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Abstract

In this paper, a multi-dimensional risk model with common shocks is studied. Using a
simple probabilistic approach via observing the risk processes at claim instants, recursive
integral formulas are developed for the survival probabilities as well as for a class of Gerber-
Shiu expected discounted penalty functions that include the surplus levels at ruin. Under the
assumption of exponential or mixed Erlang claims, the recursive integrals can be simplified to
give recursive sums which are computationally more tractable. Numerical examples including
an optimal capital allocation problem are also given towards the end.

Keywords: Common shock, Deficit at ruin; Gerber-Shiu expected discounted penalty func-
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1 Introduction

Multi-dimensional risk theory gained a lot of attention in the past few years mainly due to the
complexity of the problems and the lack of closed-form results even under very basic model
assumptions. This paper continues the search for new results for a class of multi-dimensional risk
processes where the claim arrivals in M classes of business are assumed to be dependent Poisson
processes with common shocks. In this paper, the surplus process {Ui(t)}t≥0 of the i-th class of
business is described by, for i = 1, 2, . . . , M ,

Ui(t) = ui + cit−
Nii(t)∑

k=1

Yi,k −
Nc(t)∑

k=1

Zi,k, t ≥ 0, (1)
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with the associated initial capital and premium rate denoted by ui = Ui(0) ≥ 0 and ci > 0
respectively. We adopt the usual convention that

∑k
i=j = 0 for any j > k, and since we

are interested in multivariate process, it is assumed that m > 1. The counting processes
{N11(t)}t≥0, {N22(t)}t≥0, . . . , {NMM (t)}t≥0 and {Nc(t)}t≥0 are Poisson processes with rates λ11,
λ22, . . . , λMM and λc respectively. For a given i = 1, 2, . . . , M , {Yi,k}∞k=1 forms an indepen-
dent and identically distributed (i.i.d.) sequence of positive random variables with common
density function fii(xi). Furthermore, {(Z1,k, Z2,k, . . . , ZM,k)}∞k=1 is a sequence of i.i.d. M -
dimensional positive random vectors with common joint density function fc(x1, x2, . . . , xM ). It
is further assumed that {Nii(t)}t≥0 (i = 1, 2, . . . ,M), {Nc(t)}t≥0, {Yi,k}∞k=1 (i = 1, 2, . . . ,M)
and {(Z1,k, Z2,k, . . . , ZM,k)}∞k=1 are all mutually independent. The time of ruin for the i-th risk
process is defined by τi = inf{t ≥ 0|Ui(t) < 0} for i = 1, 2, . . . , M . Moreover, the positive security
loading condition which makes sure ruin is not a certain event in the i-th process is given by
θi > 0, where ci = (1 + θi)(λiiE[Yi,1] + λcE[Zi,1]).

The model with the dynamics described in (1) has the following interpretation:

1. For each fixed i = 1, 2, . . . ,M , the process {Nii(t)}t≥0 counts the number of claims faced
by the i-th business line up to time t, arising from the ‘usual’ claim occurrences which only
induce claims in one line but not the others. Under such ‘usual’ claim occurrences, the
resulting claim sizes are given by the sequence {Yi,k}∞k=1.

2. The process {Nc(t)}t≥0 counts the number of ‘common shocks’ faced by the M lines. The
common shock component can be interpreted as a natural disaster that causes different
kinds of claims, or as a claim that affects all M lines of business at the same time. The
k-th common shock results in a claim of size Zi,k in the i-th business line, and the claim
sizes Z1,k, Z2,k, . . . , and ZM,k are possibly dependent variables.

In the case where fc(x1, x2, . . . , xM ) =
∏M

i=1 fii(xi), for each fixed k = 1, 2, . . . the variables
Z1,k, Z2,k, . . . , and ZM,k are independent with the same marginal distributions as Y1,k, Y2,k, . . . ,
and YM,k respectively. Then the process (1) can be equivalently represented as, for i = 1, 2, . . . , M ,

Ui(t) = ui + cit−
Ni(t)∑

k=1

Xi,k, t ≥ 0, (2)

where {N1(t)}t≥0, {N2(t)}t≥0, . . . , and {NM (t)}t≥0 are (common shock) correlated Poisson pro-
cesses at rates λ1, λ2, . . . , and λM respectively. More specifically, for i = 1, 2, . . . , M , one has that
Ni(t) = Nii(t) + Nc(t) where λi = λii + λc, and {Ni(t)}t≥0 is independent of the i.i.d. sequence
{Xi,k}∞k=1 with common density fi(xi) ≡ fii(xi). The positive security loading condition reduces
to ci > λiE[Xi,1]. The model (2) will also be discussed in this paper.

As pointed out in Chan et al. (2003), the concept of ‘ruin’ in the multi-dimensional setting
has different meanings and interpretations when compared to the standard univariate risk case.
For instance, Tor = inf{t ≥ 0|min{U1(t), U2(t), . . . , UM (t)} < 0} = min(τ1, τ2, . . . , τM ) denotes
the first time when (at least) one of {U1(t)}t≥0, {U2(t)}t≥0, . . . , or {UM (t)}t≥0 is below zero;
whereas Tsim = inf{t ≥ 0|max{U1(t), U2(t), . . . , UM (t)} < 0} denotes the first time that all
{U1(t)}t≥0, {U2(t)}t≥0, . . . , and {UM (t)}t≥0 are below zero simultaneously. In the bivariate
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case (i.e. M = 2), some authors (e.g. Avram et al. (2008a,b) and Rabehasaina (2009)) refer to
Tor and Tsim as the first exit from the positive quadrant and the first entrance into the negative
quadrant respectively. Other ruin concepts include Tand = max(τ1, τ2, . . . , τM ) which denotes the
first time when ruin has occurred in all {U1(t)}t≥0, {U2(t)}t≥0, . . . , and {UM (t)}t≥0, but not
necessarily simultaneously; and Tsum = inf{t ≥ 0|∑M

i=1 Ui(t) < 0} which is the first time
that the sum of {U1(t)}t≥0, {U2(t)}t≥0, . . . , and {UM (t)}t≥0 becomes negative. Historically, it
is known that Tsum is relatively easy to be analyzed, as the problem can be reduced to a one-
dimensional ruin problem. Chan et al. (2003) derived an explicit formula for the infinite-time
ruin probability for Tsum when M = 2, in a model with common shocks only (i.e. λ11 = λ22 = 0),
assuming that the claims in the two lines are independent phase-type random variables. Later
on, Cai and Li (2005) generalized their result to a multi-dimensional setting in which claims
are introduced through a multivariate phase-type structure. In contrast, when one refers to
Tor, Tsim or Tand, things change drastically, and the existing results consist mainly of bounds,
approximations and asymptotics. Various asymptotics and large deviation results were derived
by Collamore (1996, 1998) in a multi-dimensional risk model as an extension of the Cramér’s
asymptotic ruin formula. Simple lower and upper bounds for the ruin probabilities in the cases
of Tor and Tsim were obtained by Chan et al. (2003) when M = 2, complemented by various
(stochastic) bounds in Cai and Li (2005, 2007) for all three definitions of ruin in the multi-
dimensional case. For Tor, Yuen et al. (2006) obtained an approximation to the finite-time
survival probability in the continuous bivariate compound Poisson model (2) via the introduction
of a discrete bivariate compound binomial equivalent, and derived an upper bound for the ruin
probability. Using martingale techniques, Li et al. (2007) also derived upper bounds for the
infinite-time ruin probability, as well as asymptotic results for the finite-time ruin probability
associated to Tsim in a two-dimensional perturbed risk model.

In addition to the above papers, a few exact results are also available in the literature of
bivariate risk processes. In a model with common shocks only, Chan et al. (2003) obtained a
partial integro-differential equation (PIDE) for the survival probability Φ(u1, u2) = Pr(Tor =
∞|(U1(0), U2(0)) = (u1, u2)) using the usual renewal approach. Then, they derived an ex-
pression for the double Laplace transform with respect to (u1, u2), but did not invert it. As-
suming exponentially distributed claims in both lines of business, the afore-mentioned PIDE
was solved by Dang et al. (2009), who showed that the unique solution can be calculated as
Φ(u1, u2) = limn→∞Φn(u1, u2), where Φn(u1, u2) is expressed in terms of Φn−1(·, ·) as recur-
sive integrals (see Remark 1). This is also complemented by some recursive integral formulas
in Rabehasaina (2009, Section 5) using fluid flow techniques and the idea of embedding it in a
multi-dimensional model under a Markovian environment and possibly interest force. In the very
specific model (1) in which λ11 = λ22 = 0 and (1−a)Z1,k = aZ2,k for k = 1, 2, . . . where a ∈ (0, 1),
Avram et al. (2008a,b) derived the ruin probabilities for Tor, Tsim and Tand. Their method is
based on the reduction of the bivariate problem to various univariate problems which is possible
due to proportionality of claims. Note that such a model has the practical interpretation that the
two lines of business are an insurer and a reinsurer who are engaged in a proportional reinsurance
contract. Some of their results are further extended by Badescu et al. (2011) who obtained the
Laplace transform of Tor by allowing for λ11 > 0. Interested readers are also referred to Collamore
(2002) for important sampling techniques for multivariate ruin problems as well as Czarna and
Palmowski (2011) for dividend problems in a bivariate risk model with proportional reinsurance.
See also Asmussen and Albrecher (2010, Chapter XIII.9) for an overview of multi-dimensional
risk processes and additional references.
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In this paper, we mainly focus on the study of ruin-related quantities defined for the ruin time
Tor. The goal of this paper is two-fold. First, we present general recursive integral formulas in the
general M -dimensional risk process (1) via the idea of observing the process at claim instants,
for both survival probability and a novel quantity known as the Gerber-Shiu function (Gerber
and Shiu (1998)) for ruin at the n-th claim instant. These will be the contents of Sections 2
and 3 respectively. Second, motivated by the difficulty and instability to obtain numerical results
from the direct application of recursive integral formulas, we show that in certain cases the
recursive integrals can be simplified to give recursive sums (e.g. Stanford and Stroiński (1994)
and Stanford et al. (2000)) which are computationally more tractable. To this end, in Section 4
we derive examples for the survival probability and the expected discounted deficit at ruin under
the assumptions of both exponential and mixed Erlang claims in the bivariate case. Section 5
gives an account for the survival probability in the Tand case in relation to Tor. Section 6 is
concerned with numerical illustrations of the results obtained in Sections 4 and 5. In particular,
a capital allocation problem in which the two lines of business split among them a fixed amount
of the total initial surplus in order to minimize the ruin probability for Tor and Tand is considered
(see also Remark 2). Section 7 ends the paper by some concluding remarks.

2 A recursive approach to survival probability

In this section, we are interested in the survival probability for Tor pertaining to the M -dimensional
risk process (1) under the general framework, which is formally defined as

Φ(u1, u2, . . . , uM ) = Pr (u1,u2,...,uM )(Tor = ∞) = Pr (u1,u2,...,uM )(Ui(t) ≥ 0 for all t ≥ 0; i = 1, 2, . . . , M),

where Pr (u1,u2,...,uM ) denotes the probability law given the initial conditions (U1(0), U2(0), . . . , UM (0)) =
(u1, u2, . . . , uM ). Then Ψ(u1, u2, . . . , uM ) = 1− Φ(u1, u2, . . . , uM ) represents the associated joint
ruin probability.

Since our idea is to look recursively at the survival probabilities at each claim instant, for
n = 0, 1, . . . , we introduce the n-th claim event arrival time Sn =

∑n
k=1 Vk. Here {Vk}∞k=1 are

the inter-arrival times corresponding to the Poisson process {∑M
i=1 Nii(t) + Nc(t)}t≥0 and hence

i.i.d. exponential random variables each with mean 1/λs, where λs =
∑M

i=1 λii + λc. Then for
n = 0, 1, . . ., we define Φn(u1, u2, . . . , uM ) to be the probability that all {U1(t)}t≥0, {U2(t)}t≥0, . . . ,
and {UM (t)}t≥0 survive up to and including the n-th claim, namely

Φn(u1, u2, . . . , uM ) = Pr (u1,u2,...,uM )(Tor > Sn)

=Pr (u1,u2,...,uM )(Ui(t) ≥ 0 for all 0 ≤ t ≤ Sn; i = 1, 2, . . . , M)

=Pr (u1,u2,...,uM )(Ui(Sk) ≥ 0 for all k = 0, 1, . . . , n; i = 1, 2, . . . , M),

with Ψn(u1, u2, . . . , uM ) = 1− Φn(u1, u2, . . . , uM ) being the associated joint ruin probability.

Conditioning on the time of the first claim event and the resulting claim sizes in the M lines
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(if any), one can recursively write, for n = 0, 1, . . .,

Φn+1(u1, . . . , uM )

=
M∑

i=1

∫ ∞

0

∫ ui+cit

0
Φn(u1 + c1t, . . . , ui−1 + ci−1t, ui + cit− xi, ui+1 + ci+1t, . . . , uM + cM t)fii(xi)λiie

−λstdxidt

+
∫ ∞

0

∫ uM+cM t

0
· · ·

∫ u1+c1t

0
Φn(u1 + c1t− x1, . . . , uM + cM t− xM )fc(x1, . . . , xM )λce

−λstdx1 · · · dxMdt.

(3)

The starting point of the above recursive scheme is

Φ0(u1, u2, . . . , uM ) = 1,

since ruin is impossible without any claims. The ultimate survival probability for Tor is then
given by the limit

Φ(u1, u2, . . . , uM ) = lim
n→∞Φn(u1, u2, . . . , uM ).

The next example provides an illustration of the simplifications that occur in the simplest bivariate
case where claims are exponentially distributed.

Example 1 We consider the bivariate version of model (2) under exponential claims with densi-
ties fi(xi) = µie

−µixi for i = 1, 2. We shall use the convention λc = λ12 for bivariate risk process.
By plugging n = 0 into (3) with the use of the starting value Φ0(u1, u2) = 1, we obtain

Φ1(u1, u2) = 1− λs − λ22

λs + c1µ1
e−µ1u1 − λs − λ11

λs + c2µ2
e−µ2u2 + ξe−(µ1u1+µ2u2),

where ξ = λ12/(λs + c1µ1 + c2µ2). In general, for n = 1, 2, . . ., (3) reduces to

Φn+1(u1, u2)

=
∫ ∞

0

∫ u1+c1t

0
Φn(u1 + c1t− x1, u2 + c2t)µ1e

−µ1x1λ11e
−λstdx1dt

+
∫ ∞

0

∫ u2+c2t

0
Φn(u1 + c1t, u2 + c2t− x2)µ2e

−µ2x2λ22e
−λstdx2dt

+
∫ ∞

0

∫ u2+c2t

0

∫ u1+c1t

0
Φn(u1 + c1t− x1, u2 + c2t− x2)µ1e

−µ1x1µ2e
−µ2x2λ12e

−λstdx1dx2dt

= ξµ1µ2

∫ u1

0

∫ u2

0
Φn(a1, a2)eµ1(a1−u1)eµ2(a2−u2)da2da1

+
(

ξµ1µ2 +
λ22µ2

c1

) ∫ ∞

u1

∫ c2
c1

(a1−u1)+u2

0
Φn(a1, a2)e

λs

(
u1−a1

c1

)
e
−µ2

[
u2+

c2
c1

(a1−u1)−a2

]
da2da1

+
(

ξµ1µ2 +
λ11µ1

c2

) ∫ ∞

u2

∫ c1
c2

(a2−u2)+u1

0
Φn(a1, a2)e

λs

(
u2−a2

c2

)
e
−µ1

[
u1+

c1
c2

(a2−u2)−a1

]
da1da2,

(4)

where the last line follows from various changes of variables and changes of order of integrations
(the calculations are tedious but straightforward, the details being omitted here). Finally, the
survival probability Φ(u1, u2) can be recursively calculated as Φ(u1, u2) = limn→∞Φn(u1, u2). ¤
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Remark 1 If we let λ11 = λ22 = 0 and λ12 = λ, then Example 1 reduces to Theorem 3.1 of Dang
et al. (2009) who used a tedious proof based on the theory of PIDEs. ¤

Example 2 In this example we consider a bivariate risk model (2) with common shocks only
(i.e. λ11 = λ22 = 0 and λc = λ12 > 0) under phase-type (PH) distributed claim amounts. More
precisely, we let {X1,k}∞k=1 and {X2,k}∞k=1 follow independent PH distributions with parameters
(α,T) and (β,Q), so that the corresponding density functions are given by f1(x1) = αeTx1t and
f2(x2) = βeQx2q respectively. Using the notions of Kronecker product and Kronecker sum (see
Asmussen and Albrecher (2010, Appendix A4)), one can perform integration on (3) which now
involves matrix exponentials. Omitting the details, we obtain for n = 0, 1, . . .,

Φn+1(u1, u2)

=
∫ ∞

0

∫ u1+c1t

0

∫ u2+c2t

0
Φn(u1 + c1t− x1, u2 + c2t− x2)λ12e

−λ12t
(
αeTx1t

) (
βeQx2q

)
dx2dx1dt

=
∫ ∞

0

∫ u1+c1t

0

∫ u2+c2t

0
Φn(a1, a2)λ12e

−λ12t
(
αeT(u1+c1t−a1)t

)(
βeQ(u2+c2t−a2)q

)
da2da1dt

=
∫ u1

0

∫ u2

0
Φn(a1, a2)λ12(α⊗ β) [λ12 ⊕ (−c1T)⊕ (−c2Q)]−1 e[T(u1−a1)]⊕[Q(u2−a2)](t⊗ q)da2da1

+
∫ ∞

u1

∫ c2
c1

(a1−u1)+u2

0
Φn(a1, a2)λ12(α⊗ β) [λ12 ⊕ (−c1T)⊕ (−c2Q)]−1 e

−[λ12⊕(−c1T)⊕(−c2Q)]
(

a1−u1
c1

)

× e[T(u1−a1)]⊕[Q(u2−a2)](t⊗ q)da2da1

+
∫ ∞

u2

∫ c1
c2

(a2−u2)+u1

0
Φn(a1, a2)λ12(α⊗ β) [λ12 ⊕ (−c1T)⊕ (−c2Q)]−1 e

−[λ12⊕(−c1T)⊕(−c2Q)]
(

a2−u2
c2

)

× e[T(u1−a1)]⊕[Q(u2−a2)](t⊗ q)da1da2,

which can also be regarded as a generalization of Dang et al. (2009, Theorem 3.1) for phase-type
distributed claim sizes without relying on the theory of PIDEs. ¤

A natural question that arises from the recursive approach in this section is: can equations
in the form of (3) be used to obtain numerical values for survival probabilities? To answer
this, we ran several numerical examples in Mathematica and the computational time increases
exponentially as n increases. Using a MacBook Pro 2.13GHz Intel Core 2 Duo processor, it took
us more than 48 hours to obtain a numerical value for n = 10 in the simplest bivariate Example
1. Note also that source of potential numerical instability comes from the numerical integration
that is used when evaluating (4). Such numerical problems arising from direct application of (3)
will be addressed in Section 4, and in particular, Proposition 1 gives a computationally tractable
expression for equation (3) in the case of mixed Erlang claims.

3 Gerber-Shiu function for ruin at n-th claim instant

This section aims at extending the results derived in the previous section to a subclass of the
Gerber-Shiu expected discounted penalty function for ruin at the n-th claim instant (in the sense
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of Tor). For the M -dimensional risk process {(U1(t), U2(t), . . . , UM (t))}t≥0 under the general
framework (1), if we are interested in the surplus levels at the ruin time Tor, a natural candidate
of the Gerber-Shiu function (Gerber and Shiu (1998)) is given by

φ(u1, u2, . . . , uM ) = E(u1,u2,...,uM )

[
e−δTorw(U1(Tor), U2(Tor), . . . , UM (Tor))I(Tor < ∞)

]
, (5)

where w(y1, y2, . . . , yM ) is a penalty function that depends on the surplus levels at time Tor in all
the processes {U1(t)}t≥0, {U2(t)}t≥0, . . . , and {UM (t)}t≥0, I(A) is the indicator function of the
event A, and E(u1,u2,...,uM ) represents the conditional expectation given the initial surplus levels
(U1(0), U2(0), . . . , UM (0)) = (u1, u2, . . . , uM ). It is instructive to note that at time Tor some lines
of business may still possess non-negative surplus levels. More specifically, if ruin is caused by
the occurrence of claims in one line only, say line i (due to the Poisson process {Nii(t)}t≥0),
then at time Tor the surplus levels of all companies other than line i are indeed non-negative. In
contrast, if ruin is caused by the common shock component {Nc(t)}t≥0, then it is possible that
more than one of the M lines are actually ruined together at time Tor. Therefore it makes sense
to distinguish between cases where different subsets of the M lines are ruined at time Tor. In
what follows we consider a penalty function in the form of

w(y1, y2, . . . , yM ) =
∑

A∈Γ

wA(y1, y2, . . . , yM )I(yi < 0 for i ∈ A; yj ≥ 0 for j /∈ A), (6)

where Γ contains all subsets of {1, 2, . . . , M} excluding the empty set, and wA(y1, y2, . . . , yM ) is a
penalty function which possibly depends on the index set A. Hence, on the event set {Tor < ∞},

w(U1(Tor), U2(Tor), . . . , UM (Tor))

=
M∑

i=1

w{i}(U1(Tor), U2(Tor), . . . , UM (Tor))I(Ui(Tor) < 0; Uj(Tor) ≥ 0 for j 6= i)

+
∑

A∈Γ\∪M
k=1{k}

wA(U1(Tor), U2(Tor), . . . , UM (Tor))I(Ui(Tor) < 0 for i ∈ A; Uj(Tor) ≥ 0 for j /∈ A)

=
M∑

i=1

w{i}(U1(Tor), U2(Tor), . . . , UM (Tor))I(τi = Tor; τj > Tor for j 6= i)

+
∑

A∈Γ\∪M
k=1{k}

wA(U1(Tor), U2(Tor), . . . , UM (Tor))I(τi = Tor for i ∈ A; τj > Tor for j /∈ A).

(7)

With the penalty function given by (6) or (7), various information can be extracted from the
Gerber-Shiu function (5) by appropriate choice of the functions wA(y1, y2, . . . , yM ) for A ∈ Γ, as
illustrated in the following example in the bivariate case.

Example 3 In the bivariate case M = 2, the penalty function (7) reduces to

w(U1(Tor), U2(Tor))

= w{1}(U1(Tor), U2(Tor))I(τ1 < τ2) + w{2}(U1(Tor), U2(Tor))I(τ2 < τ1) + w{1,2}(U1(Tor), U2(Tor))I(τ1 = τ2).

Some examples that are special cases of φ(u1, u2) are given as follows.
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1. By letting w{1}(·, ·) ≡ w{2}(·, ·) ≡ w{1,2}(·, ·) ≡ 1, the Laplace transform of the time of ruin
Tor is retrieved. If one further assumes δ = 0, the ruin probability is recovered.

2. If one lets δ = 0 and w{1}(·, ·) ≡ w{2}(·, ·) ≡ 0 and w{1,2}(·, ·) ≡ 1, we obtain the probability
that ruin occurs in the sense of Tor with both processes {U1(t)}t≥0 and {U2(t)}t≥0 being
negative at the ruin time.

3. Assuming w{1}(y1, y2) = −y1, w{2}(y1, y2) = −y2 and w{1,2}(y1, y2) = −y1 − y2, one re-
trieves the expected discounted deficit at ruin time Tor which only takes into account any
negative surplus, namely

E(u1,u2)

[
e−δτ1 |U1(τ1)|I(τ1 ≤ τ2; τ1 < ∞)

]
+ E(u1,u2)

[
e−δτ2 |U2(τ2)|I(τ2 ≤ τ1; τ2 < ∞)

]
.

(8)

4. Setting w{1}(y1, y2) = y1 + y2 and w{2}(·, ·) ≡ w{1,2}(·, ·) ≡ 0, one obtains the expected
discounted total surplus of the two lines of business at time Tor for the case where business
1 is ruined, but business 2 has positive surplus, namely

E(u1,u2)

[
e−δτ1 (U1(τ1) + U2(τ1)) I(τ1 < τ2)

]
. (9)

Such total surplus is an interesting quantity because if it is positive, this would suggest that
it is worth for both lines to continue operation even if line 1 is ruined (see Section 6.2).

¤

In order to apply the recursive methods as in Section 2, we define the Gerber-Shiu function
for ruin at the n-th claim instant by, for n = 1, 2, . . .,

φn(u1, u2, . . . , uM ) = E(u1,u2,...,uM )

[
e−δTorw(U1(Tor), U2(Tor), . . . , UM (Tor))I(Tor = Sn)

]
. (10)

One can then recover the original function in (5) using

φ(u1, u2, . . . , uM ) =
∞∑

n=1

φn(u1, u2, . . . , uM ). (11)

Our idea here is to evaluate φn(u1, u2, . . . , uM ) recursively in terms of n. A starting point would
be the quantity φ1(u1, u2, . . . , uM ). Due to the representation (7), φ1(u1, u2, . . . , uM ) can be
represented as the sum of various contributions as

φ1(u1, u2, . . . , uM ) =
M∑

i=1

φ
{i}
1 (u1, u2, . . . , uM ) +

∑

A∈Γ\∪M
k=1{k}

φA
1 (u1, u2, . . . , uM ), (12)

where for i = 1, 2, . . . , M ,

φ
{i}
1 (u1, u2, . . . , uM )

= E(u1,u2,...,uM )

[
e−δS1w{i}(U1(S1), U2(S1), . . . , UM (S1))I(τi = S1; τj > S1 for j 6= i)

]
,
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and for A ∈ Γ\ ∪M
k=1 {k},

φA
1 (u1, u2, . . . , uM )

= E(u1,u2,...,uM )

[
e−δS1wA(U1(S1), U2(S1), . . . , UM (S1))I(τi = S1 for i ∈ A; τj > S1 for j /∈ A)

]
.

By considering the case where ruin occurs at the first claim instant in the i-th line only but not
in other lines, a conditional argument leads us to

φ
{i}
1 (u1, . . . , uM )

=
∫ ∞

0

∫ ∞

ui+cit
e−δtw{i}(u1 + c1t, . . . , ui−1 + ci−1t, ui + cit− xi, ui+1 + ci+1t, . . . , uM + cM t)fii(x1)λiie

−λstdxidt

+
∫ ∞

0

∫ uM+cM t

0
· · ·

∫ ui+1+ci+1t

0

∫ ∞

ui+cit

∫ ui−1+ci−1t

0
· · ·

∫ u1+c1t

0
e−δtw{i}(u1 + c1t− x1, . . . , uM + cM t− xM )

× fc(x1, . . . , xM )λce
−λstdx1 · · · dxMdt

=
∫ ∞

0

∫ ∞

0
w{i}(u1 + c1t, . . . , ui−1 + ci−1t,−yi, ui+1 + ci+1t, . . . , uM + cM t)fii(ui + cit + yi)λiie

−(λs+δ)tdyidt

+
∫ ∞

0

∫ uM+cM t

0
· · ·

∫ ui+1+ci+1t

0

∫ ∞

0

∫ ui−1+ci−1t

0
· · ·

∫ u1+c1t

0
w{i}(y1, . . . , yi−1,−yi, yi+1 . . . , yM )

× fc(u1 + c1t− y1, . . . , ui−1 + ci−1t− yi−1, ui + cit + yi, ui+1 + ci+1t− yi+1, . . . , uM + cM t− yM )

× λce
−(λs+δ)tdy1 · · · dyMdt. (13)

Concerning φA
1 (u1, u2, . . . , uM ) for A ∈ Γ\ ∪M

k=1 {k}, without loss of generality we may assume
we are dealing with a set A = {i1, i2, . . . , im} such that 1 ≤ i1 < i2 < . . . < im ≤ M where
2 ≤ m ≤ M . Then a similar argument yields

φA
1 (u1, . . . , uM )

=
∫ ∞

0

∫ uM+cM t

0
· · ·

∫ uim+1+cim+1t

0

∫ ∞

uim+cim t

∫ uim−1+cim−1t

0
· · ·

∫ ui1+1+ci1+1t

0

∫ ∞

ui1
+ci1

t

∫ ui1−1+ci1−1t

0

· · ·
∫ u1+c1t

0
e−δtwA(u1 + c1t− x1, . . . , uM + cM t− xM )fc(x1, . . . , xM )λce

−λstdx1 · · · dxMdt

=
∫ ∞

0

∫ uM+cM t

0
· · ·

∫ uim+1+cim+1t

0

∫ ∞

0

∫ uim−1+cim−1t

0
· · ·

∫ ui1+1+ci1+1t

0

∫ ∞

0

∫ ui1−1+ci1−1t

0

· · ·
∫ u1+c1t

0
wA(y1, . . . , yi1−1,−yi1 , yi1+1, . . . , yim−1,−yim , yim+1, . . . , yM )

× fc(u1 + c1t− y1, . . . , ui1−1 + ci1−1t− yi1−1, ui1 + ci1t + yi1 , ui1+1 + ci1+1t− yi1+1,

. . . , uim−1 + cim−1t− yim−1, uim + cimt + yim , uim+1 + cim+1t− yim+1, . . . , uM + cM t− yM )

× λce
−(λs+δ)tdy1 · · · dyMdt. (14)

Hence, by utilizing (13) and (14) we obtain the starting point of recursion given by (12). In
general, for the (n + 1)-th step, we condition on the time and amount of the first claim without
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ruin occurring to obtain the recursive relationship (which is analogous to (3)) for n = 1, 2, . . .,

φn+1(u1, . . . , uM )

=
M∑

i=1

∫ ∞

0

∫ ui+cit

0
φn(u1 + c1t, . . . , ui−1 + ci−1t, ui + cit− xi, ui+1 + ci+1t, . . . , uM + cM t)fii(x1)λiie

−(λs+δ)tdxidt

+
∫ ∞

0

∫ uM+cM t

0
· · ·

∫ u1+c1t

0
φn(u1 + c1t− x1, . . . , uM + cM t− xM )fc(x1, . . . , xM )

× λce
−(λs+δ)tdx1 · · · dxMdt. (15)

Example 4 In the bivariate version of model (2), the starting point of the recursion (12) consists
of three contributions, i.e.

φ1(u1, u2) = φ
{1}
1 (u1, u2) + φ

{2}
1 (u1, u2) + φ

{1,2}
1 (u1, u2),

where φ
{1}
1 (u1, u2), φ

{2}
1 (u1, u2) and φ

{1,2}
1 (u1, u2) correspond to the cases {τ1 < τ2}, {τ2 < τ1}

and {τ1 = τ2} respectively. In some cases, the three contributions simplify. For instance, if one
is interested in the expected discounted deficit at ruin time Tor defined in (8) under the penalty
functions w{1}(y1, y2) = −y1, w{2}(y1, y2) = −y2 and w{1,2}(y1, y2) = −y1 − y2, one has that

φ
{1}
1 (u1, u2) =

∫ ∞

0

∫ ∞

0
yf1(u1 + c1t + y) [λ11 + λ12F2(u2 + c2t)] e−(λs+δ)tdydt, (16)

φ
{2}
1 (u1, u2) =

∫ ∞

0

∫ ∞

0
yf2(u2 + c2t + y) [λ22 + λ12F1(u1 + c1t)] e−(λs+δ)tdydt, (17)

φ
{1,2}
1 (u1, u2) =

∫ ∞

0

∫ ∞

0
y

∫ u1+c1t+y

u1+c1t
f1(x1)f2(u2 + c2t + u1 + c1t + y − x1)λ12e

−(λs+δ)tdx1dydt,

(18)

where Fi(·) represents the cumulative distribution function corresponding to the density fi(·) for
i = 1, 2. ¤

4 Reduction of recursive integrals to recursive sums

As mentioned at the end of Section 2, a direct application of the recursive integrals in the form
of (3) requires long execution times especially due to the fact that we aim at letting n → ∞,
and the algorithm may be numerically instable as well. The same comments also apply to the
computation of the Gerber-Shiu function (10) for ruin at the n-th claim via (15). Inspired by
Stanford and Stroiński (1994) and Stanford et al. (2000) (who worked with the univariate risk
process), in the next two subsections we study two examples in which the recursive integration
previously presented can be explicitly evaluated when distributional assumptions on the claims
are made. More precisely, recursive integrals can be reduced to give recursive sums, therefore
providing a computational tractable solution. For simplicity, in this entire section we will consider
a bivariate version of the model (2).
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4.1 Mixture of Erlangs claims - Survival probability

In order to show the general applicability of the recursive methods with regards to the choice
of claim size distributions, we assume that the claims in the both lines are mixture of Erlangs
with common scale parameter, with densities given by f1(x1) =

∑m
i=1 qiβ

i
1x

i−1
1 e−β1x1/(i − 1)!

and f2(x2) =
∑m

j=1 pjβ
j
2x

j−1
2 e−β2x2/(j − 1)! respectively. The class of mixed Erlang distributions

is very flexible and versatile being an ideal candidate to fit insurance data (see Willmot and
Woo (2007) and Lee and Lin (2010) for an exhaustive analysis). Due to increased complexity in
calculations, in this subsection we restrict ourselves to deriving explicit recursive expressions for
the survival probabilities studied in Section 2 only in the common shock case, i.e. λ11 = λ22 = 0
and λc = λ12 > 0.

The idea that we use to find the general solution of (3) is based on mathematical induction.
We anticipate the form of the solution at the n-th step, assume it correct, and prove it at the
(n + 1)-th step. Thus, we obtain recursive formulas for the coefficients at the (n + 1)-th step
in terms of the coefficients at the previous n-th step. To begin, using equation (3) for n = 0
and λ11 = λ22 = 0 along with the trivial condition Φ0(u1, u2) = 1, after some tedious but rather
simple calculations we obtain

Φ1(u1, u2) =
∫ ∞

0

∫ u2+c2t

0

∫ u1+c1t

0
f1(x1)f2(x2)λ12e

−λ12tdx1dx2dt

= 1−
m−1∑

s=0

a[1,s]u
s
1e
−β1u1 −

m−1∑

s=0

b[1,s]u
s
2e
−β2u2 +

m−1∑

s=0

m−1∑

v=0

e[1,s,v]u
s
1u

v
2e
−(β1u1+β2u2),

where

a[1,s] =
m∑

i=s+1

i−1∑

k=s

λ12qic
k−s
1 βk

1

s!(k − s)!(λ12 + c1β1)k−s+1
, (19)

b[1,s] =
m∑

j=s+1

j−1∑

k=s

λ12pjc
k−s
2 βk

2

s!(k − s)!(λ12 + c2β2)k−s+1
, (20)

e[1,s,v] =
m∑

i=s+1

i−1∑

k=s

m∑

j=v+1

j−1∑

l=v

(
k + l − s− v

k − s

)
λ12pjqic

k−s
1 cl−v

2 βk
1βl

2

s!v!k!l!(λ12 + c1β1 + c2β2)k+l−s−v+1
, (21)

for s, v = 0, 1, . . . ,m− 1. Continuing further, we observe that the general form of the solution at
the n-th step is given by, for n = 1, 2, . . .,

Φn(u1, u2) = 1−
nm−1∑

w=0

a[n,w]u
w
1 e−β1u1 −

nm−1∑

w=0

b[n,w]u
w
2 e−β2u2 +

nm−1∑

w=0

nm−1∑

y=0

e[n,w,y]u
w
1 uy

2e
−(β1u1+β2u2).

(22)

Here a[·,·], b[·,·], e[·,·,·] are constant coefficients (i.e. independent of u1 and u2) that will be evaluated
recursively in two or three dimensions. See also Remark 2. Assuming that (22) holds for some
n ≥ 1 and plugging it into (3), after some tedious calculations whose details are omitted here, it
can be shown that (22) holds true with n + 1 in place of n, where the coefficients a[n+1,·], b[n+1,·],
e[n+1,·,·] at the (n + 1)-th step are given recursively in the following Proposition.
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Proposition 1 The survival probability can be calculated as Φ(u1, u2) = limn→∞Φn(u1, u2)
where the general term is given by

Φn+1(u1, u2) = 1−
(n+1)m−1∑

w=0

a[n+1,w]u
w
1 e−β1u1 −

(n+1)m−1∑

w=0

b[n+1,w]u
w
2 e−β2u2

+
(n+1)m−1∑

w=0

(n+1)m−1∑

y=0

e[n+1,w,y]u
w
1 uy

2e
−(β1u1+β2u2),

for n = 0, 1, . . ., with

a[n+1,w] = a[1,w]I(0 ≤ w ≤ m− 1)

+
m∑

i=max(1,w−mn+1)

nm−1∑

s=max(0,w−i)

s∑

g=0

λ12qia[n,s]
(−1)s−gcs+i−w

1 βi
1(s + i)!s!

(i− 1)!g!(s− g)!w!(s− g + i)(λ12 + c1β1)s+i+1−w
,

b[n+1,w] = b[1,w]I(0 ≤ w ≤ m− 1)

+
m∑

j=max(1,w−mn+1)

nm−1∑

s=max(0,w−j)

s∑

g=0

λ12pjb[n,s]
(−1)s−gcs+j−w

2 βj
2(s + j)!s!

(j − 1)!g!(s− g)!w!(s− g + j)(λ12 + c2β2)s+j+1−w
,

e[n+1,w,y] = e[1,w,y]I(0 ≤ w ≤ m− 1, 0 ≤ y ≤ m− 1)

+ I(0 ≤ y ≤ m− 1)
m∑

i=max(1,w−mn+1)

nm−1∑

s=max(0,w−i)

s∑

g=0

m∑

j=y+1

j−1∑

l=y

λ12pjqia[n,s]

×
(

s + i + l − w − y
s + i− w

)(
s

s− g

)
(−1)s−gcs+i−w

1 cl−y
2 βi

1β
l
2(s + i)!

(i− 1)!w!y!(s− g + i)(λ12 + c1β1 + c2β2)s+i+l−w−y+1

+ I(0 ≤ w ≤ m− 1)
m∑

j=max(1,y−mn+1)

nm−1∑

s=max(0,y−j)

s∑

g=0

m∑

i=w+1

i−1∑

k=w

λ12pjqib[n,s]

×
(

s + j + k − w − y
s + j − y

)(
s

s− g

)
(−1)s−gck−w

1 cs+j−y
2 βk

1βj
2(s + j)!

(j − 1)!w!y!(s− g + j)(λ12 + c1β1 + c2β2)k+j+s−w−y+1

+
m∑

i=max(1,w−mn+1)

nm−1∑

s=max(0,w−i)

s∑

g=0

m∑

j=max(1,y−mn+1)

nm−1∑

v=max(0,y−j)

v∑

z=0

λ12pjqie[n,s,v]

(s + i− g)(v + j − z)

×
(

s + i + v + j − w − y
s + i− w

)(
s

s− g

)(
v

v − z

)
(−1)s+v−g−zcs+i−w

1 cv+j−y
2 βi

1β
j
2(s + i)!(v + j)!

(i− 1)!(j − 1)!w!y!(λ12 + c1β1 + c2β2)s+v+i+j−w−y+1
,

for n = 1, 2, . . . ; w, y = 0, 1, . . . , (n+1)m−1. The starting point of the recursion is given by (19),
(20) and (21). ¤

4.2 Exponential claims - Expected discounted deficit

In this subsection, we assume exponential claims with densities fi(xi) = µie
−µixi for i = 1, 2, in

the bivariate risk process defined in (2), and we assume w{1}(y1, y2) = −y1, w{2}(y1, y2) = −y2
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and w{1,2}(y1, y2) = −y1−y2 so that we find the quantity (8) (see Example 4). Starting at n = 1,
after simple manipulations (16), (17) and (18) become

φ
{1}
1 (u1, u2) =

λ11 + λ12

µ1(λs + δ + c1µ1)
e−µ1u1 − λ12

µ1(λs + δ + c1µ1 + c2µ2)
e−(µ1u1+µ2u2),

φ
{2}
1 (u1, u2) =

λ22 + λ12

µ2(λs + δ + c2µ2)
e−µ2u2 − λ12

µ2(λs + δ + c1µ1 + c2µ2)
e−(µ1u1+µ2u2),

φ
{1,2}
1 (u1, u2) =

(
1
µ1

+
1
µ2

)
λ12

λs + δ + c1µ1 + c2µ2
e−(µ1u1+µ2u2).

Therefore, the expected discounted deficit when ruin happens at the instant of the first claim is
given by

φ1(u1, u2) =
λ11 + λ12

µ1(λs + δ + c1µ1)
e−µ1u1 +

λ22 + λ12

µ2(λs + δ + c2µ2)
e−µ2u2 .

With the above formula serving as the starting point, applying the same procedure as in the
previous subsection, one obtains the following Proposition by mathematical induction.

Proposition 2 The expected discounted deficit at ruin can be calculated as φ(u1, u2) =
∑∞

n=1 φn(u1, u2)
where the general term is given by

φn+1(u1, u2) =
n∑

j=0

a[n+1,j]u
j
1e
−µ1u1 +

n∑

j=0

b[n+1,j]u
j
2e
−µ2u2 −

n∑

j=0

n∑

k=0

e[n+1,j,k]u
j
1u

k
2e
−(µ1u1+µ2u2),

for n = 0, 1, . . ., with

a[n+1,j] =
n−1∑

i=max(j−1,0)

a[1,0]µ
2
1a[n,i]i!c

i+1−j
1

j!(λs + δ + c1µ1)i+1−j
+

n−1∑

i=j

λ22a[n,i]i!c
i−j
1

j!(λs + δ + c1µ1)i+1−j
,

b[n+1,j] =
n−1∑

i=max(j−1,0)

b[1,0]µ
2
2b[n,i]i!c

i+1−j
2

j!(λs + δ + c2µ2)i+1−j
+

n−1∑

i=j

λ11b[n,i]i!c
i−j
2

j!(λs + δ + c2µ2)i+1−j
,

e[n+1,j,k] = I(k = 0)




n−1∑

i=max(0,j−1)

ρµ1a[n,i]c
i+1−j
1 i!

j!(λs + δ + c1µ1 + c2µ2)i+1−j
+

n−1∑

i=j

λ22a[n,i]c
i−j
1 i!

j!(λs + δ + c1µ1 + c2µ2)i+1−j




+ I(j = 0)




n−1∑

i=max(0,k−1)

ρµ2b[n,i]c
i+1−k
2 i!

k!(λs + δ + c1µ1 + c2µ2)i+1−k
+

n−1∑

i=j

λ11b[n,i]c
i−k
2 i!

k!(λs + δ + c1µ1 + c2µ2)i+1−k




+
n−1∑

i=j

n−1∑

q=max(0,k−1)

(
i + q + 1− j − k

i− j

)
e[n,i,q]λ22µ2i!q!c

i−j
1 cq+1−k

2

j!k!(λs + δ + c1µ1 + c2µ2)i+q+2−j−k

+
n−1∑

q=k

n−1∑

i=max(0,j−1)

(
i + q + 1− j − k

q − k

)
e[n,i,q]λ11µ1i!q!c

i+1−j
1 cq−k

2

j!k!(λs + δ + c1µ1 + c2µ2)i+q+2−j−k

+
n−1∑

q=max(0,k−1)

n−1∑

i=max(0,j−1)

(
i + q + 2− j − k

q + 1− k

)
e[n,i,q]λ12µ1µ2i!q!c

i+1−j
1 cq+1−k

2

j!k!(λs + δ + c1µ1 + c2µ2)i+q+3−j−k
,
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for n = 1, 2, . . . ; j, k = 0, 1, . . . , n, where ρ = λ12/(λs + δ + c1µ1 + c2µ2). The starting point of the
recursion is given by

a[1,0] =
λ11 + λ12

µ1(λs + δ + c1µ1)
, b[1,0] =

λ22 + λ12

µ2(λs + δ + c2µ2)
, e[1,0,0] = 0.

¤

As in the previous subsection, we avoid to present the detailed proof on Proposition 2 due to the
tedious algebraic calculations involved.

Remark 2 Despite the rather messy appearance of the formulas in Propositions 1 and 2, the re-
sults provide computationally more tractable solutions for the survival probability and the expected
discounted deficit at ruin, since we only need to calculate recursive sums instead of recursive in-
tegrals. It is also instructive to note that in both Propositions 1 and 2, the coefficients a[·,·], b[·,·],
e[·,·,·] do not depend on (u1, u2). In other words, once the coefficients (up to the n-th step) have
been determined, the same ruin-related quantity under any combinations of initial surplus levels
(u1, u2) follows immediately. This is in contrast to the recursive integral formulas (3) and (15)
in which a separate numerical integration has to be performed for a different set of (u1, u2). Such
an appealing feature of the method of recursive sums presented here makes it relatively easy to
study various optimal allocation problems, for example, in minimizing the joint ruin probability
(see Section 6.3) or the expected discounted deficit. ¤

5 Survival probability for Tand

In this section, we turn our attention to the survival probability associated to the time of ruin
Tand = max(τ1, τ2) under the framework (1) in the bivariate case (see Remark 4 for discussion
about higher dimensions). Such survival probability will be denoted by

Φand(u1, u2) = Pr (u1,u2)(Tand = ∞) = Pr (u1,u2)(τ1 = ∞ or τ2 = ∞),

and hence Ψand(u1, u2) = 1−Φand(u1, u2) represents the associated ruin probability. By recalling
that Sn is the time of the n-th claim event, in parallel to the beginning of Section 2, for n = 0, 1, . . .
we define the survival probability

Φand
n (u1, u2) = 1−Ψand

n (u1, u2) = Pr (u1,u2)(Tand > Sn),

as well as the univariate survival probabilities, for i = 1, 2,

Φi
n(ui) = 1−Ψi

n(ui) = Pr(τi > Sn|Ui(0) = ui). (23)

If we define the sets Ai = {τi > Sn} for i = 1, 2, then {Tand > Sn} = {max(τ1, τ2) > Sn} = A1∪A2

and {Tor > Sn} = {min(τ1, τ2) > Sn} = A1 ∩ A2. Using the identity Pr(A1 ∪ A2) = Pr(A1) +
Pr(A2)− Pr(A1 ∩A2), one immediately has that, for n = 0, 1, . . .,

Φand
n (u1, u2) = Φ1

n(u1) + Φ2
n(u2)− Φn(u1, u2). (24)

The implication of (24) is that, if we can determine Φi
n(ui) for i = 1, 2 then Φand

n (u1, u2) follows
accordingly with Φn(u1, u2) obtained from earlier sections. Then the ultimate survival probability
is given by Φand(u1, u2) = limn→∞Φand

n (u1, u2).

14



Remark 3 Note that according to the definition (23), a claim event which generates a claim in
line 1 but not in line 2 should also be counted as a ‘claim event’ in line 2, and vice versa. This is
particularly important for a fair comparison between the bivariate and univariate probabilities as
well as ensuring the relationship (24) holds. Therefore, the way the number of claims is counted
here is different from that in Stanford and Stroiński (1994) and Stanford et al. (2000). Note
also that Φ1

n(u1) is independent of u2, c2 and f2(·) but dependent on λ22 pertaining to the process
{U2(t)}t≥0. Similar comments apply to Φ2

n(u2). ¤

Given (24), it remains to derive recursive relationships for the univariate survival probabilities
Φi

n(ui) for i = 1, 2. Since we denote λc = λ12 for bivariate process, we shall also write fc(·, ·) ≡
f12(·, ·). When n = 1, by conditioning on the time and claim amounts upon the arrival of the
first claim event we obtain

Φ1
1(u1) =

∫ ∞

0

∫ u1+c1t

0
f11(x1)λ11e

−λstdx1dt +
∫ ∞

0

∫ ∞

0
f22(x2)λ22e

−λstdx2dt

+
∫ ∞

0

∫ ∞

0

∫ u1+c1t

0
f12(x1, x2)λ12e

−λstdx1dx2dt

=
∫ ∞

0
[F11(u1 + c1t)λ11 + F1•(u1 + c1t)λ12] e−λstdt +

λ22

λs

= 1−
∫ ∞

0

[
F 11(u1 + c1t)λ11 + F 1•(u1 + c1t)λ12

]
e−λstdt,

where F11(·) = 1−F 11(·) and F1•(·) = 1−F 1•(·) represent the cumulative distribution functions
corresponding to the densities f11(·) and

∫∞
0 f12(·, x2)dx2 respectively. Recursively, one has that

for n = 0, 1, . . .,

Φ1
n+1(u1) =

∫ ∞

0

∫ u1+c1t

0
Φ1

n(u1 + c1t− x1)
{

f11(x1)λ11 +
[∫ ∞

0
f12(x1, x2)dx2

]
λ12

}
e−λstdx1dt

+
∫ ∞

0
Φ1

n(u1 + c1t)λ22e
−λstdt. (25)

The study of Φ2
n(u2) can be done in an identical manner by reversing the roles of lines 1 and 2.

The following example demonstrates how the same ideas as in Section 4 can be employed to
replace the recursive integrals in (25) by recursive sums using mathematical induction.

Example 5 As in Example 1, we consider the bivariate version of model (2) under exponential
assumptions with fi(xi) = µie

−µixi for i = 1, 2. Omitting the straightforward algebraic details,
line 1’s survival probability Φ1

n+1(u1) up to and including the (n + 1)-th claim events admits the
representation

Φ1
n+1(u1) = 1−

n∑

j=0

a1
[n+1,j]u

j
1e
−µ1u1 ,

for n = 0, 1, . . ., with

a1
[n+1,j] = a1

[1,0]I(j = 0) +
n−1∑

i=max(j−1,0)

a1
[n,i](λ11 + λ12)µ1c

i+1−j
1 i!

j!(λs + c1µ1)i+2−j
+

n−1∑

i=j

a1
[n,i]λ22c

i−j
1 i!

j!(λs + c1µ1)i+1−j
,

for n = 1, 2, . . . ; j = 0, 1, . . . , n. The starting point is a1
[1,0] = (λ11 + λ12)/(λs + c1µ1). ¤
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Remark 4 The survival probability for Tand in the general multi-dimensional case can in princi-
ple be studied in the same manner using the inclusion-exclusion principle. To illustrate this, we
briefly discuss the trivariate case (i.e. M = 3) as follows. We are interested in computing the
quantity Φand

n (u1, u2, u3) = Pr (u1,u2,u3)(Tand > Sn) so that

Φand(u1, u2, u3) = Pr (u1,u2,u3)(Tand = ∞) = lim
n→∞Φand

n (u1, u2, u3).

While the univariate survival probabilities Φi
n(ui) for i = 1, 2, 3 have the same representation as

in (23) (with the understanding that Sn is defined in the trivariate framework), we further define
the bivariate survival probabilities, for i, j ∈ {1, 2, 3} and i < j,

Φij
n (ui, uj) = Pr(τi > Sn and τj > Sn|(Ui(0), Uj(0)) = (ui, uj)).

If Ai = {τi > Sn} for i = 1, 2, 3, then {Tand > Sn} = A1∪A2∪A3 and {Tor > Sn} = A1∩A2∩A3,
and therefore with the identity Pr(A1 ∪ A2 ∪ A3) = Pr(A1) + Pr(A2) + Pr(A3) − Pr(A1 ∩ A2) −
Pr(A1 ∩A3)− Pr(A2 ∩A3) + Pr(A1 ∩A2 ∩A3) we immediately arrive at, for n = 0, 1, . . .,

Φand
n (u1, u2, u3) = Φ1

n(u1)+Φ2
n(u2)+Φ2

n(u2)−Φ12
n (u1, u2)−Φ13

n (u1, u3)−Φ23
n (u2, u3)+Φn(u1, u2, u3).

(26)
The univariate survival probability Φ1

n(u1) satisfies the recursion, for n = 0, 1, . . .,

Φ1
n+1(u1) =

∫ ∞

0

∫ u1+c1t

0
Φ1

n(u1 + c1t− x1)
{

f11(x1)λ11 +
[∫ ∞

0

∫ ∞

0
fc(x1, x2, x3)dx2dx3

]
λc

}
e−λstdx1dt

+
∫ ∞

0
Φ1

n(u1 + c1t)(λ22 + λ33)e−λstdt,

with starting value Φ1
0(u1) = 1. Similarly, the bivariate survival probability Φ12

n (u1, u2) is given
by, for n = 0, 1, . . .,

Φ12
n (u1, u2) =

∫ ∞

0

∫ u1+c1t

0
Φ12

n (u1 + c1t− x1, u2 + c2t)f11(x1)λ11e
−λstdx1dt

+
∫ ∞

0

∫ u2+c2t

0
Φ12

n (u1 + c1t, u2 + c2t− x2)f22(x2)λ22e
−λstdx2dt

+
∫ ∞

0
Φ12

n (u1 + c1t, u2 + c2t)λ33e
−λstdt

+
∫ ∞

0

∫ ∞

0

∫ u2+c2t

0

∫ u1+c1t

0
Φ12

n (u1 + c1t− x1, u2 + c2t− x2)fc(x1, x2, x3)λce
−λstdx1dx2dx3dt,

with starting value Φ12
0 (u1, u2) = 1. Other probabilities Φ2

n(u2), Φ3
n(u3), Φ13

n (u1, u3) and Φ23
n (u2, u3)

appearing in (26) can be evaluated in the same manner. ¤

6 Numerical illustrations

In this section we present numerical illustrations of the results obtained in the previous sections
in the bivariate process (2) under exponential claims. The premium rates are assumed to be
c1 = 3.2 and c2 = 30, whereas the mean claim sizes are 1/µ1 = 1 and 1/µ2 = 10. Furthermore,
based on different arrival rates we consider four different bivariate risk models as follows
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• Case 1: Independent model - λ11 = λ22 = 2;λ12 = 0.

• Case 2: Three-component common shock model - λ11 = λ22 = 1.5;λ12 = 0.5.

• Case 3: Three-component common shock model - λ11 = λ22 = 0.5;λ12 = 1.5.

• Case 4: Common shock model - λ11 = λ22 = 0;λ12 = 2.

Note that under all four scenarios the total arrival rates for the companies are λ1 = λ2 = 2, and
the relative security loadings are θ1 = 0.6 and θ2 = 0.5. Under Case 1 we are dealing with two
independent risk processes. The second and the third cases deal with a three-component common
shock model, where in Case 2 common shocks occur less frequently than in Case 3. Finally Case
4 assumes only the existence of common shocks which generate claims in both lines of business
every time. We are particularly interested to see the impact of dependence versus independence
on various ruin-related quantities.

6.1 Ruin probability and expected discounted deficit

In this subsection we assume the two insurers possess initial surplus values u1 = 2 and u2 =
10. First, the marginal or univariate ruin probabilities can be calculated using the well-known
formulas

Ψ1(u1) =
1

1 + θ1
e
− θ1µ1

1+θ1
u1 = 0.2952291 (= lim

n→∞Ψ1
n(u1)),

Ψ2(u2) =
1

1 + θ2
e
− θ2µ2

1+θ2
u2 = 0.4776875 (= lim

n→∞Ψ2
n(u2)).

Under the independent Case 1, the ultimate ruin probability Ψand(u1, u2) for Tand is simply the
product of the univariate ruin probabilities. Therefore, using similar relationship as in (24), the
exact ultimate ruin probability for Tor in Case 1 can be calculated as Ψ(u1, u2) = Ψ1(u1) +
Ψ2(u2)−Ψ1(u1)Ψ2(u2) = 0.6318894.

Insert Figure 1

Figure 1 plots the ruin probabilities Ψn(u1, u2) in the four cases of bivariate risk processes
along with the univariate cases of Ψi

n(ui) for i = 1, 2, all against the number of claims n. The
results are given based on 100 iterations for which the algorithms in Section 4.1 and Example 5
are used. Note that the computational times for running 100 iterations using our procedures of
recursive sums are somewhere between 10 to 12 hours, which is considerably smaller than those
needed for applying the recursive integrals from Example 1. From Figure 1 we can observe that
as the number of iterations increases, the results converge. In the independent Case 1, after
100 iterations we obtain a ruin probability of 0.6306428 that is very close to the exact value of
0.6318894. Looking at Figure 1 we can also observe that the ultimate ruin probability of Case 1
is the highest one in all models, being followed by Cases 2-4. In this example, these numerical
values suggest that if one uses the ruin probabilities associated to Tor as a measure of riskiness,
the independent Case 1 is the most risky, whereas the dangerousness decreases with the frequency
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Figure 1: Ruin probabilities in Tor for four bivariate cases and two univariate cases.

of common shocks to the processes {U1(t)}t≥0 and {U2(t)}t≥0 (keeping the total arrival rate of
each company fixed).

Chan et al. (2003), Cai and Li (2005) and Yuen et al. (2006) derived bounds for the ultimate
ruin probability Ψ(u1, u2) under Tor as

max{Ψ1(u1),Ψ2(u2)} ≤ Ψ(u1, u2) ≤ Ψ1(u1) + Ψ2(u2)−Ψ1(u1)Ψ2(u2), (27)

where the final expression is exactly the ruin probability in the case where {U1(t)}t≥0 and
{U2(t)}t≥0 are independent. As it can be seen from Figure 1, the lower bound in (27) is not
very tight compared to Cases 2, 3 and 4, whereas the upper bound given by Case 1 is relatively
close to the exact ultimate ruin probabilities. One can also observe that the upper bound works
better when {U1(t)}t≥0 and {U2(t)}t≥0 are less dependent.
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Insert Figure 2
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Figure 2: Ruin probabilities in Tand for four bivariate cases and two univariate cases.

Using the results in Section 5, we further consider the ultimate ruin probability Ψand(u1, u2)
related to Tand. Cai and Li (2005, 2007) provided simple bounds for Ψand(u1, u2) given by

Ψ1(u1)Ψ2(u2) ≤ Ψand(u1, u2) ≤ min{Ψ1(u1), Ψ2(u2)}. (28)

Figure 2 displays the ruin probabilities Ψand
n (u1, u2) for the four bivariate cases as well as the

univariate cases. Note that the upper bound in (28) is not very tight, whereas the lower bound
given by the independent Case 1 is relatively good. The lower bound works better when {U1(t)}t≥0

and {U2(t)}t≥0 are less dependent. As a general conclusion suggested by Figures 1 and 2, if one
assumes independence instead of dependence via common shocks, one overestimates the ruin
probability under Tor and underestimates the ruin probability under Tand.

We also consider the expected discounted deficit at ruin as in Section 4.2 for the same cases
described above. Figure 3 displays the values at a discount factor δ = 0.05, when ruin happens
before or on the n-th claim, i.e. partial sums of (10) are plotted (contrary to the infinite sum in
(11)) under the appropriate choice of penalty functions. The expected discounted deficit appears
to converge to around 4.1 in all four cases. However, when we look closer at the actual numbers
as n increases (not reproduced here), they appear to converge to slightly different values.
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Insert Figure 3
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Figure 3: Expected discounted deficits up to the n-th claim for four different bivariate models.

6.2 Expected discounted total surplus when only one line is ruined

Next, we are interested in the quantity defined in (9) which represents the expected discounted
total surplus of the two companies at time Tor when business 1 is ruined, but business 2 has
positive surplus. Again we assume initial surplus levels of u1 = 2 and u2 = 10, and a discount
factor of δ = 0.05. Since the recursive evaluation of the coefficients in this case is very similar to
those in Propositions 1 and 2, we omit the rather repetitive details here and only show the plots.

Insert Figure 4

From Figure 4, one observes that the expected discounted total surplus values are always
positive under all four scenarios. The intuitive explanation is as follows. It is evident from the
premium rates as well as the means of claim size in the two lines of business that the scale of line
2 is much larger than that of line 1. Therefore, at the time when line 1 is ruined but not line
2, there is very good chance that the positive surplus in line 2 is more than sufficient to cover
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Figure 4: Expected discounted total surplus values if only business 1 is ruined up to the n-th
claim.

the deficit in line 1, resulting in a positive total surplus. Furthermore, note that the expected
discounted total surplus appears to increase as {U1(t)}t≥0 and {U2(t)}t≥0 are less dependent.

Similarly, the expected discounted total surplus of the two lines at time Tor when line 2 is
ruined but not line 1 is depicted in Figure 5. This quantity is achieved by letting w{2}(y1, y2) =
y1 + y2 and w{1}(·, ·) ≡ w{1,2}(·, ·) ≡ 0. This time the expected discounted total surplus values
up to the n-th claim are always negative. Interestingly, as the number of claims increases, this
quantity appears to be first decreasing sharply, then slightly increasing before finally converging.
Since Figure 5 shows the partial sums of (10), the slight increase in the interim means that
φn(u1, u2) indeed becomes slightly positive as n gets large. This might be attributed to the fact
that when ruin in line 2 occurs at large enough number of claims, there is good chance that line
1 has already accumulated sufficient capital or profits to cover line 2’s deficit due to the long
time elapsed, even its scale is smaller. Again the expected discounted total surplus appears to be
larger if {U1(t)}t≥0 and {U2(t)}t≥0 are less dependent.

Insert Figure 5
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Figure 5: Expected discounted total surplus values if only business 2 is ruined up to the n-th
claim.

6.3 Optimal capital allocation

In order to show the usefulness of the method of recursive sums presented in Section 4 (see
Remark 2), in this subsection we study an optimal capital allocation problem formulated as
follows. Suppose that a company possesses two lines of business which are to share among them
a fixed amount of initial fund valued at K dollars. A criterion will be needed to make a corporate
decision regarding the optimal way of splitting the K dollars. This can be based on risk measures
derived from the bivariate process {(U1(t), U2(t))}t≥0, which include, for example, minimizing the
joint ruin probability (in various definitions) or the expected discounted deficit. In this subsection,
we are interested in the former problem. In the Tor case, this means finding the optimal initial
surplus values (u∗1, u

∗
2) which minimize Ψ(u1, u2) under the constraints u1+u2 = K and u1, u2 ≥ 0.

Equivalently, we need to find the optimal value u∗1 to minimize Ψ(u1,K − u1) within the domain
0 ≤ u1 ≤ K. The minimization of ruin probability under Tand can be defined in the same manner.

Figures 6 and 7 plot the joint ruin probability against the initial surplus u1 of business line
1 for the four cases of bivariate risk processes under Tor and Tand respectively. Here we assume
that two lines of business share total initial capital of 12 (i.e. u1 + u2 = 12) and other model
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parameters are not changed. The results given in this subsection are based on our algorithms
of recursive sums up to the 100-th iteration, i.e. Ψ100(u1, u2) and Ψand

100 (u1, u2) are used instead
of Ψ(u1, u2) and Ψand(u1, u2). As we mentioned in Section 6.1, the results after 100 iterations
are very close to the exact value. Therefore, we assume that all curves in Figures 6-8 essentially
represent the exact ultimate ruin probabilities associated with Tor or Tand.

Insert Figures 6 and 7
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Figure 6: Optimal allocations in Tor for four bivariate cases.

By looking at Figure 6 for Tor, we can draw the same conclusion as we did in the first numerical
example in Section 6.1: the independent Case 1 is the most risky one among all models. The
minimum ruin probability is 0.572 for Case 1, followed by 0.566 for Case 2, 0.553 for Case 3
and 0.545 for Case 4. We also observe that the insurance company needs to allocate more initial
capital to line 1 in the independent case than other dependent cases in order to minimize the
joint ruin probability under Tor. The weights of the total initial capital 12 assigned to line 1 are
0.4275, 0.4075, 0.3650 and 0.3408 respectively for Cases 1-4.

Compared to Tor, the results for Tand presented in Figure 7 are quite different. The insurance
company needs to put all initial capital to business line 1 to obtain the minimum ruin probability
which is almost 0 in all four cases. We believe that the main reason why the optimal u∗1 is always
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Figure 7: Optimal allocations in Tand for four bivariate cases.

located at 12 (i.e. 100% of the total initial surplus) is that line 1 has much smaller scale than
line 2. More precisely, the average claim amount for business line 1 is only 10% of that of line
2. Consequently, line 1 will survive much longer than line 2 if both lines have the same initial
surplus. As we pointed out in Section 1, Tand is the later individual ruin time of the two lines, so
the insurance company should invest all its limited initial capital to line 1 to minimize the joint
ruin probability associated with Tand, even if this means that line 2 is likely to ruin early.

In order to show that the method of recursive sums is simple to implement in practice, we
also plot the indifference curves associated to Tor in Figure 8 for Case 2. An indifference curve
represents all the possible combinations of u1 and u2 which give the same ruin probability as
stated on the right-hand side of the figure. If we have the budget restriction u1 + u2 = 12, we
will reach our optimal allocation result that gives u∗1 = 4.89 and u∗2 = 7.11.

Insert Figure 8
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7 Conclusion

In this paper we consider a multi-dimensional risk model with claims occurring according to
Poisson processes with common shocks. Using an intuitive recursive approach that is based on
observing the risk processes at claim instants, we provide recursive integrals to find the survival
probabilities as well as a subclass of the Gerber-Shiu functions with a penalty that depends on
the surplus levels of the all individual processes at ruin only. In Propositions 1 and 2, it is shown
via examples that the multiple/recursive integrals in the general formulas can be replaced by
multiple/recursive sums that are computational more tractable. As most of the papers on multi-
dimensional risk theory provide bounds and/or asymptotic results, we believe that our result is
a step forward towards solving these very difficult problems. Moreover, our results also provide
a neat way to perform related study such as an optimal capital allocation problem, as illustrated
in Section 6.3.

The ideas regarding the reduction of recursive integrals to recursive sums employed in Section
4 do not limit their applications to Propositions 1 and 2 about the bivariate version of model (2)
in which the claims between the two lines are independent in the case of a common shock. For
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example, in the bivariate case, in order to reduce the recursive integrals to recursive sums, one
may assume that the density f12(·, ·) follows, for example, a bivariate exponential distribution or
a Farlie-Gumbel-Morgenstern copula with Erlang marginals. In addition to relaxing assumptions
on the claims arising from common shocks, the recursive techniques can also be used when
one deals with renewal type risk models (as in Stanford et al. (2000)), where the inter-arrival
times {Vk}∞k=1 between claim events may follow, for example, Erlang or Coxian distribution (in
contrast to exponential random variables with mean 1/λs). However, in such case we require the
definition of the probabilities {π11, π22, . . . , πMM , πc} such that, given that a claim event occurs,
with probability πii (i = 1, 2, . . . , M) there is a claim in line i but not in any other lines, and
with probability πc it is a common shock causing claims in all lines at the same time. Moreover,
one may also allow the inter-arrival times {Vk}∞k=1 and the resulting claims to be dependent,
with dependency structure resembling the ones studied by Boudreault et al. (2006) or Cossette
et al. (2008). As the ideas and techniques involved in the derivations of the afore-mentioned
generalizations are essentially the same as those in the simpler examples presented in this paper,
we restrict ourselves solely to mentioning these cases, leaving them as rather tedious algebraic
exercises.

Note that in the present model (1), it is assumed that the common shock affects all lines
simultaneously. We remark that the model can be further extended to allow for multiple common
shock components such that each component induces claims in a different subset of the M lines.
Again, such presentation will be notationally involved without much gain of additional insights,
so we have opted to study (1) for ease of presentation.

As mentioned by most authors, ruin theory in the multi-dimensional case is very complex.
Our method is rather tedious, but we use only elementary algebra to provide a way of calculating
various ruin-related quantities under a multi-dimensional risk model. We hope that this paper
will stimulate more research on these complicated risk models that seem to become more popular
in the literature.
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[19] Stanford, D.A. and Stroiński, K.J. 1994. Recursive methods for computing finite-time ruin
probabilities for phase-type distributed claim sizes. ASTIN Bulletin 24(2): 235-254.
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