
pj(1− α)

pi + pj(1− α)
d.

The left-hand side is uninformed player j’s marginal cost of waiting an instant, while

the right-hand side is the corresponding marginal benefit. The latter only comes from

the possibility of the arrival of a public signal, because informed player i never concedes,

regardless of whether he is strong or weak. Solving the equation,

α =
pjλd− rl
pj(λd− rl)

.

2. Weak player i’s expected payoff: At each point in time, including the beginning of the

game, weak player i expects to receive l if the game continues, that is, if neither player

concedes in the period. Therefore, in the limit as ∆ tends to zero,

rl =
gj(t)

1−Gj(t)
d.11

11The discrete-time analogue to this equation is

l = e−r∆
(

(1− e−λ∆)l + e−λ∆G(t+ ∆)−G(t)
1−G(t)

h+ e−λ∆ 1−G(t+ ∆)
1−G(t)

l

)
.
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If weak player i does not concede, uninformed player j may concede, at an arrival rate

of
gj(t)

1−Gj(t)
. Unlike the previous cases, the arrival of a public signal does not contribute

to the marginal benefit, because weak player i definitely loses in that event. Solving

this equation,

Gj(t) = 1− exp

(
−rl
d
t

)
.

Notice that Gj(0) = 0, because if Gj(0) > 0, then weak player i would strictly prefer

waiting an instant to conceding at the beginning of the game.

In this game, uninformed player j obtains

l + pjαd = l +
pjλd− rl
λd− rl

d.

The value of the information-acquisition opportunity to the uninformed player is the differ-

ence between his payoff in Proposition 3 and this payoff, which amounts to(
l +

pjd− c
d− c

d

)
−
(
l +

pjλd− rl
λd− rl

d

)
=

(1− pj)d(rl − λc)
(d− c)(λd− rl)

d.

Under Assumption 2, this value is always positive. This result shows that the option to

acquire information is indeed valuable to the uninformed player.

Weak informed player i again obtains l, while strong informed player i’s expected payoff

is ∫ ∞
0

e−rthd
(
1− e−λt(1−Gj(t))

)
=

λ+ rl
d

r + λ+ rl
d

h.

The latter payoff is strictly smaller than the corresponding payoff, h, in Proposition 3. This

result is somewhat surprising because the opponent (uninformed player j) is in a stronger

position and receives a higher payoff when he can acquire information. The driving force

for this result is that the role of the uninformed player’s information acquisition is mainly

to reduce unnecessary delay, which applies to the informed player as well as the uninformed

player.

If the game moves to the next period, a public signal arrives with probability 1− e−λ∆, in which case weak
player i receives l. Weak player i does not concede, unless it is the first period. He receives h if uninformed
player j concedes. Otherwise, his contiuation payoff is equal to l. Note that weak player i strictly prefers
waiting to conceding, because his expected payoff by waiting G(t+∆)−G(t)

1−G(t) h+ 1−G(t+∆)
1−G(t) l is strictly larger than

l.
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5.2 The (original) game in which both players are uninformed

Now we consider the original game in which both players start out being uninformed about

the state.

As with verifiable information, the game ends endogenously only when at least one player

acquires information. This is because of Assumption 2 and Proposition 3: if player i never

acquires information, then player j strictly prefers acquiring information to waiting because

his expected payoff by acquiring information −c + l + pid (Proposition 3) is strictly larger

than his expected payoff by not acquiring information (Assumption 2).

In addition, players prefer for the opponent to acquire information first. Although an

informed player receives information rents, the cost of information acquisition always out-

weighs information rents:

c− (1− pi)cd
d− c

=
pid− c
d− c

c > 0.

Intuitively, player i obtains l+pid if he is informed about the state, while his expected payoff

when he is uninformed is bounded below by −c + l + pid. Therefore, the information rent

cannot be larger than the information acquisition cost c.

The two results imply that the game is again a war of attrition regarding who acquires

information first. The difference from the verifiable case is in the players’ payoffs after one

of the players acquires information. The informed player obtains the same payoff as in the

verifiable case, but the opponent receives a strictly lower payoff. The latter occurs because

in equilibrium the uninformed player also acquires information with a positive probability.

For a direct comparison, let us use the same notations for the players’ information-

acquisition strategies as in the verifiable case. As usual, if t is in the interior of the support

of Fi, then player i must be indifferent between acquiring information and delaying it for an

instant. Therefore,

r (−c+ l + pid) =

(
λ+

fj(t)

1− Fj(t)
pid− c
d− c

)
c. (3)

The left-hand side is player i’s marginal cost of acquiring information an instant later,

while the right-hand side is the corresponding marginal benefit. If player i does not acquire

information right now, then a public signal may arrive, at an arrival rate of λ, or the opponent

may acquire information, at an arrival rate of
fj(t)

1−Fj(t)
. In the latter case, player i avoids the

information-acquisition cost c but loses information rents, (1−pi)d
d−c c.

The solution to this first-order ordinary differential equation is

Fj(t) = 1− (1− Fj(0)) exp

(
− d− c
pid− c

(
r
−c+ l + pid

c
− λ
)
t

)
.
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Again, as usual, F1(0) and F2(0) can take any values in [0, 1] as long as at least one of them

is equal to zero. Therefore, there is a continuum of equilibria.

Proposition 4 When acquired information is not verifiable, there is a continuum of equi-

libria: for each F1(0), F2(0) ∈ [0, 1] such that F1(0)F2(0) = 0, there is an equilibrium in

which player i acquires information according to the distribution function Fi(t) = 1 − (1 −
Fi(0)) exp

(
− d−c
pjd−c

(
r
−c+l+pjd

c
− λ
)
t
)

for both i = 1, 2. The set of players’ payoffs is given

by{
(v1, v2) : vi ∈

[
−c+ l + pid, l +

pjd− c
d− c

d

]
, and (v1 − (−c+ l + p1d))(v2 − (−c+ l + p2d)) = 0

}
,

that is, player i can achieve any payoff in
[
−c+ l + pid, l +

pjd−c
d−c d

]
, as long as the opponent

receives −c+ l + pjd.

6 The Role of Information Verifiability
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Figure 1: The sets of equilibrium payoffs

As shown in Figure 1, some payoff vectors are attainable only in the verifiable case. They

are obtained in the equilibria in which a player acquires information with a sufficiently high

probability at the beginning of the game and, thus, the delay in information acquisition is

rather small. The payoff difference stems from the difference in equilibrium behavior after

one player acquires information. In the verifiable case, the game concludes immediately
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without any further distortions. The game also terminates immediately in the unverifiable

case. However, in equilibrium, the uninformed player acquires information with a positive

probability and, therefore, obtains a strictly smaller payoff than in the verifiable case.

To facilitate the comparison, we focus on the equilibria in which no player acquires

information with a positive probability at the beginning of the game. There are at least

four reasons why such equilibria are more appealing than others. First, in the symmetric

case, it is the unique symmetric equilibrium. Second, the war-of-attrition literature has

focused on the same class of equilibria and, thus, we can directly place our results in the

literature. Third, they are the only equilibria that do not require coordination between the

players regarding who moves first.12 Last, players want the opponent to acquire information

first. Therefore, if both players think that the opponent would acquire information at the

beginning of the game with some probability, then such equilibria will be uniquely selected.

In such equilibria, players obtain the same payoffs regardless of whether the information

is verifiable. Their payoffs coincide with the lower bounds of the payoff ranges. There are,

however, two important differences.

First, the lower bounds are essentially exogenously given in the verifiable case, while

they are endogenously determined in the unverifiable case. In the former case, acquired

information is public, and the lower bounds are simply derived from the public nature of the

information. They are the lower bounds even if we consider all the possible strategies of the

players, not just the equilibrium ones. In the latter case, there is no a priori reason for the

game to end immediately after a player acquires information. It is only in equilibrium that

the game concludes immediately, because in equilibrium the uninformed player also acquires

information immediately after.

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1

Probability

No information 
acquisition

Unverifiable

Verifiable

Figure 2: The cumulative probabilities that the game ends by time t.

Second, although the equilibrium strategies exhibit similar qualitative properties, they

are quantitatively different. In particular, the game ends faster with unverifiable information.

This comparison is in fact valid for any equilibria that share the same initial probabilities,

12See, for example, Levin and Smith (1994) and Burdett, Shi, and Wright (2001) for the uses of the same
restriction with the same motivation in different contexts.
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F1(0) and F2(0). See Figure 2 for a graphical representation of how quickly the game ends

for the case where F1(0) = F2(0) = 0.

Proposition 5 Fix F1(0) and F2(0) and let SV (t) and SU(t) be the corresponding cumulative

probabilities that the game ends by time t in the verifiable case and in the unverifiable case,

respectively. Then, SV first-order stochastically dominates SU .

Proof. From the characterization in Section 4,

SV (t) = 1− e−λt
2∏
i=1

(1− Fi(t))

= 1− e−λt
2∏
i=1

(1− Fi(0)) exp

(
−
(
r
−c+ l + pjd

c
− λ
)
t

)

Similarly,

SU(t) = 1− e−λt
2∏
i=1

(1− Fi(0)) exp

(
− d− c
pjd− c

(
r
−c+ l + pjd

c
− λ
)
t

)
.

Since d−c
pjd−c > 1, SV (t) < SU(t) for any t > 0.

This result provides an economic explanation for the payoff equivalence between the two

cases in the equilibria with F1(0) = F2(0) = 0. As explained at the beginning of this section,

duplication in information acquisition occurs only with unverifiable information. However,

there is less delay with unverifiable information. The gain due to less delay and the loss

due to duplication exactly cancel each other out and, thus, players obtain the same payoffs

regardless of whether information is verifiable.

7 Shorter Deadline, Longer Conflict

This section reports a comparative statics result regarding the arrival rate of public signals,

λ.13 When λ increases (the deadline arrives faster), there are two opposing effects. On

the one hand, the increase directly speeds up the resolution of the conflict by itself. On

the other hand, it indirectly crowds out the players’ incentive to acquire information. The

following proposition shows that the latter, indirect effect outweighs the former, direct effect,

regardless of whether information is verifiable and, thus, the game lasts longer as λ increases.

13Other comparative statics results are rather straightforward. The game last longer when r is smaller, c
is larger, or d is larger.
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Proposition 6 For any equilibrium, the probabilities that the game ends by time t in each

case, SV (t) and SU(t), strictly decrease in λ.

Proof. From the proof of Proposition 5,

SV (t) = 1− eλt
2∏
i=1

(1− Fi(0)) exp

(
−r−c+ l + pjd

c
t

)
,

and

SU(t) = 1− e
(

d−c
p1d−c

+ d−c
p2d−c

−1
)
λt

2∏
i=1

(1− Fi(0)) exp

(
− d− c
pjd− c

r
−c+ l + pjd

c
t

)
.

As λ increases, the marginal benefit of delaying information acquisition increases and,

thus, both players are less likely to concede. The decrease of one player’s concession rate

decreases the other player’s marginal benefit. In equilibrium, each player decreases his

concession rate by at least as much as the increase in λ, so that the opponent is again

indifferent between acquiring information and waiting. This indirect effect applies to both

players and, therefore, is at least twice as large as the direct effect.

It is interesting that the indirect effect is larger when the information is unverifiable.

This is because a player’s gain when the opponent acquires information is smaller when the

information is unverifiable (see Equations (1) and (3)). With verifiable information, a player

avoids the information acquisition cost c regardless of whether the game ends due to the

arrival of the deadline or due to the opponent’s acquisition of information. Therefore, in

order to make the opponent remain indifferent, each player needs to reduce his concession

rate ( fi(t)
1−Fi(t)

) by exactly as much as the increase in λ. With unverifiable information, due

to the information rents to the informed player, a player’s gain is strictly lower when the

game ends due to the opponent’s acquisition of information than due to the arrival of the

deadline. Therefore, each player must decrease his concession rate by strictly more than the

increase in λ.

8 Discussion

The model can be extended in several ways. We discuss two particularly interesting exten-

sions.
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8.1 Deterministic deadline and fighting cost

We explain below how our analysis carries over to the case involving a deterministic deadline

and fighting cost (no discounting).

8.1.1 Setup

We normalize the deadline to be at time t = 1. The payoff to each player is as follows: for

some k > 0,

Ui (ti, tj, ω) =

{
h− kti, if (ti > tj) or (ti = tj = 1 and ω = i),

l − kti, if (ti < tj) or (ti = tj = 1 and ω = j), or (ti = tj < 1).

In words, the winner receives h and the loser receives l. Players do not discount future

payoffs, but must keep paying a flow cost k > 0 to stay in the game. The rest of the

assumptions and notations are the same as in Sections 2 and 3.

The following two assumptions are analogous to Assumptions 1 and 2 in Section 3.

Assumption 3

k < pid, i = 1, 2.

Assumption 4

c < k.

Assumption 3 ensures that if no player acquires information, then both players wait until

the deadline. Assumption 4 guarantees that players have a non-trivial incentive to acquire

information.

8.1.2 Information acquisition with verifiable information

As in Section 4, the game is a war of attrition regarding who acquires information first. The

analogous equation to Equation (1) is

k =
fj(t)

1− Fj(t)
c.

Now the marginal cost of delaying information acquisition is simply the flow fighting cost k.

Since the deadline is deterministic, the marginal benefit includes only the concession rate of

player j times the information-acquisition cost.

Using the equation, we can construct a continuum of equilibria, as in Section 4. The

following proposition is parallel to Proposition 2.
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Proposition 7 When acquired information is verifiable, there is a continuum of equilib-

ria: for any F1(0), F2(0) ∈ [0, 1] such that F1(0)F2(0) = 0, there is an equilibrium in

which each player acquires information according to a distribution function Fi(t) = 1 −
(1 − Fi(0))exp

(
−k
c
t
)

over time [0, t], where t = 1 − c
k
, and simply waits until the deadline

after t. The set of equilibrium payoffs is given by

{(v1, v2) : vi ∈ [−c+ l + pid, l + pid], and (v1 − (−c+ l + p1d))(v2 − (−c+ l + p2d)) = 0} .

The only essential difference from Proposition 2 is the presence of t, which is the last

time players may acquire information in the equilibrium. Such t exists because when it is

sufficiently close to the deadline, players strictly prefer waiting until the deadline to incurring

the information-acquisition cost. t is the time at which players are indifferent between

ending the game immediately by acquiring information and waiting until the deadline, that

is, −c+ l + pid = −(1− t)k + l + pid.

8.1.3 Information acquisition with unverifiable information

Unless it is close to the deadline (precisely, before 1− c
k
), the subgame outcome where only

one player is informed is exactly the same as in Section 5. The weak informed player concedes

with probability 1− pic
pj(d−c) immediately. If the informed player does not concede, then the

uninformed player acquires information with probability 1, but he is indifferent between

acquiring information and conceding.

In the original game, the analogous condition to Equation (3) is

k =
fj(t)

1− Fj(t)
pid− c
d− c

c.

The usual interpretations apply to each side. The following proposition corresponds to

Proposition 4.

Proposition 8 When acquired information is unverifiable, there is a continuum of equi-

libria: for any F1(0), F2(0) ∈ [0, 1] such that F1(0)F2(0) = 0, it is an equilibrium that

each player acquires information according to a distribution function Fi(t) = 1 − (1 −
Fi(0))exp

(
−k
c
d−c
pid−ct

)
over time [0, t], where t = 1 − c

k
, and simply waits until the dead-

line after t. The set of equilibrium payoffs is given by{
(v1, v2) : vi ∈ [−c+ l + pid, l +

pid− c
d− c

d], and (v1 − (−c+ l + p1d))(v2 − (−c+ l + p2d)) = 0

}
.
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8.2 Unobservable information acquisition

We assumed that if a player acquires information, then the opponent knows that the player

is informed about the state, regardless of whether information is verifiable. The assumption

is innocuous for the verifiable-information case, but not for the unverifiable-information case.

Suppose the information is verifiable, but a player’s information acquisition is not ob-

servable by the opponent. Pick any equilibrium in Proposition 2 and consider the following

strategy profile: each player acquires information according to Fi and discloses the acquired

information regardless of its content (or, he simply concedes if the state is unfavorable to

him). In this strategy profile, the only potential incentive problem is whether a weak player

would be willing to concede immediately. But given that the opponent would concede only

when he himself finds out that the state is unfavorable to him, a weak player strictly prefers

conceding immediately. Therefore, any equilibrium outcome in Proposition 2 can be sup-

ported as an equilibrium outcome even when information acquisition is not observable.

When information is not verifiable, no equilibrium outcome in Proposition 4 can be

supported as an equilibrium outcome with unobservable information acquisition. This is

because the subgame outcome after one player’s acquisition of information dramatically

changes, since, by definition, the opponent does not know that the other player is informed.

It is not obvious whether the players would acquire information faster (and whether the game

would last longer). A players would have a weaker direct incentive to acquire information,

because even if he knows that the state was favorable to him, he would have to bear some

delay costs. On the other hand, the fact that the opponent would acquire information more

slowly implies that players would have a lower marginal benefit from delaying information

acquisition and, thus, players would have a stronger indirect incentive to acquire information.

We expect that if the information is unverifiable, then the players’ expected payoffs

would be lower when information acquisition is not observable14 and a typical equilibrium

would consist of two regimes: first, players would gradually acquire information and, second,

once uninformed players become sufficiently pessimistic, they would play a standard war of

attrition with incomplete information. This case is theoretically interesting. Not only does

the symmetric-information game turn into a game with asymmetric information at some

point, but also the players face a complicated inference problem. They must constantly

update their beliefs about the opponent’s status (whether he has acquired information and,

if so, whether he received a favorable information) as well as infer what beliefs the opponent

14We know that this is true for c rather large. Precisely, if (and only if) c ≥ r
r+λp1l (this inequality does

not violate Assumption 2), then there is an equilibrium in which no player acquires information: player i’s
equilibrium payoff is λ

r+λ (pih+ (1− pi)l), which is larger than his deviation payoff by acquiring information
−c+ pi

λ
r+λh+ (1− pi)l whenever c ≥ r

r+λpil.
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would have about his beliefs in each status. We leave this challenging problem for future

research.

Appendix

Proof of Proposition 3:

(1) Weak player i obtains only l.

Suppose not. It can happen only when player j concedes without acquiring information

with a certain probability. Therefore, player j’s expected payoff must be equal to l. But

since weak player i would not quit immediately, player j’s belief over the true state would

not change, which implies that player j can secure −c + l + pjd by acquiring information.

By Assumptions 1 and 2, the latter payoff is strictly larger than the former and, thus, this

is a contradiction.

(2) At the beginning of the subgame, weak player i randomizes between conceding and

waiting.

The argument given before the proposition applies.

(3) Let α be the probability that weak player i concedes at the beginning of the subgame.

An instant later, player j must be indifferent between acquiring information and conceding

without acquiring information. Therefore,

α =
pjd− c
pj(d− c)

.

Suppose player j strictly prefers acquiring information to conceding. Then weak player

i obtains only l, regardless of whether player j acquires information or waits for a public

signal. But then an instant before (at the beginning of the subgame), weak player i strictly

prefers conceding to waiting, which contradicts (2). Now suppose player j strictly prefers

conceding to acquiring information. For this and (2) to be simultaneously true, both weak

player i and player j must be indifferent between conceding and waiting for a public signal.

This implies that, again, weak player i obtains only l, which creates the same contradiction

as the previous case.

(4) An instant after the beginning of the subgame, player j either acquires information

or concedes. That is, player j does not simply wait for a public signal.

Suppose player j strictly prefers waiting to conceding. For (2) to be true, weak player

i must strictly prefer waiting to conceding as well (otherwise, weak player i must prefer

conceding earlier). The latter implies that player j’s belief does not change at the next

instant and, thus, he again strictly prefers waiting to conceding or acquiring information. In
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addition, by the same argument as above, weak player i does not concede. This process will

continue until a public signal arrives. But weak player i’s expected payoff is then strictly

smaller than l, which contradicts (4).

Now suppose player j is indifferent among waiting, conceding, and acquiring information

and he waits with a positive probability. Similarly to the previous case, weak player i must

strictly prefer waiting to conceding. He also must strictly prefer waiting to conceding at

the next instant as well, because otherwise, at the following instant, player j’s belief would

decrease, player j would concede immediately, and then weak player i would obtain strictly

more than l, which would contradict (2). This process will continue until player j acquires

information, player j concedes, or a public signal arrives. Suppose player j waits for a signal

forever. Since weak player i never concedes, player j’s expected payoff is

λ

r + λ

(
l +

pj(1− α)

pi + pj(1− α)
d

)
=

λ

r + λ
(l + c) .

Under Assumptions 1 and 2, this payoff is strictly smaller than l, which contradicts the fact

that player j is indifferent between waiting and conceding.

(5) Player j acquires information with probability 1, that is, player j concedes with

negligible probability.

Otherwise, then weak player i would strictly prefer waiting an instant to conceding imme-

diately, which would contradict (2). As shown in the main content, in discrete time, player

j concedes with a positive probability, but the probability approaches zero as ∆ tends to

zero. Q.E.D.
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