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Abstract 

Objective: Long-term total parenteral nutrition (TPN) in children is often complicated 

by parental nutrition associated liver disease (PNALD), and may even lead to liver 

failure. Recently, the addition of omega-3 fatty acids into TPN has been shown to 

reduce the risk of PNALD. The purpose of this study was to explore the 

anti-inflammatory effects of omega-3 fatty acids (EPA) in order to demonstrate the 

protection of the liver against hepatic steatosis and damage. 

Materials and Methods: Lipopolysaccharide (LPS) and prostaglandin E2 (PGE2) were 

used to stimulate human peripheral blood mononuclear cells and human liver cell line 

(THLE-3) to induce an in-vitro inflammatory condition. The cells were then incubated 

with either omega-3 (EPA) or omega-6 (AA) fatty acids. Supernatants were collected 

at different time points for the measurement of tumor necrosis factor-α (TNF-α), 

interleukin 6 (IL-6) and interleukin 10 (IL-10) using ELISA. Furthermore, pre-treated 

macrophages by LPS stimulation and following incubation with EPA were added to 

pre-stimulated hepatocytes for the subsequent measurement of cytokine response. 

Data were analyzed using paired t-test and a p value of <0.05 was taken as statistically 

significant.  

Results: EPA at 100uM concentrations effectively reduced LPS-induced and 

PGE2-induced TNF-α, IL-6 expression and increased IL-10 expression significantly 

when compared with AA, peaking at 24h time point. Furthermore, supernatant 

collected after co-culturing EPA with macrophages also suppressed the levels of 

TNF-α, and IL-6 in hepatocytes. This would suggest that EPA not only had 



anti-inflammatory effect on macrophages and hepatocytes directly, but could 

indirectly reduce inflammations in hepatocytes through activated macrophages.  

Conclusions: The addition of omega 3 fatty acids in TPN preserves immune function 

and suppresses the inflammatory response. The findings may help explain the clinical 

benefits of EPA in pediatric patients receiving long term TPN.  
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Introduction 

Total parenteral nutrition (TPN) can provide an effective method for supplying energy 

and nutrients for children with intestinal failure (1,2). However, long-term application 

of TPN can cause parental nutrition associated liver disease (PNALD), which was 

recognized early in the experience almost 30 years ago. This incidence of PNALD is 

higher in neonates and infants, owing to physiological immaturity (3,4). Indeed, 

PNALD remains the leading cause of neonatal cholestasis and liver failure and the 

primary indication for combined liver and intestinal transplantation in children (5-8). 

As the long-term outcome of liver-intestinal transplantation remains poor, with a 

5-year graft survival of only around 50%, the prevention and treatment of PNALD is 

critical. Thus far, the etiology of TPN-induced liver disease remains unknown but is 

thought to be related to the direct toxicity of the parenteral nutrition solutions and of 

the underlying digestive disease (8-13). Recent evidence has indicated the possibility 

of intravenous emulsified lipid intake with fatal liver disease. The effect may reflect 

direct hepatotoxicity of some components in lipid emulsion. Additionally, lipid may 

also provide substrates to fuel the systemic inflammatory response and its deleterious 

effect on the liver (14-16). 

Clinically, excessive inflammation is a response to surgery, trauma, injury, and 

infection.  Patients with short bowel syndrome are especially prone to inflammation 

and parenteral nutrition may exacerbate the systemic inflammatory response. 

Excessive inflammation is characterized by the production of inflammatory cytokines 

and arachidonic acid-derived eicosanoids. Thus, it has been proposed that the use of 



omega-6 fatty acid in PN may actually contribute towards hepatic damage, as it is 

broken down in the body to γ-linolenic acid, then to dihomo-γ-linolenic acid, and 

finally to arachidonic acid. As a result, some centers in the world recently proposed 

the use of omega-3 fatty acids instead of omega-6 in the PN formulation. 

Eicosapentaenoic acid (EPA) is an omega-3 fatty acid, which is a breakdown product 

of α-linolenic acid, found in fish oils and breast milk. It suppresses the production of 

arachidonic acid-derived eicosanoids and is also a substrate for the synthesis of an 

alternative family of eicosanoids, which have many anti-inflammatory effects. The 

protective benefits of omega-3 fatty acids may be related to its ability to decrease the 

production of prostaglandins and subsequently, the release of other inflammatory 

cytokines. These reductions will inevitably lead to the decrease in the magnitude of 

inflammation and the severity of insult to the liver (17-20). Indeed, there have been a 

few case series published recently suggesting the advantages of omega-3 fatty acids in 

the formulation of parenteral nutrition in the rescue of babies with PNALD (21-24). 

Despite all these significant and encouraging clinical findings, the exact mechanism 

of action of omega-3 in preventing PNALD is still not clear.         

As the change from pro-inflammatory to anti-inflammatory state has implications for 

the status and progression of PNALD in response to the initial cholestatic and 

steatotic insult, it is likely that both pro-inflammatory and anti-inflammatory 

cytokines could play a role. The pro-inflammatory state is mediated by macrophages 

and Kupffer cells in liver through the release of cytokines such as tumor necrosis 

factor-α (TNF-α) and interleukin-6 (IL-6), and the plasma levels of TNF-α and IL-6 



correlate positively with the degree of underlying liver damage. On the other hand, 

interleukin-10 (IL-10), an anti-inflammatory cytokine, has pleiotropic effects in 

regulating exaggerated immune response and the eventual termination of 

inflammation. 

We therefore hypothesize that omega-3 fatty acid (EPA) could exert its action on cells 

which produce these pro-inflammatory and anti-inflammatory cytokines. In this study, 

we aim to explore the anti-inflammatory effects of omega-3 fatty acids on human 

marophages and Kupffer cells in order to demonstrate the protective action of the 

liver against hepatic steatosis and damage. 

 

Materials and Methods 

Reagents 

Lipopolysaccharide (LPS) and Prostaglandin E2 (PGE2) were purchased from 

Sigma-Aldrich (USA). LPS was diluted to 1mg/mL concentration of working solution 

and stored at 4°C. PGE2 diluted with PBS to 0.1 ug/ml concentration for subsequent 

experiments. The format of omega 3 fatty acid and the omega 6 fatty acid 

(Sigma-Aldrich, USA) used in this study was respectively cis-5, 8, 11, 14, 17 – 

eicosapentaenoic acid (EPA) and arachidonic acid (AA) derived from porcine liver. 

Both of them were re-suspended in absolute ethanol and stored at -20°C for 

experiments. 

 

Cell culture 



(a) Peripheral blood mononuclear cells (PBMC) 

Peripheral blood mononuclear cells were obtained from donated blood (Hong Kong 

Red Cross Blood Transfusion Service) by Ficoll Paque gradient method. Briefly, 

ACK buffer and Ficoll were added to blood and left in room temperature for 15 

minutes. The samples were then diluted with phosphate buffered solution (PBS) and 

centrifuged at 2000rpm for 25 minutes. Cells at the interphase (lymphocytes, 

monocytes, and thrombocytes) were transferred to a new conical tube filled with PBS 

and centrifuged at 1200 rpm for 7 minutes at room temperature. The supernatant was 

carefully removed completely. For removal of platelets, the cell pellet was 

re-suspended in PBS and centrifuged at 800 rpm for 7 minutes. The supernatant was 

removed and repeated twice. 35mL of RPMI 1640 medium was added and mixed, 

then centrifuged at 1200 rpm for 7 minutes. The pellet was re-suspended in 50mL 

macrophage SFM medium, supplemented with L-glutamine. 2 mL of the solution was 

added to 6-well plates and cultured at 37 °C and 5% CO2. After 7 days of incubation, 

mononuclear cells would change into macrophages, which could be used in further 

experiments. 

 

(b) Liver THLE-3 Cells 

The human liver cell line, THLE-3, was purchased from the American Type Culture 

Collection (ATCC, USA). The cells were maintained in precoated flasks with a 

mixture of fibronectin (0.01mg/mL), bovine collagen type 1 (0.03 mg/mL), and 

bovine serum albumin (0.01mg/mL) dissolved in BEGM medium and incubated at 



37℃ and 5% CO2. Medium was changed every 2 to 3 days.  

 

Experimental Design 

Macrophages and THLE-3 cells were used when 80% confluent. 1x106 of 

macrophages or THLE-3 was seeded in each well of a 6-well plate. The cells were 

subjected to four conditions: (1) stimulated with LPS (0.1 µg/mL) or PGE2 (0.1 µg/ml) 

alone for 24 h; (2) pre-incubation with 100 µM EPA, 100 µM AA or EPA+AA (ratio, 

1:1) for 24 h before LPS or PGE2 stimulation; (3) co-incubation of EPA, AA or 

EPA+AA with LPS or PGE2; (4) post-incubation with EPA, AA or EPA+AA, 24 h 

after stimulation with LPS or PGE2. Optimal concentration of EPA and AA was 

determined to be 100µM. The production of IL-6 and TNF-α were measured using 

ELISA. 

For cell interaction study, pre-stimulated macrophages using LPS were post-incubated 

with EPA for 24 hours before harvested. The cells were then added to LPS 

pre-stimulated THLE-3 cells. The subsequent production of IL-6, TNF-α and IL-10 

were measured using ELISA.  

 

Measurements of TNF-α , IL-6 and IL-10 using ELISA 

Human TNF-α, IL-6 and IL-10 ELISA kits were obtained from R & D Systems, USA. 

The concentration of IL-6, IL-10 and TNF-α in supernatants was measured according 

to the manufacturer’s instruction. Briefly, ELISA was performed in 96-well plate with 

100µl of samples for IL-6 and 200µl for IL-10 and TNF-α at room temperature for 2 



h. Following washing for 4 times, 200µl of conjugate was added to each well at 2 h 

for IL-6 and 1h for IL-10 and TNF-α. The concentration of each cytokine was 

determined by the absorbance at 450nm with reference filter at 540nm. 

 

Statistics 

All values are measured as means ± SD in experiments. ANOVA and the Student’s 

t-test were used for statistical analysis. Differences were considered significant at P < 

0.05 (*) or P < 0.01 (**).  

 

Results 

LPS-induced IL-6 and TNF-α  expression in macrophages and THLE-3 cell line 

In the presence of LPS stimulation, there was an increase in IL-6 (2598.1 ± 196.49 

pg/ml) and TNF-α (3205.1 ± 123.31 pg/ml) production in macrophages when 

compared to the medium alone group. However, when EPA was added, either before 

or after LPS stimulation, there was significant suppression of IL-6 production. This 

effect was found to be most dramatic in the post-incubation group (decreased by 

95.7% to 110.72 ± 12.94 pg/ml). On the other hand, although the addition of AA to 

the cell culture did seem to suppress the production of IL-6 (1798.3 ± 74.25 pg/ml), 

this was indeed not statistically significant when compared with control. In addition, 

the mixture of EPA and AA did not seem to have the same effect as when EPA was 

added alone (1541.7 ± 43.32 pg/ml) [Figure 1A].  

A similar trend could be observed for TNF-α, where EPA was found to decrease its 

Figure 1A 



production most significantly in the post-incubation group by 94.6% (102.3 ± 74.11 

pg/ml) [Figure 1B].  

These findings suggested that EPA is effective in decreasing LPS-induced IL-6 and 

TNF-α expression and that EPA addition after LPS stimulation for 24 h is the most 

effective compared with other groups. 

We next used LPS to stimulate THLE-3 cells, a liver cell line. Here, although the 

effects of EPA on IL-6 and TNF-α production were similar to those seen in 

macrophages, the overall response of THLE-3 to LPS stimulation was much lower, 

suggesting that LPS might not be the ideal choice for stimulation [Figure 2A&B].  

 

PGE2-induced IL-6 expression in macrophages and THLE-3 cell line 

We next used PGE2 for stimulation to mimic an inflammatory condition in liver. In 

macrophages, the IL-6 response after stimulation was weak (20.41 ± 0.56 pg/ml) 

when compared with THLE-3 (1340.6 ± 53.75 pg/ml). However, the same trend could 

be observed in both cell types.  

As with LPS stimulation, the addition of EPA to PGE-2 stimulated cells showed the 

best suppression in the post-incubation group. For macrophages, IL-6 levels decreased 

by 74.1% (5.27 ± 0.36 pg/ml) in the EPA treatment group and by 48.7% (10.46 ± 1.02 

pg/ml), 52.3% (9.73 ± 0.68 pg/ml) in AA and EPA+AA treatment groups respectively 

[Figure 3A]. In THLE-3 cell line, IL-6 levels decreased by 80.1% (265.97 ± 11.54 

pg/ml) in the EPA treatment group and by 40.4% (798.02 ± 11.75 pg/ml) and 47.9% 

(698.44 ± 14.57 pg/ml) in AA and EPA+AA treatment groups respectively [Figure 

Figure 1B 

Figure 2 

Figure 3A 



3B]. 

 

Temporal events of EPA suppression on LPS-stimulated macrophages 

Since EPA could effectively suppress the production of pro-inflammatory cytokines, 

we next asked if it could also alter the production of an anti-inflammatory cytokine, 

IL-10. Here, a time chase experiment was carried out after EPA had been added to 

LPS-stimulated macrophages. IL-10 secretion was found to be significantly increased 

after treatment with EPA. At 24-h time point, its level reached the peak at 280.32 ± 

11.86 pg/ml [Figure 4A]. Interestingly, at the same time point, the levels of IL-6 

(110.72 ± 12.23 pg/ml) and TNF-α (170.75 ± 15.76 pg/ml) were at the lowest 

correspondingly [Figure 4B&C].  

 

Co-culture of EPA-treated macrophages with pre-stimulated THLE-3  

The above data showed that EPA could significantly decrease the production of IL-6 

and TNF-α when cells were either stimulated by LPS or PGE2, with a corresponding 

increase in IL-10 secretion. So we next asked whether this effect could be mediated 

indirectly through macrophages on liver cells. We co-cultured EPA-treated, LPS 

pre-stimulated macrophages with LPS pre-stimulated THLE-3 for 24 h. Results 

showed that when compared with untreated group, the production of IL-6 and TNF-α 

decreased by 75.9% (1606.2 ± 77.71 pg/ml to 387.00 ± 5.94 pg/ml) and by 85.2% 

(136.66 ± 11.33 pg/ml to 20.09 ± 1.16 pg/ml) respectively [Figure 5A&B].  

On the other hand, the levels of IL-10 appropriately increased by 12.5 times in the 

Figure 3B 

Figure 4A 
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4B&C 
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EPA-treated group (108.23 ± 7.51 pg/ml vs. 8.00 ± 0.81 pg/ml) [Figure 5C]. This 

would suggest that EPA not only had anti-inflammatory effect on macrophages and 

THLE-3 directly, but could also indirectly reduce inflammation in hepatocytes 

through activated macrophages.  

 

Discussion 

Hepatobiliary dysfunction, liver cirrhosis and subsequent liver failure are well-known 

complications of long-time TPN, as the duration of total parenteral nutrition increases, 

so does the incidence of parental nutrition associated liver disease (PNALD). 

Throughout these years, the incidence of PNALD and mortality from PNALD has 

decreased. Many factors have contributed to the decline of incidence and severity of 

PNALD, including restriction of total energy intake, improvements in total parenteral 

nutrition composition and catheters and their management (25). Recently, evidence 

suggested that one major contributing factor could be the composition of the 

intravenous lipid emulsions that predisposed patients to PNALD. Furthermore, 

attention has been directed to the inflammatory aspects of PNALD and the role of 

omega-3 fatty acid supplementation in modifying the hepatic biochemical 

environment (17,26). Omega-3 polyunsaturated fatty acids have been evidenced to 

reduce not only the activity of inflammatory processes but also lower inflammatory 

susceptibility in other disease conditions. Hence, they might be able also to dampen 

the inflammatory response in liver by regulating Kupffer cell activation and 

suppressing cytokine production (27). In animal models, it has been shown that 

Figure 5C 



parenteral fish oils did not impair biliary secretion and might prevent hepatic steatosis 

(17,28,29). Furthermore, the reversal of cholestasis and fatal liver disease has been 

shown clinically by the use of fish-oil–based emulsion in infants who depended on 

TPN (22-24,26).  

Given the promising findings of inhibited immune response by omega fatty acid in 

numerous studies, the current study is to investigate the possible mechanism of 

omega-3 fatty acids (EPA) in the treatment of PNALD. Our study demonstrated that 

EPA at 100µM concentration effectively suppressed the production of 

pro-inflammatory cytokines IL-6 and TNF-α in LPS and PGE2 stimulated 

macrophages and THLE-3 cells. However, this effect was not as dramatic when EPA 

was used as a mixture with AA (EPA to AA: ratio: 1:1). This finding may help 

answer the question of whether to use oemga-3 fatty acid alone or as a combination in 

TPN in the clinical setting.    

Although some studies already suggested that fish oils could reduce TNF-α and IL-6 

production in LPS-stimulated mononuclear cells, these were done on macrophage cell 

lines (30-33). Indeed, our study was the first to use stimulated primary human 

peripheral blood mononuclear cells and to use these to compare the effects of 

omega-3 fatty acids in different treatment stages. Furthermore, we designed our 

experiment to mimic the in-vivo condition of the liver, where both hepatocytes and 

Kupffer cells were present. Our data showed that the anti-inflammatory effects of 

EPA not only could be exerted directly on these cells, but also indirectly via the 

secretion of IL-10 by macrophages on hepatocytes. Furthermore, the indirect 



anti-inflammatory effect of EPA was more powerful than the direct anti-inflammatory 

effect (Figure 5B&C). The suppression of inflammation on both fronts could thus 

explain the significant benefits of omega-3 fatty acids in reversing PNALD in clinical 

patients.     

In future work, we plan to block the action of IL-10 to further explore indirect 

anti-inflammatory effect of EPA through macrophages, as there are many aspects of 

the potential anti-inflammatory effects of omega-3 fatty acids metabolism that remain 

unclear.    

On the mechanism level, the inhibitory effect on the secretion of inflammatory factors 

is associated with lower mRNA levels of these inflammatory factors, suggesting that 

it might be possible for EPA to alter cytokine protein expression at the transcriptional 

level (34,35). Since it has been shown that omega-3 fatty acids and some of the 

metabolites could regulate NF-κB activity, we speculate that the altered expression of 

these inflammatory factors may have been mediated through NF-κB, which plays key 

a role in regulating cytokine gene transcription (36-38). In addition, some studies also 

suggested that the anti-inflammatory effects omega-3 fatty acids were due to the 

down-regulation of NF-κB activity (38,39). Inflammatory responses are a dynamic 

reflection of the NF-κB transcriptional complex activation, which may be 

differentially regulated by EPA. We further speculate that duration of EPA treatment 

could affect the activation of macrophages by LPS and closely related to the 

transcription complex activation of NF-κB. The mechanisms underlying will be 

addressed in future study. 



 

In conclusion, our study has shown that EPA provides potent protection for the liver 

against steatosis and damage through not only effect on macrophages and hepatocytes 

directly, but also effect on stimulated hepatocytes through anti-inflammatory 

macrophages indirectly. The findings may help explain the clinical benefits of EPA in 

pediatric patients receiving long term TPN. In the future, we hope that omega-3 fatty 

acids will become a standard for both the rescue as well as prevention of PNALD. 
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Figure legends 

Figure 1 - IL-6 (A) and TNF- α (B) expression levels produced by macrophages 

under three different treatments: pure EPA (100µM), pure AA (100µM) and EPA+AA 

(1:1) (100µM) added before (pre-incubate), simultaneously with (co-incubate), or 

after (post-incubate) the addition of LPS simulation (24 h) to cell culture wells. 

Results represent the mean ± SD. of 5–6 independent experiments. *p≤0.05; **p≤0.01 

relative to no-treatment. +p≤0.05; ++ p≤0.01 between different treatment groups 

relative to EPA of the same LPS conditions 

 

Figure 2 - IL-10 expression levels measured by ELISA for macrophages activated by 

0.1ug/ml LPS for 24 h, then cells were treated with pure EPA (100µM). Supernatants 

were collected at different time points. Data represent the mean ± SD of 5–6 

independent experiments. *p≤0.05; **p≤0.01 between different time points relative to 

24 h. 

 

Figure 3 - IL-6 (A) and TNF- α (B) expression levels measured by ELISA for 

THLE-3 cell activated by 0.1ug/ml LPS for 24 h. One group was treated with pure 

EPA (100µM), in the other group, EPA pre-stimulated macrophages were added and 

co-cultured for 24 hrs. Supernatants were collected. Data represent the mean ± SD.  

of 5–6 independent experiments. *p≤0.05; **p≤0.01 relative to no-treatment. +p≤0.05; 

++p≤0.01 between EPA treatment group and co-culture group. 
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