Hamilton Paths in Toroidal Graphs

Robin Thomas ${ }^{1}$
School of Mathematics
Georgia Institute of Technology
Xingxing Yu ${ }^{2}$
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332
and
Center for Combinatorics, LPMC
Nankai University
Tianjin 300071, P. R. China
Wenan Zang ${ }^{3}$
Department of Mathematics
University of Hong Kong
Hong Kong, China

Abstract

Tutte has shown that every 4 -connected planar graph contains a Hamilton cycle. Grünbaum and Nash-Williams independently conjectured that the same is true for toroidal graphs. In this paper, we prove that every 4 -connected toroidal graph contains a Hamilton path.

Published in J. Combin. Theory Ser. B 94 (2005), 214-236.

[^0]
1 Introduction and notation

In 1931, Whitney [9] proved that every 4-connected triangulation of the sphere contains a Hamilton cycle (and hence, is 4 -face-colorable). Tutte [8] generalized this result to 4connected planar graphs. Extending the technique of Tutte, Thomassen [7] proved that in any 4 -connected planar graph there is a Hamilton path between any given pair of distinct vertices. Grünbaum [3] conjectured that every 4-connected graph embeddable in the projective plane contains a Hamilton cycle. This conjecture was proved by Thomas and Yu [5]. For graphs embeddable in the torus (toroidal graphs, for short), Grünbaum [3] and Nash-Williams [4] independently made the following
(1.1) Conjecture. Every 4-connected toroidal graph contains a Hamilton cycle.

Conjecture (1.1) is established in [1] for 6-connected toroidal graphs. Brunet and Richter [2] proved (1.1) for 5-connected triangulations of the torus. Later, Thomas and Yu [6] proved (1.1) for all 5 -connected toroidal graphs. In this paper, we offer further evidence to (1.1) by proving the following
(1.2) Theorem. Every 4-connected toroidal graph contains a Hamilton path.

Only simple graphs will be considered. Let G be a graph. We use $V(G)$ and $E(G)$ to denote the vertex set and edge set of G, respectively. If e is an edge of G with ends u and v, then we also denote e by $u v$. For $X \subseteq E(G)$ or $X \subseteq V(G), G-X$ denotes the graph obtained from G by deleting X and (if $X \subseteq V(G)$) by deleting all edges of G incident with vertices in X. When $X=\{x\}$, we write $G-x$ instead of $G-\{x\}$. Let S be a set of 2-element subsets of $V(G)$; then $G+S$ denotes the graph with vertex set $V(G)$ and edge set $E(G) \cup S$. If $S=\left\{\left\{x_{i}, y_{i}\right\}: i=1, \ldots, k\right\}$ then we sometimes use $G+\left\{x_{i} y_{i}: i=1, \ldots, k\right\}$ instead of $G+S$, and if $S=\{\{x, y\}\}$ we use $G+x y$ instead of $G+S$.

Let G and H be subgraphs of a graph; then $G \cap H$ (respectively, $G \cup H$) denotes the intersection (respectively, union) of G and H. We write $G-H$ instead of $G-V(G \cap H)$. We use $P \subseteq G$ to mean that P is a subgraph of G. For $S \subseteq V(G)$, we also view S as the subgraph of G with vertex set S and no edges. Hence $P \cup S$ makes sense for $P \subseteq G$ and $S \subseteq V(G)$. A block in a graph is a maximal 2-connected subgraph or is induced by a cut edge of the graph.

A graph G is embedded in a surface Σ if it is drawn in Σ with no pair of edges crossing. The faces of G are the connected components (in topological sense) of $\Sigma-G$. The boundary of a face is called a facial walk. The face width or representativity of G in Σ is defined to be the minimum number $|\gamma \cap G|$ taken over all non-null homotopic simple closed curves γ in Σ. When Σ is the plane (or equivalently, the sphere), G is a plane graph. For convenience, an embedding of a graph G in the plane is called a plane representation of G. The boundary of the infinite face of a plane graph G is called the outer walk of G, or outer cycle if it is a cycle.

For a path P and two vertices $x, y \in V(P)$, we use $x P y$ to denote the subpath of P with ends x and y. For a cycle C and distinct vertices x, y on C, an $x y$-segment of C is a path in C with ends x and y. If C is a cycle in a graph embedded in an orientable surface
Σ such that C bounds a closed disc in Σ, then we can speak of clockwise and counter clockwise orders along C. Given two vertices x and y on a cycle C bounding a closed disc, let $x C y=\{x\}$ if $x=y$, and otherwise, let $x C y$ denote the $x y$-segment of C which is clockwise from x to y.

Let G be a graph and $P \subseteq G$. A P-bridge of G is a subgraph of G which either (1) is induced by an edge of $G-E(P)$ with both ends on P or (2) is induced by the edges in a component of $G-V(P)$ and all edges from that component to P. For a P-bridge B of G, the vertices of $B \cap P$ are the attachments of B (on P). We say that P is a Tutte subgraph of G if every P-bridge of G has at most three attachments on P. For $C \subseteq G, P$ is a C-Tutte subgraph of G if P is a Tutte subgraph of G and every P-bridge of G containing an edge of C has at most two attachments on P. A Tutte path (respectively, Tutte cycle) in a graph is a path (respectively, cycle) which is a Tutte subgraph.

Note that if P is a Tutte path in a 4 -connected graph and $|V(P)| \geq 4$, then P is in fact a Hamilton path. Hence, in order to prove (1.2), it suffices to find Tutte paths in 2 -connected toroidal graphs. This will be done by applying induction on the face-width of a graph embedded in the torus. In Section 2, we state and prove a few lemmas about Tutte paths in plane graphs. In Section 3, we prove a result which will be used to treat the induction basis: the face width of a graph in the torus is at most two. We then complete the proof of (1.2) in Section 4.

For convenience, we use $A:=B$ to rename B as A.

$2 C$-flaps and Tutte subgraphs

We begin this section with several known results on Tutte paths in plane graphs. The first result is the main theorem in [7], where a P-bridge is called a " P-component".
(2.1) Lemma. Let G be a 2-connected plane graph with a facial cycle C. Assume that $x \in V(C), e \in E(C)$, and $y \in V(G-x)$. Then G contains a C-Tutte path P between x and y such that $e \in E(P)$.

Lemma (2.1) can easily be generalized as follows. Let G be a connected plane graph with a facial walk C. Assume that $x \in V(C), e \in E(C), y \in V(G-x)$, and G has a path between x and y and containing e. Then G contains a C-Tutte path P between x and y such that $e \in E(P)$. Hence, when we apply Lemma (2.1), we actually apply this general version.

In order to state the next result, we need the following concept first introduced in [5]. Let C be a cycle or a path in a graph G. A C-flap in G is either the null graph or an $\{a, b, c\}$-bridge H of G such that
(i) $a, b \in V(C) \cap V(H), a \neq b$, and $c \in V(H)-V(C)$;
(ii) H contains an $a b$-segment S of C; and
(iii) H has a plane representation with S and c on its outer walk.

When a C-flap is an $\{a, b, c\}$-bridge H, we say that a, b, c are its attachments and define $I(H)=V(H)-\{a, b, c\}$. When a C-flap is null, we say that a, b, c are its attachments if $a=b=c \in V(C)$ and define $I(H)=\emptyset$.

See Figure 1 for an illustration. Note that we do not specify the order of a, b on C, and therefore we do not need the condition in [5] that H contains the clockwise segment of C between a and b.

Lemmas (2.2) and (2.3) below are the first half and second half, respectively, of (2.5) in [5], where a C-Tutte path is called an $E(C)$-snake. Lemma (2.2) is illustrated in Figure 1.

Figure 1: C-flap and Lemma (2.2)
(2.2) Lemma. Let G be a 2-connected plane graph with outer cycle C. Let $x, y \in V(C)$ be distinct, let e, $f \in E(C)$, and assume that x, y, e, f occur on C in this clockwise order. Then there exist a C-flap H in G with attachments $a, b, c(a=b=c=y$ if H is null $)$ and a $(C-I(H))$-Tutte path P between b and x in $G-I(H)$ such that x, a, y, b, e, f occur on C in this clockwise order, $y \in(V(H)-\{a\}) \cup\{b\},\{e, f\} \subseteq E(P)$, and $a, c \in V(P)$.
(2.3) Lemma. Let G be a 2-connected plane graph with outer cycle C. Let $x, y \in V(C)$ be distinct, let $e, f \in E(C)$, and assume that x, y, e, f occur on C in this clockwise order. Then there exists a $y C x$-Tutte path P between x and y in G such that $\{e, f\} \subseteq E(P)$.

Note that the above three lemmas hold when e or f or both are vertices of C. This can be seen by choosing edges in $E(C)$ incident with these vertices. Hence, when these lemmas are applied, we will allow e or f or both to be vertices.

The next lemma shows that if in (2.3) we do not insist that y be an end of P, then we can require P be a C-Tutte path.
(2.4) Lemma. Let G be a 2-connected plane graph with outer cycle C. Let $x, y \in V(C)$ be distinct, let $e, f \in E(C)$, and assume that x, y, e, f occur on C in this clockwise order. Then there exists a C-Tutte path Q from x in G such that $y \in V(Q)$ and $\{e, f\} \subseteq E(Q)$.

Proof. By (2.2), there exist a C-flap H in G with attachments $a, b, c(a=b=c=y$
if H is null) and a $(C-I(H)$)-Tutte path P between b and x in $G-I(H)$ such that x, a, y, b, e, f occur on C in this clockwise order, $y \in(V(H)-\{a\}) \cup\{b\},\{e, f\} \subseteq E(P)$, and $a, c \in V(P)$. See Figure 1.

If H is null, then $Q:=P$ gives the desired path. So assume that H is non-null. Since G is 2-connected and $c \notin V(C), H^{\prime}:=H+\{a c, b c\}$ is 2-connected. Without loss of generality, assume that $a c, b c$ are added so that H^{\prime} is a plane graph with outer cycle $C^{\prime}:=(a C b \cup\{c\})+\{a c, b c\}$. By (2.3) (with $H^{\prime}, C^{\prime}, b, c, a c, y$ as G, C, x, y, e, f, respectively), there exists a $c C^{\prime} b$-Tutte path P^{\prime} between b and c in H^{\prime} such that $y \in V\left(P^{\prime}\right)$ and $a c \in E\left(P^{\prime}\right)$. Clearly, bc $\notin E\left(P^{\prime}\right)$.

Let $Q:=\left(P^{\prime}-\{a, c\}\right) \cup P$. Then every Q-bridge of G is one of the following: a P-bridge of $G-I(H)$, or a P^{\prime}-bridge of H^{\prime}, or a subgraph of G induced by an edge of P^{\prime} incident with a. Hence, Q is a C-Tutte path from x in G such that $y \in V(Q)$ and $\{e, f\} \subseteq E(Q)$.

Again, when Lemma (2.4) is applied, e or f or both may be vertices. Next result is a technical lemma, and it will be used many times in later proofs. In order to cover all situations when this lemma is applied, we need to state it in a fairly general setting. See Figure 2 for an illustration.
(2.5) Lemma. Let K be a connected graph, let Q be a path in K with ends p and q, let L be a subgraph of $K-Q$, let Q^{\prime} be a cycle in L, and let $u \in V\left(Q^{\prime}\right)$. Suppose the following three conditions are satisfied.
(1) If B is a $(L \cup Q)$-bridge of G, then $|V(B \cap L)| \leq 1$ and $V(B \cap L) \subseteq V\left(Q^{\prime}\right)$.
(2) Let H be the union of Q, Q^{\prime}, and those $(L \cup Q)$-bridges of G with an attachment on Q; then H has a plane representation such that Q and u are on a facial walk and Q^{\prime} is its outer cycle.
(3) L contains a Q^{\prime}-Tutte subgraph T such that (i) $u \in V(T)$ and $\left|V\left(Q^{\prime}\right) \cap V(T)\right| \geq 2$, and (ii) every T-bridge X of L containing an edge of Q^{\prime} has a plane representation such that $X \cap Q^{\prime}$ is a path on its outer walk.

Then $K-T$ contains a path S between p and q such that $S \cup T$ is a Q-Tutte subgraph of K, and every T-bridge of L containing no edge of Q^{\prime} is also an $(S \cup T)$-bridge of K.

Remark. In most cases when (2.5) is applied, K is a plane graph, L is a block of $K-Q, Q$ and u are on a facial walk of K, and Q^{\prime} is a facial cycle of L which bounds the face of L containing Q. Hence, conditions (1) and (2) of (2.5) hold. Moreover, condition (3) holds if L has a Q^{\prime}-Tutte subgraph T such that $u \in V(T)$ and $\left|V(T) \cap V\left(Q^{\prime}\right)\right| \geq 2$.

Proof. Let W denote the set of attachments on Q^{\prime} of $(L \cup Q)$-bridges of K. Note that for each $w \in W$, either $w \in V(T)$ or there is a T-bridge X of L such that $w \in V(X-T)$. For $w, w^{\prime} \in W$, we define $w \sim w^{\prime}$ if $w=w^{\prime}$ or there is a T-bridge X of L such that $\left\{w, w^{\prime}\right\} \subseteq V(X-T)$. Clearly, \sim is an equivalence relation on W. Let $W_{1}, W_{2}, \ldots, W_{m}$ denote the equivalence classes of W with respect to \sim. Then for $i \in\{1, \ldots, m\}$, either $\left|W_{i}\right|=1$ and $W_{i} \subseteq V(T)$ (in this case, $B_{i}:=W_{i} \subseteq V\left(Q^{\prime}\right)$) or $W_{i} \subseteq V\left(B_{i}-T\right)$ for
some T-bridge B_{i} of L. Since T is a Q^{\prime}-Tutte subgraph of L and $W \subseteq V\left(Q^{\prime}\right)$ (by (1)), $\left|V\left(B_{i} \cap T\right)\right| \leq 2$. Hence, by (i) of (3), $V\left(B_{i} \cap T\right) \subseteq V\left(Q^{\prime}\right)$

For each $i \in\{1, \ldots, m\}$, let $s_{i}, t_{i} \in V(Q)$ such that (I) p, s_{i}, t_{i}, q occur on Q in this order, (II) there are $w_{s}, w_{t} \in W_{i}$ such that $\left\{s_{i}, w_{s}\right\}$ is contained in a $(L \cup Q)$-bridge of K and $\left\{t_{i}, w_{t}\right\}$ is contained in a $(L \cup Q)$-bridge of K, and (III) subject to (I) and (II), $s_{i} Q t_{i}$ is maximal. By (2), $s_{i} Q t_{i}, i=1, \ldots, m$, are edge disjoint. We may therefore assume that $p, s_{1}, t_{1}, s_{2}, t_{2}, \ldots, s_{m}, t_{m}, q$ occur on Q in this order. Let $t_{0}:=p$ and $s_{m+1}:=q$.

Figure 2: Illustration of Lemma (2.5)

For each $i \in\{0, \ldots, m\}$, let T_{i} denote the union of $t_{i} Q s_{i+1}$ and those $(L \cup Q)$-bridges of K whose attachments are all contained in $V\left(t_{i} Q s_{i+1}\right)$. For each $i \in\{1, \ldots, m\}$, let U_{i} denote the union of $s_{i} Q t_{i}, B_{i}$, and those $(L \cup Q)$-bridges of K whose attachments are all contained in $V\left(s_{i} Q t_{i}\right) \cup W_{i}$.
(a) By the definition of $s_{i} Q t_{i}$, we conclude that for $i \leq j, U_{i} \cap T_{j}$ (and for $i<j$, $\left.\left(U_{i}-T\right) \cap\left(U_{j}-T\right)\right)$ is one of the following: \emptyset, or $\left\{t_{i}\right\}$, or the union of those $(L \cup Q)$-bridges of K with t_{i} as their only attachment on $L \cup Q$. Similarly, for $i<j, T_{i} \cap T_{j}$ (and also $\left.T_{i} \cap U_{j}\right)$ is one of the following: \emptyset, or $\left\{s_{i+1}\right\}$, or the union of those $(L \cup Q)$-bridges of K with s_{i+1} as their only attachment on $L \cup Q$.
(b) We claim that for each $i \in\{0, \ldots, m\}, T_{i}$ contains a $t_{i} Q s_{i+1}$-Tutte path R_{i} between t_{i} and s_{i+1}.

If $\left|V\left(t_{i} Q s_{i+1}\right)\right| \leq 2$, then $R_{i}:=t_{i} Q s_{i+1}$ gives the desired path for (b). Now assume that $\left|V\left(t_{i} Q s_{i+1}\right)\right| \geq 3$. By (2), T_{i} has a plane representation such that $t_{i} Q s_{i+1}$ is on its outer walk. Let C_{i} denote the outer walk of T_{i}, and choose an edge e from $E\left(t_{i} Q s_{i+1}\right)$. By applying (2.1) (with $T_{i}, C_{i}, t_{i}, s_{i+1}$ as G, C, x, y, respectively), T_{i} has a C_{i}-Tutte path R_{i} between t_{i} and s_{i+1} such that $e \in E\left(R_{i}\right)$. Clearly, R_{i} is a $t_{i} Q s_{i+1}$-Tutte path in T_{i}.
(c) We claim that for each $i \in\{1, \ldots, m\}, U_{i}-T$ contains a path S_{i} between s_{i} and t_{i}
such that $S_{i} \cup\left(U_{i} \cap T\right)$ is an $s_{i} Q t_{i}$-Tutte subgraph of U_{i}.
Note that for all $i \in\{1, \ldots, m\},\left|V\left(U_{i} \cap T\right)\right|=\left|V\left(B_{i} \cap T\right)\right| \leq 2$. By (ii) of (3), B_{i} has a plane representation such that $B_{i} \cap Q^{\prime}$ is a path on its outer walk. Hence, by (2), U_{i} has a plane representation such that $s_{i} Q t_{i}$ and $B_{i} \cap T$ are on its outer walk. We will work on such a plane representation of U_{i}.

If $s_{i}=t_{i}$, then let $S_{i}:=s_{i} Q t_{i}$, and clearly, $S_{i} \cup\left(U_{i} \cap T\right)$ is an $s_{i} Q t_{i}$-Tutte subgraph of U_{i} (because $\left|V\left(U_{i} \cap T\right)\right| \leq 2$). So assume that $s_{i} \neq t_{i}$. We distinguish two cases.

First assume that $W_{i} \subseteq V(T)$. Then $\left|W_{i}\right|=1$. So let w be the only vertex in W_{i}. Without loss of generality, we can assume that $\left(s_{i} Q t_{i} \cup\{w\}\right)+t_{i} w$ is contained in the outer walk D_{i} of $U_{i}+t_{i} w$. By (2.1) (with $U_{i}+t_{i} w, D_{i}, s_{i}, w, t_{i} w$ as G, C, x, y, e, respectively), $U_{i}+t_{i} w$ contains a D_{i}-Tutte path S_{i}^{\prime} between s_{i} and w such that $t_{i} w \in E\left(S_{i}^{\prime}\right)$. Let $S_{i}:=S_{i}^{\prime}-w$. Then $S_{i} \subseteq U_{i}-T$, and it is easy to see that $S_{i} \cup\left(U_{i} \cap T\right)=S_{i} \cup\{w\}$ is an $s_{i} Q t_{i}$-Tutte subgraph of U_{i}.

Now assume that $W_{i} \nsubseteq V(T)$. Then $B_{i} \neq W_{i}$ and B_{i} is a T-bridge of L containing an edge of Q^{\prime}. Hence, $V\left(B_{i} \cap T\right)$ consists of two vertices w and w^{\prime}. Assume that $w, w^{\prime}, t_{i}, s_{i}$ occur on the outer walk of U_{i} in this clockwise order. Note that $\left(s_{i} Q t_{i} \cup\left\{w, w^{\prime}\right\}\right)+$ $\left\{w s_{i}, t_{i} w^{\prime}\right\}$ is contained in a cycle of $U_{i}+\left\{w s_{i}, t_{i} w^{\prime}\right\}$, and so, let U_{i}^{\prime} denote the block in $U_{i}+\left\{w s_{i}, t_{i} w^{\prime}\right\}$ containing one such cycle. Without loss of generality, we may assume that $\left(s_{i} Q t_{i} \cup\left\{w, w^{\prime}\right\}\right)+\left\{w s_{i}, t_{i} w^{\prime}\right\}$ is contained in the outer cycle D_{i}^{\prime} of U_{i}^{\prime}. By (2.3) (with $U_{i}^{\prime}, D_{i}^{\prime}, w, w^{\prime}, t_{i} w^{\prime}, w s_{i}$ as G, C, x, y, e, f, respectively), U_{i}^{\prime} contains a $w^{\prime} D_{i}^{\prime} w$-Tutte path S_{i}^{\prime} between w and w^{\prime} such that $\left\{w s_{i}, t_{i} w^{\prime}\right\} \subseteq E\left(S_{i}^{\prime}\right)$. Clearly, S_{i}^{\prime} is also an $s_{i} Q t_{i}$-Tutte path in $U_{i}+\left\{w s_{i}, t_{i} w^{\prime}\right\}$. Let $S_{i}:=S_{i}^{\prime}-\left\{w, w^{\prime}\right\}$. Then $S_{i} \subseteq U_{i}-T$, and it is easy to see that $S_{i} \cup\left(U_{i} \cap T\right)=S_{i} \cup\left\{w, w^{\prime}\right\}$ is an $s_{i} Q t_{i}$-Tutte subgraph of U_{i}.

By (a), (b) and (c), S:=($\left.\bigcup_{i=0}^{m} R_{i}\right) \cup\left(\bigcup_{i=1}^{m} S_{i}\right)$ is a path between p and q in $K-T$. It is easy to see that every $(S \cup T)$-bridge of K is one of the following: a T-bridge of L not contained in any U_{i}, or a R_{i}-bridge of T_{i}, or an $\left(S_{i} \cup\left(U_{i} \cap T\right)\right)$-bridge of U_{i}. Thus, $S \cup T$ is a Q-Tutte subgraph of K, and every T-bridge of L containing no edge of Q^{\prime} is also an $(S \cup T)$-bridge of K.

3 Planar graphs

In this section, we prove Theorem (3.3) which will be used to take care of the base case in the inductive proof of Theorem (1.2). First, we need two lemmas about Tutte paths in planar graphs, and for the sake of induction we will prove them simultaneously.
(3.1) Lemma. Let G be a 2-connected plane graph with outer cycle C and a facial cycle D, let $y \in V(C)$, and let $x \in V(D)$. Then G contains a $(C \cup D)$-Tutte path P from y such that $x \in V(P)$ and no P-bridge of G contains vertices of both $C-P$ and $D-P$.

A separation $\left(G_{1}, G_{2}\right)$ in a graph G is a pair of edge disjoint subgraphs of G such that $G=G_{1} \cup G_{2}$ and $E\left(G_{1}\right) \neq \emptyset \neq E\left(G_{2}\right)$. A separation $\left(G_{1}, G_{2}\right)$ in G is a k-separation if $\left|V\left(G_{1} \cap G_{2}\right)\right|=k$.
(3.2) Lemma. Let G be a 2-connected plane graph with outer cycle C and another facial cycle D. Let $y \in V(C), x \in V(D)$, and $e \in E(C)$. Assume that there do not exist distinct vertices $p, q \in V(C)$ and a 2-separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ in G such that $V\left(G_{1}^{\prime}\right) \cap V\left(G_{2}^{\prime}\right)=\{p, q\}$, p, y, e, q occur on C in the clockwise order listed, $p C q \subseteq G_{1}^{\prime}$, and $q C p \cup D \subseteq G_{2}^{\prime}$. Then one of the following holds:
(A) there exist a C-flap H in G with attachments $a, b, c(a=b=c=y$ if H is null) and a $((C-I(H)) \cup D)$-Tutte path P from b in $G-I(H)$ such that $D \subseteq G-I(H), e, b, y, a$ occur on C in this clockwise order, $y \in(V(H)-\{a\}) \cup\{b\}, e \in E(P), x, a, c \in V(P)$, and no P-bridge of G contains vertices of both $C-P$ and $D-P$; or
(B) there exist $a, b \in V(C) \cap V(D)$, a separation $\left(H, H^{*}\right)$ in G with $V(H) \cap V\left(H^{*}\right)=\{a, b\}$, and a $(C \cup D)$-Tutte path P from b in G such that e, b, y, a occur on C in this clockwise order, $b C a \cup b D a \subseteq H, a C b \cup a D b \subseteq H^{*}, P \subseteq H^{*}, y \in(V(H)-\{a\}) \cup\{b\}, a, x \in V(P)$, $e \in E(P)$, and no P-bridge of G distinct from H contains vertices of both $C-P$ and $D-P$.

(A)

(B)

Figure 3: Illustration of Lemma (3.2)

Proof of (3.1) and (3.2). We proceed by induction on $|V(G)|$. We may assume that $C \neq D$; for otherwise, choose $f \in E(C)-\{e\}$ such that f is incident with y, then $P:=C-f$ satisfies both the conclusion of (3.1) and (A) of (3.2) with H null. Thus $|V(G)| \geq 4$. Because we are proving (3.1) and (3.2) simultaneously, we can inductively assume that both (3.1) and (3.2) hold for all graphs on strictly less than $|V(G)|$ vertices. Let us remark that e is not defined in (3.1); hence in the proof of (3.1) we are free to specify e when inductively applying (3.2).

Let G_{2} be a block of $G-y$ chosen as follows: for (3.1), G_{2} is a block of $G-y$ containing an edge of $C-y$; for (3.2), if e is not incident with y let G_{2} be the unique block of $G-y$ containing e, and otherwise let G_{2} be the unique block of $G-y$ containing the unique
edge of C adjacent to e but not incident with y. If G_{2} has only one edge let $C_{2}=G_{2}$; otherwise let C_{2} be the outer cycle of G_{2}. It follows that every $\left(G_{2} \cup\{y\}\right)$-bridge of G has exactly one attachment in G_{2}, and this attachment belongs to C_{2}. Let $v_{1}, v_{2}, \ldots, v_{k}$ be those attachments of $\left(G_{2} \cup\{y\}\right)$-bridges of G on C_{2} listed in clockwise order such that $v_{k} C v_{1}=v_{k} C_{2} v_{1}$. For $i=1,2, \ldots, k$, let J_{i} be the union of those $\left(G_{2} \cup\{y\}\right)$-bridges of G containing v_{i}, and let D_{i} denote the outer walk of J_{i}.

Figure 4: G_{2} and J_{1}, \ldots, J_{k}

Since $C \neq D$, we have the following.
(a) Either there is some $i \in\{2, \ldots, k\}$ such that D is the union of $v_{i-1} C_{2} v_{i}$, a subpath of J_{i-1}, and a subpath of J_{i}; or there is some $i \in\{1,2, \ldots, k\}$ such that D is a subgraph of J_{i}; or D is a subgraph of G_{2}.

Let us make three observations for the proof of (3.2) before we handle these cases separately.
(b) If e is incident with y, and if we denote the other end of e by z, then we may assume that y, z, e occur on C in the clockwise order listed.

To prove (b) assume that y, e, z occur on C in this clockwise order. Let $p:=y, q:=z$, let G_{1}^{\prime} be the subgraph of G induced by e, and let $G_{2}^{\prime}:=G-e$. It follows from the hypothesis of (3.2) that D is not a subgraph of G_{2}^{\prime}, and hence $e \in E(D)$. Applying (2.1) to the graph G_{2}^{\prime} (with $G_{2}^{\prime}, z C y \cup z D y, y, z, x$ as G, C, y, x, e, respectively), we find a $(z C y \cup z D y)$-Tutte path P^{\prime} between y and z in G_{2}^{\prime} such that $x \in V\left(P^{\prime}\right)$. Hence, $T:=P^{\prime}+e$ is a $(C \cup D)$-Tutte cycle in G with $e \in E(T)$ and $x \in V(T)$. By planarity, no T-bridge of G contains edges of both C and D. Let P be the path obtained from T by deleting the unique edge f of $T-e$ incident with y. Note that any P-bridge of G either is induced by f or is a T-bridge of G. Hence, no P-bridge of G contains vertices of both $C-P$ and $D-P$, and so, P satisfies (A) of (3.2) with H null. Thus we may assume that (b) holds.

We deduce from (b) that
(c) $e \in E\left(J_{1}\right) \cup E\left(G_{2}\right)$.

Moreover, the choice of G_{2} implies that
(d) if $e \notin E\left(G_{2}\right)$, then e has ends y and v_{1}.

Now we distinguish three cases according to (a).
Case 1. There exists some $i \in\{2, \ldots, k\}$ such that D is the union of $v_{i-1} C_{2} v_{i}$, a subpath Q_{i-1} of J_{i-1}, and a subpath Q_{i} of J_{i}.

In this case, $y \in V(D), Q_{i-1}$ has ends v_{i-1} and y, and Q_{i} has ends v_{i} and y.
Suppose $i=2$ and assume both $e \in E\left(J_{1}\right)$ and $x \in V\left(J_{1}\right)$. In this case, we only need to prove (3.2) (because for (3.1), we specify e below so that e is in G_{2}). Since $e \in E\left(J_{1}\right)$ and by $(\mathrm{d}), E\left(v_{1} C y\right)=\{e\}$. Let $H^{*}:=J_{1}, H:=G-\left(V\left(J_{1}\right)-\left\{y, v_{1}\right\}\right)$, and let $a:=v_{1}$ and $b:=y$. Then $\left(H, H^{*}\right)$ is a separation in G with $V(H) \cap V\left(H^{*}\right)=\{a, b\}, b C a \cup b D a \subseteq H$, $a C b \cup a D b \subseteq H^{*}$, and $y \in(V(H)-\{a\}) \cup\{b\}$. If $\left|V\left(J_{1}\right)\right|=2$ then $x=v_{1}$ and $P:=J_{1}$ gives a D_{1}-Tutte path from $b=y$ in H^{*} such that $a, x \in V(P)$ and $e \in E(P)$, and we have (B) of (3.2). Now assume that J_{1} is 2 -connected. By (2.1) (with H^{*} as G), we find a D_{1}-Tutte path P between $b=y$ and x in H^{*} such that $e \in E(P)$. Therefore, we have (B) of (3.2).

So assume that either $i \neq 2$ or one of $\{e, x\}$ does not belong to J_{1}.
Let G^{\prime} be obtained from G by deleting $V\left(J_{j}\right)-\left\{v_{j}, y\right\}$ for all $j=i, i+1, \ldots, k$. Then $C^{\prime}:=v_{k} C y \cup Q_{i-1} \cup v_{i-1} C_{2} v_{k}$ is the outer walk of G^{\prime}. The following will serve as a proof of both (3.1) and (3.2) with the proviso that when inductively applying (3.2) in the proof of (3.1) the edge e is chosen to be the unique edge of $C \cap G^{\prime}$ incident with v_{k}.

Next, we find a ($C^{\prime} \cup D_{i}$)-Tutte path P^{*} from y in $G^{\prime} \cup J_{i}$ such that $x, v_{i} \in V\left(P^{*}\right)$ and $e \in E\left(P^{*}\right)$. Assume first that $x \in V\left(G^{\prime}\right)$. If G^{\prime} is 2-connected, then P^{*} can be found by applying (2.4) to G^{\prime} (with $G^{\prime}, C^{\prime}, y, x, v_{i}, e, P^{*}$ as G, C, x, y, e, f, P, respectively). So assume that G^{\prime} is not 2 -connected. Then $i=2$, and so, either $e \notin E\left(J_{1}\right)$ or $x \notin V\left(J_{1}\right)$. By (2.1) (with $J_{1}, D_{1}, y, v_{1}, e$ or x as G, C, y, x, e, respectively), we find a D_{1}-Tutte path P_{1} between y and v_{1} in J_{1} such that $e \in E\left(P_{1}\right)$ if $e \in E\left(J_{1}\right)$ and $x \in V\left(P_{1}\right)$ if $x \in V\left(J_{1}\right)$. If $x \notin V\left(G_{2}\right)$ then by (2.1) (with $G_{2}, C_{2}, v_{1}, v_{2}, e$ as G, C, x, y, e, respectively), and if $x \in V\left(G_{2}\right)$ then by (2.4) (with $G_{2}, C_{2}, v_{1}, x, v_{2}, e$ as G, C, x, y, e, f, respectively), we find a C_{2}-Tutte path P_{2} from v_{1} in G_{2} such that $v_{2} \in V\left(P_{2}\right)$, $e \in E\left(P_{2}\right)$, and $x \in V\left(P_{2}\right)$ if $x \in V\left(G_{2}\right)$. It is easy to check that $P^{*}:=P_{1} \cup P_{2}$ is the desired path. Now we may assume that $x \notin V\left(G^{\prime}\right)$. Thus $x \in V\left(J_{i}\right)-\left\{y, v_{i}\right\}$. By (2.1) (with $G^{\prime}, C^{\prime}, y, v_{i}, e$ as G, C, x, y, e, respectively), we find a C^{\prime}-Tutte path P^{\prime} in G^{\prime} with ends y and v_{i} such that $e \in E\left(P^{\prime}\right)$. Again by (2.1) (with $J_{i}, D_{i}, v_{i}, y, x$ as G, C, x, y, e, respectively), we find a D_{i}-Tutte path $P^{\prime \prime}$ with ends y and v_{i} such that $x \in V\left(P^{\prime \prime}\right)$. It is easy to check that $P^{*}:=P^{\prime} \cup\left(P^{\prime \prime}-y\right)$ gives the desired path. This completes the construction of the path P^{*}.

Suppose $v_{k} \in V\left(P^{*}\right)$. If there exists no P^{*}-bridge of G containing edges of both C and D, then $P:=P^{*}$ satisfies both the conclusion of (3.1) and (A) of (3.2) with H null. So assume that there exists a P^{*}-bridge of G containing edges of both C and D, then this bridge is J_{k} and $i=k$. In this case, y is an end of P^{*} and $x \notin V\left(J_{k}\right)-\left\{y, v_{k}\right\}$. Therefore for (3.2), the path $P:=P^{*}$, graphs $H:=J_{k}$ and $H^{*}=G-\left(V(H)-\left\{y, v_{k}\right\}\right)$, and vertices $b:=y, a:=v_{k}$ satisfy (B). To prove (3.1), we apply (2.1) (with $G^{\prime}, C^{\prime}, y, v_{k}, x$ as G, C, x, y, e,
respectively) to find a C^{\prime}-Tutte path Q between y and v_{k} in G^{\prime} such that $x \in V(Q)$. We also apply (2.1) to J_{k} (with J_{k}, D_{k}, y, v_{k} as G, C, x, y, respectively) to find a D_{k}-Tutte path R between y and v_{k}. Then it is easy to see that $P:=Q \cup(R-y)$ satisfies the conclusion of (3.1).

Now assume that $v_{k} \notin V\left(P^{*}\right)$. Then $i \neq k$ (since $\left.v_{i} \in V\left(P^{*}\right)\right)$ and e is not incident with v_{k}, and so, we only need to prove (3.2) (because for (3.1), e is incident with v_{k}). Let H be the P^{*}-bridge of G containing v_{k}, and let a, b, c be its attachments labeled so that $b=y, a \in V(C)$ and $c \in V\left(C_{2}\right)-V(C)$. Since $i \neq k, D \subseteq G-I(H)$. It follows from the construction of P^{*} (in particular, $\left.v_{i} \in V\left(P^{*}\right)\right)$ that P^{*} is a $((C-I(H) \cup D)$-Tutte path in $G-I(H)$ and no P^{*}-bridge of G contains edges of both C and D. Hence, $P:=P^{*}, H, a, b, c$ satisfy (A) of (3.2).

Case 2. There is some $i \in\{1,2, \ldots, k\}$ such that D is a subgraph of J_{i}.
First, we dispose of the case $i=1$. To this end assume that $i=1$, let $p:=y, q:=v_{1}$, let K be obtained from G by deleting vertices and edges of J_{1} except p and q, and let us consider the separation $\left(K, J_{1}\right)$ in G. To prove (3.1), let $J_{1}^{\prime}:=J_{1}+y v_{1}$ and $C^{\prime}:=v_{1} C y+y v_{1}$ (so that C^{\prime} is the outer cycle of J_{1}^{\prime}). Inductively applying (3.1) to J_{1}^{\prime} (with $J_{1}^{\prime}, C^{\prime}, x, y$ as G, C, x, y, respectively) we find a $\left(C^{\prime} \cup D\right)$-Tutte path P^{\prime} from y in J_{1}^{\prime} such that $x \in V\left(P^{\prime}\right)$ and no P^{\prime}-bridge of J_{1}^{\prime} contains vertices of both $C^{\prime}-P^{\prime}$ and $D-P^{\prime}$. If $y v_{1} \notin E\left(P^{\prime}\right)$, then $P:=P^{\prime}$ satisfies the conclusion of (3.1) (and K is a P-bridge of G with two attachments and contains no vertex of D). If $y v_{1} \in E\left(P^{\prime}\right)$, then we apply (2.1) to K (with K, y, v_{1}, v_{k} as G, x, y, e, respectively) to find a $y C v_{1}$-Tutte path $P^{\prime \prime}$ between y and v_{1} such that $v_{k} \in V\left(P^{\prime \prime}\right)$, and clearly, $P:=\left(P^{\prime}-y v_{1}\right) \cup P^{\prime \prime}$ satisfies the conclusion of (3.1). Now let us prove (3.2). The hypothesis of (3.2) implies that $e \in E\left(J_{1}\right)$. By (d), the edge e has ends y and v_{1}, and so, J_{1} is 2 -connected. By inductively applying (3.2) to J_{1} (with J_{1}, D_{1}, y, x as G, C, y, x, respectively), we find $a_{1}, b_{1}, c_{1}, H_{1}, P$ (as a, b, c, H, P, respectively) satisfying (A) of (3.2) or we find $a_{1}, b_{1},\left(H_{1}, H_{1}^{*}\right), P$, (as $a, b,\left(H, H^{*}\right), P$, respectively) satisfying (B) of (3.2). Notice that K becomes a P-bridge of G with attachments y and v_{1}. Also note that if the graph H_{1} obtained by induction is non-null then H_{1} contains no vertex of C and y is an attachment of H_{1}. Hence, (A) of (3.2) holds with H null.

So we may assume that $i>1$.
Let G^{\prime} be obtained from G by deleting $V\left(J_{j}\right)-\left\{v_{j}, y\right\}$ for all $j=i, i+1, \ldots, k$. Note that $G^{\prime}+y v_{i}$ is 2-connected, and let $C^{\prime}:=\left(v_{i} C_{2} v_{k} \cup v_{k} C y\right)+y v_{i}$ (so that C^{\prime} is the outer cycle of $\left.G^{\prime}+y v_{i}\right)$. By (2.3) (with $G^{\prime}+y v_{i}, C^{\prime}, y, v_{i}, v_{k}, e$ as G, C, x, y, e, f, respectively), there exists a C^{\prime}-Tutte path P^{\prime} between y and v_{i} in G^{\prime} such that $e \in E\left(P^{\prime}\right)$ and $v_{k} \in V\left(P^{\prime}\right)$. Let $G_{3}=J_{i}+y v_{i}$ and let e_{3} be the edge of G_{3} with ends y and v_{i}. If $i=k$, then let C_{3} be the cycle of G_{3} consisting of the edge e_{3} and the path $y C v_{k}$. If $i<k$ let C_{3} be an arbitrary facial cycle of G_{3} that includes the edge e_{3}. In either case we may assume that a plane representation of G_{3} is chosen so that C_{3} is its outer cycle and y, v_{i}, e_{3} appear on C_{3} in the clockwise order listed.

To prove (3.1), we inductively apply (3.1) to G_{3} (with G_{3}, C_{3}, y, x as G, C, y, x, respectively), and we find a $\left(C_{3} \cup D\right)$-Tutte path P_{3} from y in G_{3} such that $x \in V\left(P_{3}\right)$ and no P_{3}-bridge of G_{3} contains vertices of both $C_{3}-P_{3}$ and $D-P_{3}$. If $e_{3} \notin E\left(P_{3}\right)$, then $P:=P_{3}$ satisfies the conclusion of (3.1) (and $G^{\prime} \cup J_{i+1} \cup \ldots \cup J_{k}$ is contained in a P_{3}-bridge of G
with two attachments). If $e \in E\left(P_{3}\right)$, then $P:=P^{\prime} \cup\left(P_{3}-y\right)$ satisfies the conclusion of (3.1).

To prove (3.2), we wish to inductively apply (3.2) to G_{3} (with $G_{3}, C_{3}, y, x, e_{3}$ as G, C, y, x, e, respectively). Since e_{3} is incident with y and because y, v_{i}, e_{3} occur on C_{3} in this clockwise order, we see that the hypothesis of (3.2) is satisfied. Hence, there are two possibilities. (A) There exist a C_{3}-flap H_{3} in G_{3} with attachments $a_{3}, b_{3}, c_{3}\left(a_{3}=b_{3}=c_{3}\right.$ if H_{3} is null) and a $\left(\left(C_{3}-I\left(H_{3}\right)\right) \cup D\right)$-Tutte path P_{3} from b_{3} in $G_{3}-I\left(H_{3}\right)$ such that $D \subseteq G-I\left(H_{3}\right)$, e_{3}, b_{3}, y, a_{3} occur on C_{3} in this clockwise order, $y \in\left(V\left(H_{3}\right)-\left\{a_{3}\right\}\right) \cup\left\{b_{3}\right\}, e_{3} \in E\left(P_{3}\right)$, $x, a_{3}, c_{3} \in V\left(P_{3}\right)$, no P_{3}-bridge of G_{3} contains vertices of both $C_{3}-P_{3}$ and $D-P_{3}$. (B) There exist $a_{3}, b_{3} \in V\left(C_{3}\right) \cap V(D)$, a separation $\left(H_{3}, H_{3}^{*}\right)$ in G_{3} with $V\left(H_{3}\right) \cap V\left(H_{3}^{*}\right)=\left\{a_{3}, b_{3}\right\}$, and a $\left(C_{3} \cup D\right)$-Tutte path P_{3} from b_{3} in G_{3} such that e_{3}, b_{3}, y, a_{3} occur on C_{3} in this clockwise order, $b_{3} C_{3} a_{3} \cup b_{3} D a_{3} \subseteq H_{3}, a_{3} C_{3} b_{3} \cup a_{3} D b_{3} \subseteq H_{3}^{*}, P_{3} \subseteq H_{3}^{*}, y \in\left(V\left(H_{3}\right)-\left\{a_{3}\right\}\right) \cup\left\{b_{3}\right\}$, $e_{3} \in E\left(P_{3}\right), a_{3}, x \in V\left(P_{3}\right)$, and no P_{3}-bridge of G_{3} distinct from H_{3} contains vertices of both $C_{3}-P_{3}$ and $D-P_{3}$. Since e_{3} is incident with y we see that $b_{3}=y$. If $i \neq k$, then $P:=P^{\prime} \cup\left(P_{3}-y\right)$ satisfies (A) of (3.2) with H null. If $i=k$, then $P:=P^{\prime} \cup\left(P_{3}-y\right), H_{3}$ or $\left(H_{3}, H_{3}^{*} \cup G^{\prime}\right)\left(\right.$ as H or $\left(H, H^{*}\right)$), and the vertices a_{3}, b_{3}, c_{3} (as a, b, c) satisfy (A) or (B) of (3.2).

Case 3. D is a subgraph of G_{2}.
We will construct the desired path P as the union of two paths P_{1}, P_{2} in graphs G_{1} (to be defined), G_{2}, respectively. This will be done simultaneously for (3.1) and (3.2), with the understanding that when inductively applying (3.2) to G_{2} in the proof of (3.1) we let e be the unique edge of $C_{2} \cap C$ incident with v_{k}.

Since $D \subset G_{2}$ and G_{2} is a block, G_{2} is 2-connected. To construct P_{2} we wish to inductively apply (3.2) to $G_{2}, C_{2}, D, v_{1}, x, e$ (as G, C, D, y, x, e, respectively) if $e \in E\left(G_{2}\right)$, or we wish to inductively apply (3.1) to $G_{2}, C_{2}, D, v_{1}, x$ (as G, C, D, y, x, respectively) if $e \notin E\left(G_{2}\right)$. In order to apply (3.2) to G_{2}, we must verify the absence in G_{2} of vertices p, q and a 2 -separation as in the hypothesis of (3.2). Suppose for a contradiction that there exist distinct vertices $p, q \in V\left(C_{2}\right)$ and a 2 -separation $\left(G_{2}^{\prime \prime}, G_{2}^{\prime}\right)$ in G_{2} such that $V\left(G_{2}^{\prime \prime}\right) \cap V\left(G_{2}^{\prime}\right)=\{p, q\}, p, v_{1}, e, q$ occur on C_{2} in the clockwise order listed, $p C_{2} q \subseteq G_{2}^{\prime \prime}$, and $q C_{2} p \cup D \subseteq G_{2}^{\prime}$. Since v_{1} and e both belong to $p C_{2} q \cap C$, we deduce that $p, q \in V(C)$. Let $G_{1}^{\prime}:=G_{2}^{\prime \prime} \cup J_{1} \cup J_{2} \cup \ldots \cup J_{k}$; then $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a 2 -separation in G that contradicts the hypothesis of (3.2). This verifies the absence of vertices p, q and a corresponding 2 separation in G_{2}, and hence we may inductively apply (3.2) to $G_{2}, C_{2}, D, v_{1}, x, e$ when $e \in E\left(G_{2}\right)$.

First, we construct P_{2}. If $e \notin E\left(G_{2}\right)$ (this only applies to the proof of (3.2)), then by inductively applying (3.1) to G_{2}, we find a $\left(C_{2} \cup D\right)$-Tutte path P_{2} from v_{1} in G_{2} such that $x \in V\left(P_{2}\right)$ and no P_{2}-bridge of G_{2} contains vertices of both $C_{2}-P$ and $D-P$, and we define H_{2} to be null. Now assume $e \in E\left(G_{2}\right)$. By inductively applying (3.2) to G_{2}, we have two possibilities. (A) There exist a C_{2}-flap H_{2} in G_{2} with attachments a_{2}, b_{2}, c_{2} $\left(a_{2}=b_{2}=c_{2}=v_{1}\right.$ if H_{2} is null), and a $\left(\left(C_{2}-I\left(H_{2}\right)\right) \cup D\right)$-Tutte path P_{2} from b_{2} in $G-I\left(H_{2}\right)$ such that $D \subseteq G_{2}-I\left(H_{2}\right), e, b_{2}, v_{1}, a_{2}$ occur on C_{2} in this clockwise order, $v_{1} \in\left(V\left(H_{2}\right)-\left\{a_{2}\right\}\right) \cup\left\{b_{2}\right\}, e \in E\left(P_{2}\right), x, a_{2}, c_{2} \in V\left(P_{2}\right)$, and no P_{2}-bridge of G_{2} contains vertices of both $C_{2}-P_{2}$ and $D-P_{2}$. (B) There exist $a_{2}, b_{2} \in V\left(C_{2}\right) \cap V(D)$, a separation
$\left(H_{2}, H_{2}^{*}\right)$ in G_{2} with $V\left(H_{2}\right) \cap V\left(H_{2}^{*}\right)=\left\{a_{2}, b_{2}\right\}$, and a $\left(C_{2} \cup D\right)$-Tutte path P_{2} from b_{2} in G_{2} such that e, b_{2}, v_{1}, a_{2} occur on C_{2} in this clockwise order, $b_{2} C_{2} a_{2} \cup b_{2} D a_{2} \subseteq H_{2}$, $a_{2} C_{2} b_{2} \cup a_{2} D b_{2} \subseteq H_{2}^{*}, P_{2} \subseteq H_{2}^{*}, v_{1} \in\left(V\left(H_{2}\right)-\left\{a_{2}\right\}\right) \cup\left\{b_{2}\right\}, a_{2}, x \in V\left(P_{3}\right), e_{2} \in E\left(P_{2}\right)$, and no P_{2}-bridge of G_{2} distinct from H_{2} contains vertices of both $C_{2}-P_{2}$ and $D-P_{2}$.

We now define the graph G_{1} and construct the path P_{1} in G_{1}. Assume first that H_{2} is null. Let $G_{1}:=J_{1}$, and apply (2.1) to J_{1} to find a D_{1}-Tutte path P_{1} between y and v_{1} in G_{1} such that $e \in E\left(P_{1}\right)$ if $e \in E\left(J_{1}\right)$. Now assume that H_{2} is non-null. Then $e \in E\left(G_{2}\right)$. Since e, b_{2}, v_{1}, a_{2} occur on C_{2} in the clockwise order listed, it follows that $b_{2} \in V(C)$. We may assume that $a_{2} \in V\left(c_{1} C_{2} v_{k}\right)$; for otherwise, we only need to prove (3.2) (because $e \in E(P)$ is incident with v_{k}), and the vertices $a 2, b_{2}, c_{2}$ (as a, b, c) or a_{2}, b_{2} (as a, b), the graph $H_{2} \cup J_{1} \cup \ldots \cup J_{k}($ as $H)$, and the path $P_{2}($ as $P)$ satisfy (A) or (B) of (3.2). Let G_{1} be the union of H_{2} and those J_{i} with $v_{i} \in\left(V\left(H_{2}\right)-\left\{a_{2}\right\}\right) \cup\left\{b_{2}\right\}$. Assume first that we have (A) above for P_{2}. Note that $G_{1}^{\prime}:=G_{1}+\left\{a_{2} c_{2}, c_{2} b_{2}, y a_{2}\right\}$ is 2 -connected, and we may assume that G_{1}^{\prime} has a plane representation such that $a_{2} c_{2}, b_{2} c_{2}, y a_{2}$ and $C \cap G_{1}$ are on its outer cycle C_{1}^{\prime}. By applying (2.3) to the graph G_{1}^{\prime} we find a C_{1}^{\prime}-Tutte path P_{1}^{\prime} between y and a_{2} such that $a_{2} c_{2}, c_{2} b_{2} \in E\left(P_{1}^{\prime}\right)$, and let $P_{1}:=P_{1}^{\prime}-\left\{a_{2}, c_{2}\right\}$. Now assume that we have (B) above for P_{2}. Then we apply (2.1) to the graph $G_{1}^{\prime \prime}:=G_{1}+a_{2} y$ to get a $\left((C \cup D) \cap G_{1}^{\prime \prime}\right)$-Tutte path P_{1}^{\prime} between a_{2} and b_{2} such that $a_{2} y \in E\left(P_{1}^{\prime}\right)$, and let $P_{1}=P_{1}^{\prime}-a_{2}$.

Let $P:=P_{1} \cup P_{2}$. If $v_{k} \in V(P)$ we let $a=b=c=y$ and let H be null. If $v_{k} \notin V(P)$, then v_{k} belongs to a P_{2}-bridge H^{\prime} of G_{2} with two attachments. Let a, c be the attachments of H^{\prime} such that $c \in V\left(C_{2}\right)-V(C)$ and $a \in V(C) \cap V\left(C_{2}\right)$, let $b=y$, and let H be the union of H^{\prime} and those J_{i} with $v_{i} \in V\left(H^{\prime}\right)-\{c\}$. Then H is a C-flap with attachments a, b, c, and P is a path from b in $G-I(H)$ such that $a, c \in V(P)$ and $e \in E(P)$. Note when $v_{k} \notin V(P), e \notin E\left(G_{2}\right)$ and, therefore, we only need to show (3.2).

To prove that P satisfies the conclusions of (3.1) and (3.2), we first notice that P is a $((C-I(H)) \cup D)$-Tutte path in $G_{1} \cup G_{2}=G_{1} \cup\left(G_{2}-I\left(H_{2}\right)\right)$, and by planarity, no P-bridge of $G_{1} \cup G_{2}$ contains vertices of both $C-P$ and $D-P$. Let J be a P-bridge of G distinct from H. Then J is either a P-bridge of $G_{1} \cup G_{2}$, or $J=J_{i}$ for some i (in which case J has at most two attachments), or J is the union of a P_{2}-bridge J^{\prime} of $G_{2}-I\left(H_{2}\right)$ and some of the J_{i} 's (in which case, J^{\prime} includes an edge of C_{2}, and hence has exactly two attachments on P_{2}, and so we deduce that J has exactly three attachments on P). Hence, P is a $((C-I(H)) \cup D)$-Tutte path in $G-I(H)$. Note that $D \subseteq G-I(H)$, and so, we have (A) of (3.2). For (3.1), because e is incident with v_{k}, we have $v_{k} \in V\left(P_{2}\right)$. Therefore H is null, and hence P is a $(C \cup D)$-Tutte path in G satisfying (3.1).

Now we show that (3.2) also holds when the vertex x is replaced by an edge f not incident with e. See Figure 3 for an illustration (with f replacing x).
(3.3) Theorem. Let G be a 2-connected plane graph with outer cycle C and another facial cycle D. Let $y \in V(C), f \in E(D)$, and $e \in E(C)$. Assume that $\{e, f\}$ is a matching in G, and assume that there do not exist distinct vertices $p, q \in V(C)$ and a 2-separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ in G such that $V\left(G_{1}^{\prime}\right) \cap V\left(G_{2}^{\prime}\right)=\{p, q\}, p, y, e, q$ occur on C in the clockwise order listed, $p C q \subseteq G_{1}^{\prime}$, and $q C p \cup D \subseteq G_{2}^{\prime}$. Then one of the following holds:
(A) there exist a C-flap H in G with attachments $a, b, c(a=b=c=y$ if H is null) and a $((C-I(H)) \cup D)$-Tutte path P from b in $G-I(H)$ such that $D \subseteq G-I(H), e, b, y, a$ occur on C in this clockwise order, $y \in(V(H)-\{a\}) \cup\{b\}, e, f \in E(P), a, c \in V(P)$, and no P-bridge of G contains vertices of both $C-P$ and $D-P$; or
(B) there exist $a, b \in V(C) \cap V(D)$, a separation $\left(H, H^{*}\right)$ in G with $V(H) \cap V\left(H^{*}\right)=\{a, b\}$, and a $(C \cup D)$-Tutte path P from b in G such that e, b, y, a occur on C in this clockwise order, $b C a \cup b D a \subseteq H, a C b \cup a D b \subseteq H^{*}, P \subseteq H^{*}, y \in(V(H)-\{a\}) \cup\{b\}, a \in V(P)$, $e, f \in E(P)$, and no P-bridge of G distinct from H contains vertices of both $C-P$ and $D-P$.

Proof. Let G^{\prime}, D^{\prime} denote the graphs obtained from G, D, respectively, by subdividing the edge f with a vertex x. It is clear that $G^{\prime}, C, D^{\prime}, y, x, e$ (as G, C, D, y, x, e, respectively) satisfy the hypothesis of (3.2). By applying (3.2) to $G^{\prime}, C, D^{\prime}, y, x, e$, we find P^{\prime} (as P in (3.2)) and H (respectively, $\left(H, H^{*}\right)$) satisfying (A) (respectively, (B)) of (3.2).

First assume that x is not an end of P^{\prime}. Then it is easy to check that $P:=\left(P^{\prime}-x\right)+f$ and H (respectively, $\left(H,\left(H^{*}-x\right)+f\right)$) satisfy (A) (respectively, (B)) of (3.3).

So assume that x is an end of P^{\prime}. Let x_{1}, x_{2} denote the neighbors of x, and assume that $x x_{1} \in E\left(P^{\prime}\right)$. If $x_{2} \notin V\left(P^{\prime}\right)$ then x_{2} is contained in some P^{\prime}-bridge of G^{\prime} with two attachments (one of these is x), and so, it is easy to check that $P:=\left(\left(P^{\prime}-x\right) \cup\left\{x_{2}\right\}\right)+f$ and H (respectively, $\left(H,\left(H^{*}-x\right)+f\right)$) satisfy (A) (respectively, (B)) of (3.3). Therefore, we may assume that $x_{2} \in V\left(P^{\prime}\right)$. Choose the edge g of P^{\prime} incident with x_{2} such that $P:=\left(\left(P^{\prime}-x\right)+f\right)-g$ is a path. Because $\{e, f\}$ is a matching in G, we have $g \neq e$. Now P and H (respectively, $\left(H,\left(H^{*}-x\right)+f\right)$) satisfy (A) (respectively, (B)) of (3.3).

4 Toroidal graphs

Let G be a graph embedded in the torus and let R be a face of G. We define the R-width of G to be the minimum number $|\gamma \cap G|$ taken over all non-null homotopic simple closed curves γ in the torus passing through R. Note that we can homotopically shift curves in the torus so that curves that we will deal with meet G only at vertices.

To prove (1.2), we will choose a face R of G and apply induction on the R-width of G. Lemma (4.1) below deals with the base case. For the sake of induction, we introduce $(4, C)$-connected graphs. Let G be a connected graph and C be a subgraph of G; then we say that G is $(4, C)$-connected if, for any $T \subseteq V(G)$ such that $|T| \leq 3$ and $G-T$ is not connected, every component of $G-T$ contains a vertex of C.
(4.1) Lemma. Let G be a 2-connected graph embedded in the torus with face width at least 2 , let R be a face of G bounded by a cycle C in G, and let $y \in V(C)$. Assume that the R-width of G is 2 and G is (4,C)-connected. Then there exist a C-flap H in G with attachments $a, b, c(a=b=c=y$ if H is null) and a $(C-I(H))$-Tutte path P from b in $G-I(H)$ such that b, y, a occur on C in this clockwise order, $y \in(V(H)-\{a\}) \cup\{b\}$, $a, c \in V(P)$, and every P-bridge B of G containing an edge of C has a plane representation with $B \cap(C \cup P)$ on its outer walk. Moreover, $|V(P) \cap V(C)| \geq 2$ and $|V(P)| \geq 4$.

Proof. Let $u, v \in V(C)$ be distinct such that there is a non-null homotopic simple closed curve γ passing through R and meeting G only in u and v. We may choose the triple (γ, u, v) such that $y \in V(u C v)-\{v\}$, and subject to this, $u C y$ is minimal.

We cut the torus open along γ and, as a result, we obtain a plane graph G^{\prime} and vertices $u^{\prime}, v^{\prime}, u^{\prime \prime}, v^{\prime \prime}$ of G^{\prime} such that (by choosing appropriate notation) (1) u^{\prime} and v^{\prime} belong to the outer walk C^{\prime} of G^{\prime}, and $E(u C v)$ induces a path F^{\prime} on C^{\prime} in the clockwise order from u^{\prime} to v^{\prime}, (2) $u^{\prime \prime}$ and $v^{\prime \prime}$ belong to a facial walk $C^{\prime \prime}$ of G^{\prime}, and $E(v C u)$ induces a path $F^{\prime \prime}$ on $C^{\prime \prime}$ in the clockwise order from $u^{\prime \prime}$ to $v^{\prime \prime}$, and (3) identifying u^{\prime} with $u^{\prime \prime}$ as u and identifying v^{\prime} and $v^{\prime \prime}$ as v, we obtain G from G^{\prime}.

Clearly, $u^{\prime}, v^{\prime} \notin V\left(C^{\prime \prime}\right)$ and $u^{\prime \prime}, v^{\prime \prime} \notin V\left(C^{\prime}\right)$. For otherwise, there is a non-null homotopic simple closed curve in the torus intersecting G only at u or v. This contradicts the assumption that the face-width of G is at least 2 .

Note that if $y \neq u$ then $y \in V\left(F^{\prime}\right)-\left\{u^{\prime}, v^{\prime}\right\}$. Let $y:=u^{\prime}$ if $y=u$. Also note that if $\left|V\left(F^{\prime}\right)\right| \geq 3$ then $F^{\prime}+u^{\prime} v^{\prime}$ is a cycle, and if $\left|V\left(F^{\prime}\right)\right|=2$ then $F^{\prime}+u^{\prime} v^{\prime}=F^{\prime}$ and $G^{\prime}+u^{\prime} v^{\prime}=G^{\prime}$. So when $\left|V\left(F^{\prime}\right)\right| \geq 3$, we draw $u^{\prime} v^{\prime}$ in the infinite face of G^{\prime} so that $F^{\prime}+u^{\prime} v^{\prime}$ is the outer cycle of $G^{\prime}+u^{\prime} v^{\prime}$. Because the face width of G is $2, F^{\prime} \cap F^{\prime \prime}=\emptyset$ and $\left(G^{\prime}+u^{\prime} v^{\prime}\right)-F^{\prime \prime}$ has a cycle containing $F^{\prime}+u^{\prime} v^{\prime}$. Let L denote the block of $\left(G^{\prime}+u^{\prime} v^{\prime}\right)-F^{\prime \prime}$ containing one such cycle, and let D^{\prime} denote the outer cycle of L. Then $D^{\prime}=F^{\prime}+u^{\prime} v^{\prime}$ if $\left|V\left(F^{\prime}\right)\right| \geq 3$, and otherwise, $F^{\prime} \subseteq D^{\prime}$. Let D be the cycle bounding the face of L which contains $F^{\prime \prime}$ (as a subset of the plane). Let $u^{*}, v^{*} \in V\left(F^{\prime \prime}\right)$ with $u^{*} F^{\prime \prime} v^{*}$ maximal such that $u^{\prime \prime}, u^{*}, v^{*}, v^{\prime \prime}$ occur on $F^{\prime \prime}$ in this order and u^{*} and v^{*} are attachments of some ($L \cup F^{\prime \prime}$)-bridges of $G^{\prime}+u^{\prime} v^{\prime}$ which also have attachments on L. Let $x, z \in V(D)$ such that $\left\{x, u^{*}\right\}$ is contained in a $\left(L \cup F^{\prime \prime}\right)$-bridge of $G^{\prime}+u^{\prime} v^{\prime},\left\{z, v^{*}\right\}$ is contained in a $\left(L \cup F^{\prime \prime}\right)$-bridge of $G^{\prime}+u^{\prime} v^{\prime}$, and subject to these conditions, $z D x$ is minimal. Then $z D x-\{z, x\}$ contains no attachment of any $\left(L \cup F^{\prime \prime}\right)$-bridge of $G^{\prime}+u^{\prime} v^{\prime}$. See Figure 5. Possibly, $z=x$.

Next we define a graph M and a subgraph P_{M} of M, according to whether or not we have $x=z$. First, assume $x \neq z$. We let $u_{1}=u^{\prime \prime}$ and $v_{1}=v^{\prime \prime}$, let $V(M)=\left\{x, u^{\prime \prime}, v^{\prime \prime}\right\}$ and $E(M)=\emptyset$, and let $P_{M}=\emptyset$. Now assume $x=z$. Let $u_{1}, v_{1} \in V\left(F^{\prime \prime}\right)$ such that $u^{\prime \prime}, u_{1}, v_{1}, v^{\prime \prime}$ occur on $F^{\prime \prime}$ in order, $\left\{x, u_{1}\right\}$ is contained in a ($L \cup F^{\prime \prime}$)-bridge of $G^{\prime}+u^{\prime} v^{\prime},\left\{x, v_{1}\right\}$ is contained in a $\left(L \cup F^{\prime \prime}\right)$-bridge of $G^{\prime}+u^{\prime} v^{\prime}$, and subject to these conditions, $u_{1} F^{\prime \prime} v_{1}$ is minimal. When $u_{1} \neq v_{1}$, let M denote the union of $u_{1} F^{\prime \prime} u^{\prime \prime} \cup v^{\prime \prime} F^{\prime \prime} v_{1}$ and those ($L \cup F^{\prime \prime}$)-bridges of $G^{\prime}+u^{\prime} v^{\prime}$ whose attachments are all contained in $V\left(u_{1} F^{\prime \prime} u^{\prime \prime}\right) \cup V\left(v^{\prime \prime} F^{\prime \prime} v_{1}\right) \cup\{x\}$. When $u_{1}=v_{1}$, let M be obtained from the union of $F^{\prime \prime}$ and those $\left(L \cup F^{\prime \prime}\right)$-bridges of $G^{\prime}+u^{\prime} v^{\prime}$ whose attachments are all contained in $V\left(F^{\prime \prime}\right) \cup\{x\}$ by splitting the vertex $u_{1}=v_{1}$ to two vertices u_{1} and v_{1} in a natural way. We apply (2.3) to $M+\left\{u_{1} x, v_{1} x, u^{\prime \prime} v^{\prime \prime}\right\}$ to find a ($u^{\prime \prime} F^{\prime \prime} u_{1} \cup v^{\prime \prime} F^{\prime \prime} v_{1}$)-Tutte path P_{M}^{\prime} from $u^{\prime \prime}$ to $v^{\prime \prime}$ and through $u_{1} x$ and $v_{1} x$. Let $P_{M}=P_{M}^{\prime}-x$, which consists of disjoint paths from $u^{\prime \prime}, v^{\prime \prime}$ to u_{1}, v_{1}, respectively.

We divide the remainder of the proof into two cases.
Case 1. $x \notin\left\{u^{\prime}, v^{\prime}\right\}$, and both edges of D incident with x are incident with the edge $u^{\prime} v^{\prime}$.

In this case, we must have $x=z$, for otherwise, the edge of $z D x$ incident with x is not incident with u^{\prime} or v^{\prime} (because $z D x \subseteq C^{\prime \prime}$ and $u^{\prime}, v^{\prime} \notin V\left(C^{\prime \prime}\right)$). Also the two edges of D incident with x must be $x u^{\prime}$ and $x v^{\prime}$.

Therefore $u_{1} \neq u^{\prime \prime}$ and $v_{1} \neq v^{\prime \prime}$, for otherwise, there is a non-null homotopic simple closed curve in the torus intersecting G only at u or v, contradicting the assumption that the face width of G is at least 2 . Moreover, because G is $(4, C)$-connected, $\left\{u^{\prime}, v^{\prime}, x\right\}$ induces a facial triangle in $G^{\prime}+u^{\prime} v^{\prime}$. Hence, x has exactly two neighbors in L, namely u^{\prime} and v^{\prime}.

Let L^{\prime} denote the plane graph obtained from $G^{\prime}+u^{\prime} v^{\prime}$ by deleting $M-\left\{u_{1}, v_{1}\right\}$, adding edges $u_{1} u^{\prime}$ and $v_{1} v^{\prime}$, and deleting $u^{\prime} v^{\prime}$ when $\left|V\left(F^{\prime}\right)\right|>2$, such that $Q:=\left(u_{1} F^{\prime \prime} v_{1} \cup F^{\prime}\right)+$ $\left\{u_{1} u^{\prime}, v_{1} v^{\prime}\right\}$ is the outer cycle of L^{\prime} on which $v^{\prime}, v^{\prime} v_{1}, u_{1} u^{\prime}, u^{\prime}, y$ occur in clockwise order.

By applying the mirror image version of (2.2) (with $L^{\prime}, Q, v^{\prime}, y, u^{\prime} u_{1}, v^{\prime} v_{1}$ as G, C, x, y, e, f, respectively), there exist a C-flap H in L^{\prime} with attachments $a, b, c(a=b=c=y$ if H is null) and a $(Q-I(H))$-Tutte path P^{\prime} from b to v^{\prime} in $L^{\prime}-I(H)$ such that $u^{\prime}, b, y, a, v^{\prime}$ occur on Q (and hence, on D^{\prime}) in clockwise order, $y \in(V(H)-\{a\}) \cup\{b\}, u_{1} u^{\prime}, v_{1} v^{\prime} \in E\left(P^{\prime}\right)$, and $a, c \in V\left(P^{\prime}\right)$. (Note that H is null when $\left|V\left(F^{\prime}\right)\right|=2$.) By planarity, no P^{\prime}-bridge of L^{\prime} contains vertices of both F^{\prime} and $u_{1} F^{\prime \prime} v_{1}$.

Let P denote the path in G induced by $\left(E\left(P^{\prime}\right)-\left\{u^{\prime} u_{1}, v^{\prime} v_{1}\right\}\right) \cup E\left(P_{M}\right) \cup\left\{x v^{\prime}\right\}$. Then P is a path from y to $x, u, v, x, u_{1}, v_{1} \in V(P)$, and b, y, a occur on C in clockwise order. Hence, $|V(P) \cap V(C)| \geq 2$ and $|V(P)| \geq 4$ (because $x \notin\left\{u^{\prime}, v^{\prime}\right\}, u^{\prime \prime} \neq u_{1}$ and $v^{\prime \prime} \neq v_{1}$). Clearly, H is a C-flap in G. Moreover, every P-bridge of G is either a P^{\prime}-bridge of L^{\prime}, or a $P_{M^{\prime}}^{\prime}$-bridge of M, or a bridge induced by the edge $u^{\prime} x$. Hence, P is a $(C-I(H)$)-Tutte path from b in $G-I(H)$ such that $a, c \in V(P)$. It is also clear that every P-bridge of G containing an edge of C is either a P_{M}^{\prime}-bridge of M containing an edge of $M \cap F^{\prime \prime}$, or a P^{\prime}-bridge of L^{\prime} containing an edge of F^{\prime} or $u_{1} F^{\prime \prime} v_{1}$ but not both. Hence, every P-bridge B of G containing an edge of C has a plane representation with $B \cap(C \cup P)$ on its outer walk. So P gives the desired path.

Case 2. Either $x \in\left\{u^{\prime}, v^{\prime}\right\}$ or there is an edge $f \in E(D)$ incident with x such that $\left\{f, u^{\prime} v^{\prime}\right\}$ is a matching.

When $x \in\left\{u^{\prime}, v^{\prime}\right\}$, we pick an arbitrary vertex $x^{\prime} \in V(D)-\left\{u^{\prime}, v^{\prime}\right\}$. Next, we show that we may apply (3.2) to $L, D^{\prime}, D, y, x^{\prime}, u^{\prime} v^{\prime}$ (as G, C, D, y, x, e, respectively) and, in the case when the edge f exists, apply (3.3) to $L, D^{\prime}, D, y, f, u^{\prime} v^{\prime}$ (as G, C, D, y, f, e, respectively). When $\left|V\left(F^{\prime}\right)\right|=2$, we apply a mirror image version of (3.2) or (3.3), and the hypothesis of (3.2) or (3.3) holds because $y=u^{\prime}$. When $\left|V\left(F^{\prime}\right)\right| \geq 3$, we claim that there do not exist vertices $p, q \in V\left(D^{\prime}\right)$ and a 2-separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ in L such that $V\left(G_{1}^{\prime}\right) \cap V\left(G_{2}^{\prime}\right)=\{p, q\}$, $p, y, u^{\prime} v^{\prime}, q$ occur on D^{\prime} in this clockwise order, $p D^{\prime} q \subseteq G_{1}^{\prime}$, and $q D^{\prime} p \cup D \subseteq G_{2}^{\prime}$. This is obvious if $u^{\prime}=y$. So assume that $u^{\prime} \neq y$. Suppose the above p, q, and $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ do exist. Then we can choose a non-null homotopic simple closed curve γ_{1} in the torus such that γ_{1} meets G only in p and q and passes through R. Because $y \in p C q-q$ and because $p C y$ is properly contained in $u C y,\left(\gamma_{1}, p, q\right)$ contradicts the choice of (γ, u, v). So we may apply (3.2) to $L, D^{\prime}, D, y, x^{\prime}, u^{\prime} v^{\prime}$ or apply (3.3) to $L, D^{\prime}, D, y, f, u^{\prime} v^{\prime}$.

By (3.2) (when $x \in\left\{u^{\prime}, v^{\prime}\right\}$) and (3.3) (when f exists), there are two possibilities, and we treat them in two separate cases.

Subcase 2.1. There exist a C-flap H in L with attachments $a, b, c(a=b=c=y$ if H is null) and a $\left(\left(D^{\prime}-I(H)\right) \cup D\right)$-Tutte path P^{\prime} from b in $L-I(H)$ such that $D \subseteq L-I(H)$, $u^{\prime} v^{\prime}, b, y, a$ occur on D^{\prime} in this clockwise order (or when $\left|V\left(F^{\prime}\right)\right|=2, u^{\prime} v^{\prime}, a, y=b$ occur
on D^{\prime} in this clockwise order), $y \in(V(H)-\{a\}) \cup\{b\}, x^{\prime} \in V\left(P^{\prime}\right)$ when $x \in\left\{u^{\prime}, v^{\prime}\right\}$, $f \in E\left(P^{\prime}\right)$ when the edge f exists, $u^{\prime} v^{\prime} \in E\left(P^{\prime}\right), a, c \in V\left(P^{\prime}\right)$, and no P^{\prime}-bridge of L contains vertices of both $D^{\prime}-P^{\prime}$ and $D-P^{\prime}$.

Note that when $\left|V\left(F^{\prime}\right)\right|=2, H$ must be null. For otherwise, $H-\{a, b, c\}$ is a component of $G-\{a, b, c\}$ containing no vertex of C, contradicting the assumption that G is $(4, C)$ connected. See Figure 5.

Figure 5: Subcase 2.1

Next we apply (2.5) to find a path P_{1} from u_{1} to v_{1}. For this purpose, we view ($G^{\prime}+$ $\left.u^{\prime} v^{\prime}\right)-\left(M-\left\{u_{1}, v_{1}, x\right\}\right), L, u_{1}, v_{1}, x, u_{1} F^{\prime \prime} v_{1}, D, P^{\prime}$ as $K, L, p, q, u, Q, Q^{\prime}, T$ in (2.5), respectively. It is straightforward to verify that the conditions of (2.5) are satisfied. (In particular, $\left|V\left(P^{\prime}\right) \cap V(D)\right| \geq 2$ because $f \in E(D) \cap E\left(P^{\prime}\right)$ or because $x, x^{\prime} \in V\left(P^{\prime}\right) \cap V(D)$.) By (2.5), there is a path $P_{1}\left(\right.$ as S in (2.5)) between u_{1} and v_{1} in $\left(\left(G^{\prime}+u^{\prime} v^{\prime}\right)-\left(M-\left\{u_{1}, v_{1}, x\right\}\right)\right)-P^{\prime}$ such that $P^{\prime} \cup P_{1}$ is an $u_{1} F^{\prime \prime} v_{1}$-Tutte subgraph of $\left(G^{\prime}+u^{\prime} v^{\prime}\right)-\left(M-\left\{u_{1}, v_{1}, x\right\}\right)$ and every $P^{\prime}-$ bridge of L containing no edge of D is also a $\left(P^{\prime} \cup P_{1}\right)$-bridge of $\left(G^{\prime}+u^{\prime} v^{\prime}\right)-\left(M-\left\{u_{1}, v_{1}, x\right\}\right)$. By planarity, no $\left(P^{\prime} \cup P_{1}\right)$-bridge of $\left(G^{\prime}+u^{\prime} v^{\prime}\right)-\left(M-\left\{u_{1}, v_{1}, x\right\}\right)$ contains edges of both F^{\prime} and $u_{1} F^{\prime \prime} v_{1}$. Hence, $P^{\prime} \cup P_{1} \cup P_{M}$ is a $\left(\left(D^{\prime}-I(H)\right) \cup F^{\prime \prime}\right)$-Tutte subgraph of $G^{\prime}+u^{\prime} v^{\prime}$.

Clearly, H is a C-flap in G, and $E\left(\left(P^{\prime}-u^{\prime} v^{\prime}\right) \cup P_{1} \cup P_{M}\right)$ induces a $(C-I(H))$-Tutte path P from b in $G-I(H)$ such that $a, c \in V(P)$. It is also clear that every P-bridge of G containing an edge of C is a $\left(P^{\prime} \cup P_{1} \cup P_{M}\right)$-bridge of $G^{\prime}+u^{\prime} v^{\prime}$ containing an edge of F^{\prime} or $F^{\prime \prime}$ but not both. Hence, every P-bridge B of G containing an edge of C has a plane representation with $B \cap(C \cup P)$ on its outer walk. Because $u, v \in V(P) \cap V(C)$, $|V(P) \cap V(C)| \geq 2$.

We conclude this case by showing $|V(P)| \geq 4$. This is obvious when the edge f exists, because $f \in E(P \cap D)$ and $\left\{f, u^{\prime} v^{\prime}\right\}$ is a matching. Now assume $x \in\left\{u^{\prime}, v^{\prime}\right\}$. Then
$|V(P)| \geq 3$ (because $u, v, x^{\prime} \in V(P)$). Suppose $|V(P)|=3$. Then $\left|V\left(P_{M} \cup P_{1}\right)\right|=2$. This implies that $u^{\prime \prime}=u_{1}, v^{\prime \prime}=v_{1}$, and $u^{\prime \prime} v^{\prime \prime} \in E\left(G^{\prime}\right)$. Therefore, since G is $(4, C)$-connected, $\left\{x, u^{\prime \prime}, v^{\prime \prime}\right\}$ is not a cut in G. Hence $V(M)=\left\{x, u^{\prime \prime}, v^{\prime \prime}\right\}$ and $E(M)=\left\{x u^{\prime \prime}, x v^{\prime \prime}\right\}$. This shows $x \in C^{\prime \prime}$, contradicting the fact that $u^{\prime}, v^{\prime} \notin C^{\prime \prime}$. So we have $|V(P)| \geq 4$.

Subcase 2.2. There exist $a^{\prime}, b^{\prime} \in V\left(D^{\prime}\right) \cap V(D)$, a separation $\left(H^{\prime}, H^{*}\right)$ in L with $V\left(H^{\prime}\right) \cap V\left(H^{*}\right)=\left\{a^{\prime}, b^{\prime}\right\}$, and a $\left(D^{\prime} \cup D\right)$-Tutte path P^{\prime} from b^{\prime} in L such that $u^{\prime} v^{\prime}, b^{\prime}, y, a^{\prime}$ ($u^{\prime} v^{\prime}, a^{\prime}, y, b^{\prime}$ when $\left|V\left(F^{\prime}\right)\right|=2$) occur on D^{\prime} in this clockwise order, $b^{\prime} D^{\prime} a^{\prime} \cup b^{\prime} D a^{\prime} \subseteq H^{\prime}$ (or $a^{\prime} D^{\prime} b^{\prime} \cup a^{\prime} D b^{\prime} \subseteq H^{\prime}$ when $\left.\left|V\left(F^{\prime}\right)\right|=2\right), a^{\prime} D^{\prime} b^{\prime} \cup a^{\prime} D b^{\prime} \subseteq H^{*}\left(\right.$ or $b^{\prime} D^{\prime} a^{\prime} \cup b^{\prime} D a^{\prime} \subseteq H^{*}$ when $\left.\left|V\left(F^{\prime}\right)\right|=2\right), P^{\prime} \subseteq H^{*}, y \in\left(V\left(H^{\prime}\right)-\left\{a^{\prime}\right\}\right) \cup\left\{b^{\prime}\right\}\left(y=b^{\prime}\right.$ when $\left.\left|V\left(F^{\prime}\right)\right|=2\right), x^{\prime} \in V\left(P^{\prime}\right)$ when $x \in\left\{u^{\prime}, v^{\prime}\right\}, f \in E\left(P^{\prime}\right)$ when the edge f exists, $u^{\prime} v^{\prime} \in E\left(P^{\prime}\right), a^{\prime} \in V\left(P^{\prime}\right)$, and no P^{\prime}-bridge of L other than H^{\prime} contains vertices of both $D^{\prime}-P^{\prime}$ and $D-P^{\prime}$.

Note that there are vertices of $u_{1} F^{\prime \prime} v_{1}$ which are co-facial with a^{\prime} or b^{\prime}. Let $s, t \in$ $V\left(u_{1} F^{\prime \prime} v_{1}\right)$ such that (a) $u^{\prime \prime}, u_{1}, s, t, v_{1}, v^{\prime \prime}$ occur on $F^{\prime \prime}$ in this order, (b) s is co-facial with b^{\prime} (or a^{\prime} when $\left|V\left(F^{\prime}\right)\right|=2$) and t is co-facial with a^{\prime} (or b^{\prime} when $\left|V\left(F^{\prime}\right)\right|=2$), and (c) subject to (a) and (b), $s F^{\prime \prime} t$ is maximal. Let J denote the union of $H^{\prime}, s F^{\prime \prime} t$, and those $\left(L \cup F^{\prime \prime}\right)$-bridges of $G^{\prime}+u^{\prime} v^{\prime}$ whose attachments are all contained in $V\left(s F^{\prime \prime} t\right) \cup V\left(H^{\prime}\right)$.

$\left|V\left(F^{\prime}\right)\right|>2$

Figure 6: Subcase 2.2

Since G is 2-connected, $J^{*}:=J+\left\{a^{\prime} t, s b^{\prime}\right\}$ (or $J^{*}:=J+\left\{a^{\prime} s, b^{\prime} t\right\}$ when $\left|V\left(F^{\prime}\right)\right|=2$) is 2-connected. Without loss of generality, assume that $C^{*}:=\left(b^{\prime} D^{\prime} a^{\prime} \cup s F^{\prime \prime} t\right)+\left\{a^{\prime} t, s b^{\prime}\right\}$ (or $C^{*}:=\left(a^{\prime} D^{\prime} b^{\prime} \cup s F^{\prime \prime} t\right)+\left\{a^{\prime} s, t b^{\prime}\right\}$ when $\left.\left|V\left(F^{\prime}\right)\right|=2\right)$ is the outer cycle of J^{*}. By (2.2), with $J^{*}, C^{*}, a^{\prime}, y, s b^{\prime}, a^{\prime} t$ (or $a^{\prime}, y, b^{\prime} t, a^{\prime} s$ when $\left|V\left(F^{\prime}\right)\right|=2$) as G, C, x, y, e, f, respectively, there exist a C^{*}-flap H with attachments $a, b, c(a=b=c=y$ if H is null $)$ and a $\left(C^{*}-I(H)\right)$ Tutte path P^{*} between b and a^{\prime} in $J^{*}-I(H)$ such that $s b^{\prime}, b, y, a, a^{\prime}$ (or $a, y=b, b^{\prime} t$, sa' when $\left|V\left(F^{\prime}\right)\right|=2$) occur on C^{*} in this clockwise order, $y \in(V(H)-\{a\}) \cup\{b\}, a, c \in V\left(P^{*}\right)$,
and $\left\{a^{\prime} t, s b^{\prime}\right\} \subseteq E\left(P^{*}\right)$ (or $\left\{a^{\prime} s, b^{\prime} t\right\} \subseteq E\left(P^{*}\right)$ when $\left|V\left(F^{\prime}\right)\right|=2$). Note when $\left|V\left(F^{\prime}\right)\right|=2$, $y=b$ and H is null because G is $(4, C)$-connected. So H is also a C-flap in G. By planarity, no P^{*}-bridge of J^{*} contains edges of both D^{\prime} and $F^{\prime \prime}$.

Next we apply (2.5) to find a path P_{1} from u_{1} to s and a path P_{2} from t to v_{1}. Note that, since $x \in V(D) \cap V\left(P^{\prime}\right), x$ divides the attachments on $D \cap H^{*}$ of ($L \cup F^{\prime \prime}$)-bridges so that the P^{\prime}-bridges of H^{*} used in constructing P_{1} are different from those used in constructing P_{2}.

Let L_{1} denote the union of $L, u_{1} F^{\prime \prime} s$, and those ($L \cup F^{\prime \prime}$)-bridges of G whose attachments are all contained in $V\left(H^{*}\right) \cup V\left(u_{1} F^{\prime \prime} s\right)$. Then L_{1} is connected because $x \in V\left(H^{*}\right)$. We view $L_{1}, L, u_{1}, s, x, u_{1} F^{\prime \prime} s, D, P^{\prime}$ as $K, L, p, q, u, Q, Q^{\prime}, T$ in (2.5), respectively. It is straightforward to verify that the conditions of (2.5) hold. (Recall that $\left|V\left(P^{\prime}\right) \cap V(D)\right| \geq 2$ because $f \in E\left(D \cap P^{\prime}\right)$.) By (2.5), $L_{1}-P^{\prime}$ has a path P_{1} (as S in (2.5)) between u_{1} and s such that $P_{1} \cup P^{\prime}$ is a $u_{1} F^{\prime \prime} s$-Tutte subgraph of L_{1} and every P^{\prime}-bridge of L containing no edge of D is also a $\left(P_{1} \cup P^{\prime}\right)$-bridge of L_{1}. By planarity, no ($P_{1} \cup P^{\prime}$)-bridge of L_{1} contains edges of both $u_{1} F^{\prime \prime} s$ and D^{\prime}. Hence, $P_{1} \cup P^{\prime}$ is a $\left(D^{\prime} \cup u_{1} F^{\prime \prime} s\right)$-Tutte subgraph of L_{1}.

Let L_{2} denote the union of L, edge $t a^{\prime}$ (or $t b^{\prime}$ when $\left|V\left(F^{\prime}\right)\right|=2$), $t F^{\prime \prime} v_{1}$, and those ($L \cup$ $\left.F^{\prime \prime}\right)$-bridges of G whose attachments are all contained in $V\left(H^{*}\right) \cup V\left(t F^{\prime \prime} v_{1}\right)$. Note that L_{2} is connected because of the edge $t a^{\prime}$ (or $t b^{\prime}$ when $\left|V\left(F^{\prime}\right)\right|=2$). We view $L_{2}, L, t, v_{1}, x, t F^{\prime \prime} v_{1}, D, P^{\prime}$ as $K, L, p, q, u, Q, Q^{\prime}, T$ in (2.5), respectively. By (2.5), $L_{2}-P^{\prime}$ has a path P_{2} between t and v_{1} such that $P_{2} \cup P^{\prime}$ is a $t F^{\prime \prime} v_{1}$-Tutte subgraph of L_{2} and every P^{\prime}-bridge of L containing no edge of D is also a $\left(P_{2} \cup P^{\prime}\right)$-bridge of L_{2}. By planarity, no $\left(P_{2} \cup P^{\prime}\right)$-bridge of L_{2} contains edges of both $t F^{\prime \prime} v_{1}$ and D^{\prime}. Hence, $P_{2} \cup P^{\prime}$ is a $\left(D^{\prime} \cup t F^{\prime \prime} v_{1}\right)$-Tutte subgraph of L_{2}.

Now $E\left(P^{\prime} \cup P^{*} \cup P_{1} \cup P_{2} \cup P_{M}\right)-\left\{u^{\prime} v^{\prime}, a^{\prime} t, s b^{\prime}\right\}\left(\right.$ or $E\left(P^{\prime} \cup P^{*} \cup P_{1} \cup P_{2} \cup P_{M}\right)-\left\{u^{\prime} v^{\prime}, a^{\prime} s, b^{\prime} t\right\}$ when $\left|V\left(F^{\prime}\right)\right|=2$) induces a $(C-I(H)$)-Tutte path P from b in $G-I(H)$ such that b, y, a occur on C in this clockwise order, $y \in(V(H)-\{a\}) \cup\{b\}$, and $a, c \in V(P)$. It is clear that every P-bridge of G is one of the following: a $\left(P^{\prime} \cup P_{1}\right)$-bridge of L_{1}, or $\left(P^{\prime} \cup P_{2}\right)$-bridge of L_{2}, or a P^{*}-bridge of J^{*}, or a P_{M}^{\prime}-bridge of M. Hence, every P-bridge B of G containing an edge of C has a plane representation with $B \cap(C \cup P)$ on its outer walk. Because $u, v \in V(P) \cap V(C),|V(P) \cap V(C)| \geq 2$.

By exactly the same argument as in the end of Subcase 2.1, we can show $|V(P)| \geq 4$.

Before we proceed to the general case, let us prove the following lemma which will be used to extend Tutte paths through C-flaps. See Figure 7 for an illustration.
(4.2) Lemma. Let G be a 2-connected plane graph with outer cycle C, let $s, t, b, c, a \in$ $V(C)$ be distinct such that $t C s=t b c a s$, and let $y \in V(s C t-s)$. Suppose that $G-$ $((s C t-s) \cup\{a, c\})$ contains a path from b to s. Then there exist an sCt-flap H^{\prime} in G with attachments $a^{\prime}, b^{\prime}, c^{\prime}\left(a^{\prime}=b^{\prime}=c^{\prime}=y\right.$ if H^{\prime} is null) and disjoint paths S and T in $(G-\{a, c\})-I\left(H^{\prime}\right)$ such that $s, a^{\prime}, y, b^{\prime}, t$ occur on C in this clockwise order, $y \in$ $\left(V\left(H^{\prime}\right)-\left\{a^{\prime}\right\}\right) \cup\left\{b^{\prime}\right\}, S$ is from s to b, T is from t to $b^{\prime}, a^{\prime}, c^{\prime} \in V(S \cup T)$, and $S \cup T \cup\{a, c\}$ is a $\left(C-I\left(H^{\prime}\right)\right)$-Tutte subgraph of G.

Proof. Because $G-((s C t-s) \cup\{a, c\})$ contains a path between b and $s, s C b$ is contained in a cycle in $G-\{a, c\}$. Let G^{\prime} denote the block of $G-\{a, c\}$ containing $s C b$, and let C^{\prime}

Figure 7: An illustration of Lemma (4.2)
denote the outer cycle of G^{\prime}. Thus $s C^{\prime} b=s C b$. Note that every $\left(G^{\prime} \cup\{a, c\}\right)$-bridge of G has at most one attachment on G^{\prime} (because G^{\prime} is a block of G) and at least one attachment in $\{a, c\}$ (because G is 2-connected).

By planarity of G, there exists $z \in V\left(b C^{\prime} s\right)$ such that, for each $\left(G^{\prime} \cup\{a, c\}\right)$-bridge B of $G, B \cap C^{\prime} \subseteq z C^{\prime} s$ if $a \in V(B)$, and $B \cap C^{\prime} \subseteq b C^{\prime} z$ if $c \in V(B)$. See Figure 7 .

By (2.2) (with $G^{\prime}, C^{\prime}, s, y, t b, z$ as G, C, x, y, e, f, respectively), there exist a C^{\prime}-flap H^{\prime} with attachments $a^{\prime}, b^{\prime}, c^{\prime}\left(a^{\prime}=b^{\prime}=c^{\prime}=y\right.$ if H^{\prime} is null) and a $\left(C^{\prime}-I\left(H^{\prime}\right)\right)$-Tutte path P between b^{\prime} and s in $G^{\prime}-I\left(H^{\prime}\right)$ such that $s, a^{\prime}, y, b^{\prime}, t b, z$ occur on C^{\prime} in this clockwise order, $y \in\left(V\left(H^{\prime}\right)-\left\{a^{\prime}\right\}\right) \cup\left\{b^{\prime}\right\}, t b \in E(P)$, and $a^{\prime}, c^{\prime}, z \in V(P)$. Let S and T denote the disjoint paths in $P-t b$ such that S is between s and b and T is between t and b^{\prime}.

Note that $a^{\prime}, c^{\prime} \in V(S \cup T)$ and H^{\prime} is an $s C t$-flap in G. Also note that every $(S \cup T \cup$ $\{a, c\})$-bridge of G other than those contained in H^{\prime} is either a P-bridge of $G^{\prime}-I\left(H^{\prime}\right)$, or a $\left(G^{\prime} \cup\{a, c\}\right)$-bridge of G, or induced by the edge $t b$. Because $t C s=t b c a s$, no $\left(G^{\prime} \cup\{a, c\}\right)$ bridge of G with three attachments contains an edge of C. Hence, $S \cup T \cup\{a, c\}$ is a $\left(C-I\left(H^{\prime}\right)\right)$-Tutte subgraph of G.

We now prove (1.2) when the R-width is even for some face R.
(4.3) Lemma. Let G be a 2-connected graph embedded in the torus with face width at least 2. Let R be a face of G, let C be the subgraph of G consisting of vertices and edges of G incident with R, and let $y \in V(C)$. Assume that the R-width of G is a positive even integer, and G is (4,C)-connected. Then there exist a C-flap H^{\prime} in G with attachments $a^{\prime}, b^{\prime}, c^{\prime}\left(a^{\prime}=b^{\prime}=c^{\prime}=y\right.$ if H^{\prime} is null) and a $\left(C-I\left(H^{\prime}\right)\right)$-Tutte path P from b^{\prime} in $G-I\left(H^{\prime}\right)$ such that $b^{\prime}, y, a^{\prime}$ occur on C in this clockwise order, $y \in\left(V\left(H^{\prime}\right)-\left\{a^{\prime}\right\}\right) \cup\left\{b^{\prime}\right\}$, $a^{\prime}, c^{\prime} \in V(P)$, and every P-bridge B of G containing an edge of C has a plane representation with $B \cap(C \cup P)$ on its outer walk. Moreover, $|V(P) \cap V(C)| \geq 2$ and $|V(P)| \geq 4$.

Proof. Because the face width of G is at least $2, C$ is a cycle in G. By (4.1), we may
assume that the R-width of G is at least 4 . Hence, $G-C$ contains a cycle which bounds an open disc in the plane containing R. Let L be the block of $G-C$ containing one such cycle. Then L has a face R^{\prime} which contains R (as subsets of the torus). Since L is 2 -connected and the R^{\prime}-width of L is at least $2, R^{\prime}$ is bounded by a cycle, say D. Since G has face width at least 2 and because D bounds a disc in the torus, L has face width at least 2 . Since G is $(4, C)$-connected, L is $(4, D)$-connected.

Clearly, every $(L \cup C)$-bridge of G has at most one attachment on L and all these attachments are contained in $V(D)$. Let L^{*} be the union of C, D, and all ($L \cup C$)-bridges of G. Then L^{*} is contained in the closed disc in the torus bounded by D. Hence, we view L^{*} as a plane graph such that D is its outer cycle and C is a facial cycle. See Figure 8.

Let v_{1}, \ldots, v_{n} be the attachments on D of $(L \cup C)$-bridges of G, and occur on D in this clockwise order. Let $p_{i}, q_{i} \in V(C)$ such that $q_{i} C p_{i}$ is maximal subject to the following conditions: (a) $\left\{p_{i}, v_{i}\right\}$ is contained in a $(L \cup C)$-bridge of G, (b) $\left\{q_{i}, v_{i}\right\}$ is contained in a $(L \cup C)$-bridge of G, and (c) no $(L \cup C)$-bridge of G with an attachment in $V(D)-\left\{v_{i}\right\}$ has an attachment in $V\left(q_{i} C p_{i}\right)-\left\{p_{i}, q_{i}\right\}$. Since G is $(4, C)$-connected, p_{i} and q_{i} are well defined and there is some $p_{j} \neq p_{i}$ (because otherwise $G-\left\{v_{i}, p_{i}\right\}$ has a component containing no vertex of C, contradicting $(4, C)$-connectivity of G). For $i=1, \ldots, n$, let J_{i} denote the union of $q_{i} C p_{i}$ and those $(L \cup C)$-bridges of G whose attachments are all contained in $V\left(q_{i} C p_{i}\right) \cup\left\{v_{i}\right\}$. Note that $y \in V\left(p_{k} C p_{k+1}\right)-\left\{p_{k+1}\right\}$ for some $k \in\{1, \ldots, n\}$, where $p_{n+1}=p_{1}, q_{n+1}=q_{1}$ and $v_{n+1}=v_{1}$. In particular, $p_{k} \neq p_{k+1}$.

Because the R^{\prime}-width of L is both even and less than the R-width of G, by induction hypothesis (with $L, D, R^{\prime}, v_{k+1}$ as G, C, R, y, respectively), there exist a D-flap H with attachments $a, b, c\left(a=b=c=v_{k+1}\right.$ if H is null) and a $(D-I(H))$-Tutte path T in $L-I(H)$ from b such that b, v_{k+1}, a occur on D in this clockwise order, $v_{k+1} \in(V(H)-\{a\}) \cup\{b\}$, $a, c \in V(T)$, and every T-bridge B of L containing an edge of D has a plane representation with $B \cap(D \cup P)$ on its outer walk. Note that $|V(T)| \geq 4$ and $|V(T) \cap V(D)| \geq 2$ by (4.1) or by induction hypothesis when the R^{\prime}-width of L is at least 4 .

We distinguish two cases.

Case 1. H is null.

In this case, T is a D-Tutte path from v_{k+1} in L.
Let J denote the union of $p_{k} C p_{k+1}$ and those $(L \cup C)$-bridges of G whose attachments are all contained in $V\left(p_{k} C p_{k+1}\right) \cup\left\{v_{k+1}\right\}$. Since G is 2 -connected, $J+p_{k} v_{k+1}$ is also 2connected. We can view $J+p_{k} v_{k+1}$ as a 2 -connected plane graph such that $p_{k} C p_{k+1}$ and $p_{k} v_{k+1}$ are contained in its outer cycle C_{k}. By (2.1) (with $J+p_{k} v_{k+1}, C_{k}, p_{k+1}, y, p_{k} v_{k+1}$ as G, C, x, y, e, respectively), $J+p_{k} v_{k+1}$ has a C_{k}-Tutte path R between p_{k+1} and y such that $p_{k} v_{k+1} \in E(R)$.

To find a path S from p_{k+1} to p_{k}, we let $K=G-\left(V(J)-\left\{p_{k}, p_{k+1}, v_{k+1}\right\}\right)$. We view $p_{k+1} C p_{k}, D, v_{k+1}$ as Q, Q^{\prime}, u in (2.5), respectively. It is straightforward to check that the conditions of (2.5) are satisfied (using the plane representation of L^{*}). By (2.5), there is a path S in $K-T$ between p_{k} and p_{k+1} such that $S \cup T$ is a $p_{k+1} C p_{k}$-Tutte subgraph of K and every T-bridge of L containing no edge of D is also an $(S \cup T)$-bridge of K. By the plane representation of L^{*}, every $(S \cup T)$-bridge B of K containing an edge of C has a plane representation with $B \cap(S \cup T \cup C)$ on its outer walk.

Figure 8: The graph G

Let $P:=S \cup T \cup\left(R-p_{k} v_{k+1}\right)$. Then every P-bridge of G is either an $(S \cup T)$-bridge of K or a R-bridge of $J+p_{k} v_{k+1}$. Hence P is a C-Tutte path from y in G such that every P-bridge B of G containing an edge of C has a plane representation with $B \cap(C \cup P)$ on its outer walk. Clearly, $|V(P) \cap V(C)| \geq 2$ (because $p_{k}, p_{k+1} \in V(P) \cap V(C)$) and $V(P) \nsubseteq V(C)$ and $|V(P)| \geq 4$ (because $|V(T)| \geq 4$).

Case 2. H is non-null.
Let $v_{l}, v_{m} \in I(H) \cap V(D)$ such that $b, v_{m}, v_{k+1}, v_{l}, a$ occur on D in this clockwise order and such that $v_{m} D v_{l}$ is maximal. See Figure 8. Note that if $p_{m-1}=p_{l}$ then we do not have $p_{m-1}=p_{m}=\ldots=p_{k+1}=\ldots=p_{l}$ because $p_{k+1} \neq p_{k}$. Let J denote the union of $p_{m-1} C p_{l}$ (when $p_{m-1} \neq p_{l}$) or C (when $p_{m-1}=p_{l}$), H, and those $(L \cup C)$-bridges of G whose attachments are all contained in $V\left(p_{m-1} C p_{l}\right) \cup I(H)\left(\right.$ when $\left.p_{m-1} \neq p_{l}\right)$ or $V(C) \cup I(H)$ (when $p_{m-1}=p_{l}$), where $p_{0}=p_{n}$.

Next we define J^{\prime}. If $p_{m-1} \neq p_{l}$, then let $J^{\prime}=J$ (and so, J^{\prime} has a plane representation with $p_{m-1} C p_{l}$ and $\{a, b, c\}$ on its outer walk), and let $t:=p_{m-1}$ and $s:=p_{l}$. See Figure 8. Now assume that $p_{m-1}=p_{l}$. Then $p_{k} \neq p_{l}$ or $p_{k+1} \neq p_{l}$ (because $p_{k} \neq p_{k+1}$. Since G is $(4, C)$-connected, every $(L \cup C)$-bridge of G with an attachment in $D-I(H)$ is induced by a single edge and has $p_{m-1}=p_{l}$ as an attachment. Also $v_{m} \neq v_{l}$; for otherwise, $G-\left\{v_{l}, p_{l}\right\}$ has a component containing no vertex of C, contradicting $(4, C)$-connectivity of G. Let J^{\prime} be the plane graph obtained from J by splitting the vertex $p_{m-1}=p_{l}$ to s and t in a natural way such that C becomes a path and the neighbors of $p_{m-1}=p_{l}$ in J contained in J_{l} (respectively, not contained in J_{l}) become the neighbors of s (respectively, t) and such that J^{\prime} has a plane representation with $E(C)$ and $\{a, b, c\}$ on its outer walk. See Figure 9.

$$
p_{l}=p_{m-1}
$$

J

J^{\prime}

Figure 9: The graph J^{\prime} when $p_{m-1}=p_{l}$

Let $J^{\prime \prime}:=J^{\prime}+\{t b, b c, c a, a s\}$, and let $C^{\prime \prime}$ be the cycle of $J^{\prime \prime}$ induced by $E(C) \cup$ $\{t b, b c, c a, a s\}$. We can view $J^{\prime \prime}$ as a 2-connected plane graph with outer cycle $C^{\prime \prime}$ such that $t C^{\prime \prime} s=t b c a s$. It is easy to see that $y \in V\left(s C^{\prime \prime} t-s\right)$ (since $\left.y \in p_{k} C p_{k+1}-p_{k+1}\right)$ and $J^{\prime \prime}-\left(\left(s C^{\prime \prime} t-s\right) \cup\{a, c\}\right)$ has a path from b to s.

By (4.2) (with $J^{\prime \prime}, C^{\prime \prime}$ as G, C, respectively), there exist an $s C^{\prime \prime} t$-flap H^{\prime} in $J^{\prime \prime}$ with attachments $a^{\prime}, b^{\prime}, c^{\prime}\left(a^{\prime}=b^{\prime}=c^{\prime}=y\right.$ if H^{\prime} is null) and disjoint paths S^{\prime}, T^{\prime} in $\left(J^{\prime \prime}-\{a, c\}\right)-$ $I\left(H^{\prime}\right)$ such that $s, a^{\prime}, y, b^{\prime}, t$ occur on $C^{\prime \prime}$ in this clockwise order, $y \in\left(V\left(H^{\prime}\right)-\left\{a^{\prime}\right\}\right) \cup\left\{b^{\prime}\right\}$, S^{\prime} is between s and b, T^{\prime} is between b^{\prime} and $t, a^{\prime}, c^{\prime} \in V\left(S^{\prime} \cup T^{\prime}\right)$, and $S^{\prime} \cup T^{\prime} \cup\{a, c\}$ is an $\left(C^{\prime \prime}-I\left(H^{\prime}\right)\right.$)-Tutte subgraph of $J^{\prime \prime}$. Note that $t, b^{\prime}, y, a^{\prime}, s$ occur on C in this clockwise order,

If $p_{m-1}=p_{l}$, then identifying t and s to $p_{m-1}=p_{l}$ in $T \cup S^{\prime} \cup T^{\prime}$ gives the desired path P in G. Note that $|V(P)| \geq 4$ because $|V(T)| \geq 4$. Moreover, $|V(P) \cap V(C)| \geq 2$, for otherwise, C is contained in a P-bridge of G whose attachments on P are a cut of size at most 3 in G (because $|V(T)| \geq 4$) showing that G is not (4,C)-connected, a contradiction.

So assume that $p_{m-1} \neq p_{l}$. Let $K=G-(V(J)-(V(H) \cup\{s, t\}))$. We view $s, t, s C t$, D, a as p, q, Q, Q^{\prime}, u in (2.5), respectively. It is easy to verify that the conditions of (2.5) are satisfied (using the plane representation of L^{*}). By (2.5), there is a path S in $K-T$ between s and t such that $S \cup T$ is an $s C t$-Tutte subgraph of K and every T-bridge of L containing no edge of D is also an $(S \cup T)$-bridge of K. Note that each $(S \cup T)$-bridge B of K containing an edge of C has a plane representation with $B \cap(S \cup T \cup C)$ on its outer walk. Because $|V(T)| \geq 4,|V(P)| \geq 4$. Since $p_{m-1}, p_{l} \in V(P)$, we have $|V(P) \cap V(C)| \geq 2$. Hence, $P:=S \cup T \cup S^{\prime} \cup T^{\prime}$ gives the desired path in G.

Proof of (1.2). Let G be a 4-connected graph embedded in the torus, and let ρ be the
face width of G. If $\rho=0$, then G is a 4-connected planar graph, and so, has a Hamilton cycle by a theorem of Tutte [8]. So assume that $\rho \geq 1$.

Suppose $\rho=1$. Then there is a non-null homotopic simple closed curve γ meeting G only in one vertex, say u. Cutting the torus open along γ, we obtain a plane graph G^{\prime} with two vertices $u^{\prime}, u^{\prime \prime}$ such that G can be obtained from G^{\prime} by identifying u^{\prime} and $u^{\prime \prime}$ as u. Since G is 4 -connected, the blocks of G^{\prime} can be labeled as B_{1}, \ldots, B_{n} such that $B_{i} \cap B_{i+1}$ consists of a single vertex $v_{i}, B_{i} \cap B_{j}=\emptyset$ if $j>i+1$, and $v_{0}:=u^{\prime} \in V\left(B_{1}\right)-\left\{v_{1}\right\}$ and $v_{n}:=u^{\prime \prime} \in V\left(B_{n}\right)-\left\{v_{n-1}\right\}$. Because G is 4 -connected, $n=1$ or $n=2$, and if $n=2$ then exactly one of B_{1} or B_{2} is induced by an edge. Without loss of generality, assume that B_{1} is 2-connected and v_{0} is contained in the outer cycle C_{1} of B_{1}. We may assume $v_{1} \notin V\left(C_{1}\right)$; as otherwise, G is planar and G has a Hamilton cycle by a theorem of Tutte. By (2.1) (with $B_{1}, C_{1}, v_{0}, v_{1}$ as G, C, x, y, respectively), B_{1} has a C_{1}-Tutte path P_{1} between v_{0} and v_{1}. Since G is 4-connected and P_{1} is a C_{1}-Tutte path in $B_{1}, V\left(C_{1}\right) \subseteq V\left(P_{1}\right)$. Hence $\left|V\left(P_{1}\right)\right| \geq 4$ (because $v_{1} \notin V\left(C_{1}\right)$). Let $P^{\prime}:=P_{1}$ if $n=1$, and otherwise let $P^{\prime}:=P_{1} \cup B_{2}$. Then P^{\prime} is a Tutte path in G^{\prime} between u^{\prime} and $u^{\prime \prime}$. Because G is 4-connected and $\left|V\left(P^{\prime}\right)\right| \geq\left|V\left(P_{1}\right)\right| \geq 4$, P^{\prime} is a Hamilton path in G^{\prime} between u^{\prime} and $u^{\prime \prime}$. Clearly, $E\left(P^{\prime}\right)$ induces a Hamilton cycle T in G. Hence, G has a Hamilton path.

Therefore we may assume that $\rho \geq 2$. Let γ be a non-null homotopic simple closed curve in the torus that meets G exactly ρ times (only at vertices).

Case 1. ρ is even.
Let R be a face of G that γ passes through, and let C be the cycle of G consisting of vertices and edges of G incident with R.

Assume $\rho=2$. Then the R-width of G is 2 . By (4.1), G has a Tutte path P from some $b \in V(C)$ such that $|V(P)| \geq 4$. Since G is 4 -connected, P is a Hamilton path in G.

Now assume $\rho \geq 4$. By (4.3), G has a Tutte path P from some $b^{\prime} \in V(C)$ such that $|V(P)| \geq 4$. Since G is 4-connected and $|V(P)| \geq 4, P$ is a Hamilton path in G.

Case 2. ρ is odd.
Let $u \in \gamma \cap V(G)$. Then $G-u$ has face width $\rho-1 \geq 2$. Let R be the face of $G-u$ which contains u (as a subset of the torus). Let C denote the cycle in $G-u$ consisting of vertices and edges incident with R, and choose a vertex $y \in V(C)$ such that $y u \in E(G)$. Then $G-u$ is (4,C)-connected. Applying (4.1) or (4.3) to $G-u, R, y$, we can show that there is a C-flap H^{\prime} in $G-u$ with attachments $a^{\prime}, b^{\prime}, c^{\prime}\left(a^{\prime}=b^{\prime}=c^{\prime}=y\right.$ if H^{\prime} is null) and a $\left(C-I\left(H^{\prime}\right)\right)$-Tutte path P^{\prime} from b^{\prime} in $(G-u)-I\left(H^{\prime}\right)$ such that $b^{\prime}, y, a^{\prime}$ occur on C in this clockwise order, $y \in\left(V\left(H^{\prime}\right)-\left\{a^{\prime}\right\}\right) \cup\left\{b^{\prime}\right\}, a^{\prime}, c^{\prime} \in V\left(P^{\prime}\right)$, and $\left|V\left(P^{\prime}\right)\right| \geq 4$.

If H^{\prime} is null, then P^{\prime} is a C-Tutte path in $G-u$ from y. In this case, $P:=\left(P^{\prime} \cup\{u\}\right)+y u$ is a Tutte path in G. Because G is 4 -connected and $|V(P)| \geq 4, P$ is a Hamilton path in G.

Therefore we may assume that H^{\prime} is non-null. Let H^{*} denote the union of H^{\prime}, u, and all edges of G with both ends in $I\left(H^{\prime}\right) \cup\{u\}$. Because G is 4 -connected, H^{*} is connected. In fact, $H^{*}+\left\{a^{\prime} u, b^{\prime} c^{\prime}\right\}$ is 2-connected. Assume without loss of generality that $a^{\prime} u$ and $b^{\prime} c^{\prime}$ are contained in the outer cycle C^{*} of $H^{*}+\left\{a^{\prime} u, b^{\prime} c^{\prime}\right\}$. By applying (2.3) (with $H^{*}+\left\{a^{\prime} u, b^{\prime} c^{\prime}\right\}, C^{*}, c^{\prime}, a^{\prime}, a^{\prime} u, b^{\prime} c^{\prime}$ as G, C, x, y, e, f, respectively), $H^{*}+\left\{a^{\prime} u, b^{\prime} c^{\prime}\right\}$ contains a

Tutte path P^{*} between a^{\prime} and c^{\prime} such that $\left\{a^{\prime} u, b^{\prime} c^{\prime}\right\} \subseteq E\left(P^{*}\right)$. Let $P:=P^{\prime} \cup\left(P^{*}-\left\{a^{\prime}, c^{\prime}\right\}\right)$. Then every P-bridge of G is either a P^{\prime}-bridge of $G-u$, or a P^{*}-bridge of $H^{*}+\left\{a^{\prime} u, b^{\prime} c^{\prime}\right\}$. Hence, P is a Tutte path of G. Because G is 4 -connected and $|V(P)| \geq 4, P$ is a Hamilton path in G.

Acknowledgment

Part of the work was done while the second author was visiting the Department of Mathematics at the University of Hong Kong. The authors would like to thank both referees for many helpful suggestions that lead to the elimination of several mistakes in the previous manuscript. In particular, we thank the referee who pointed out a missing case (Case 1) in the proof of Lemma (4.1).

References

1. A. Altshuler. Hamiltonian circuits in some maps on the torus. Discrete Math. 1 (1972) 299-314.
2. R. Brunet and R. B. Richter. Hamiltonicity of 5 -connected toroidal triangulations. J. Graph Theory 20 (1995) 267-286.
3. B. Grünbaum. Polytopes, graphs, and complexes. Bull. Amer. Math. Soc. 76 (1970) 1131-1201.
4. C. St. J. A. Nash-Williams. Unexplored and semi-explored territories in graph theory. New Directions in Graph Theory, Academic Press, New York (1973) 169176.
5. R. Thomas and X. Yu. 4-Connected projective-planar graphs are hamiltonian. J. Combin. Theory, Ser. B 62 (1994) 114-132.
6. R. Thomas and X. Yu. 5-Connected toroidal graphs are hamiltonian. J. Combin. Theory, Ser. B 69 (1997) 79-96.
7. C. Thomassen. A theorem on paths in planar graphs. J. Graph Theory 7 (1983) 169-176.
8. W. T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc. 82 (1956) 99-116.
9. H. Whitney. A theorem on graphs. Ann. of Math. 32 (1931) 378-390.

[^0]: ${ }^{1}$ Partially supported by NSF grant DMS-9970514
 ${ }^{2}$ Partially supported by NSF grants DMS-9970527 and DMS-0245530, and by RGC grant HKU7056/04P
 ${ }^{3}$ Partially supported by RGC grant HKU7056/04P

