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1 Introduction and notation

In 1931, Whitney [9] proved that every 4-connected triangulation of the sphere contains
a Hamilton cycle (and hence, is 4-face-colorable). Tutte [8] generalized this result to 4-
connected planar graphs. Extending the technique of Tutte, Thomassen [7] proved that
in any 4-connected planar graph there is a Hamilton path between any given pair of dis-
tinct vertices. Grünbaum [3] conjectured that every 4-connected graph embeddable in the
projective plane contains a Hamilton cycle. This conjecture was proved by Thomas and
Yu [5]. For graphs embeddable in the torus (toroidal graphs, for short), Grünbaum [3] and
Nash-Williams [4] independently made the following

(1.1) Conjecture. Every 4-connected toroidal graph contains a Hamilton cycle.

Conjecture (1.1) is established in [1] for 6-connected toroidal graphs. Brunet and Richter
[2] proved (1.1) for 5-connected triangulations of the torus. Later, Thomas and Yu [6]
proved (1.1) for all 5-connected toroidal graphs. In this paper, we offer further evidence to
(1.1) by proving the following

(1.2) Theorem. Every 4-connected toroidal graph contains a Hamilton path.

Only simple graphs will be considered. Let G be a graph. We use V (G) and E(G) to
denote the vertex set and edge set of G, respectively. If e is an edge of G with ends u and
v, then we also denote e by uv. For X ⊆ E(G) or X ⊆ V (G), G − X denotes the graph
obtained from G by deleting X and (if X ⊆ V (G)) by deleting all edges of G incident
with vertices in X. When X = {x}, we write G − x instead of G − {x}. Let S be a set of
2-element subsets of V (G); then G+S denotes the graph with vertex set V (G) and edge set
E(G) ∪ S. If S = {{xi, yi} : i = 1, . . . , k} then we sometimes use G + {xiyi : i = 1, . . . , k}
instead of G + S, and if S = {{x, y}} we use G + xy instead of G + S.

Let G and H be subgraphs of a graph; then G ∩ H (respectively, G ∪ H) denotes the
intersection (respectively, union) of G and H. We write G − H instead of G − V (G ∩ H).
We use P ⊆ G to mean that P is a subgraph of G. For S ⊆ V (G), we also view S as the
subgraph of G with vertex set S and no edges. Hence P ∪ S makes sense for P ⊆ G and
S ⊆ V (G). A block in a graph is a maximal 2-connected subgraph or is induced by a cut
edge of the graph.

A graph G is embedded in a surface Σ if it is drawn in Σ with no pair of edges crossing.
The faces of G are the connected components (in topological sense) of Σ−G. The boundary
of a face is called a facial walk. The face width or representativity of G in Σ is defined to be
the minimum number |γ∩G| taken over all non-null homotopic simple closed curves γ in Σ.
When Σ is the plane (or equivalently, the sphere), G is a plane graph. For convenience, an
embedding of a graph G in the plane is called a plane representation of G. The boundary
of the infinite face of a plane graph G is called the outer walk of G, or outer cycle if it is a
cycle.

For a path P and two vertices x, y ∈ V (P ), we use xPy to denote the subpath of P
with ends x and y. For a cycle C and distinct vertices x, y on C, an xy-segment of C is a
path in C with ends x and y. If C is a cycle in a graph embedded in an orientable surface
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Σ such that C bounds a closed disc in Σ, then we can speak of clockwise and counter
clockwise orders along C. Given two vertices x and y on a cycle C bounding a closed
disc, let xCy = {x} if x = y, and otherwise, let xCy denote the xy-segment of C which is
clockwise from x to y.

Let G be a graph and P ⊆ G. A P -bridge of G is a subgraph of G which either (1) is
induced by an edge of G − E(P ) with both ends on P or (2) is induced by the edges in a
component of G− V (P ) and all edges from that component to P . For a P -bridge B of G,
the vertices of B∩P are the attachments of B (on P ). We say that P is a Tutte subgraph of
G if every P -bridge of G has at most three attachments on P . For C ⊆ G, P is a C-Tutte
subgraph of G if P is a Tutte subgraph of G and every P -bridge of G containing an edge of
C has at most two attachments on P . A Tutte path (respectively, Tutte cycle) in a graph
is a path (respectively, cycle) which is a Tutte subgraph.

Note that if P is a Tutte path in a 4-connected graph and |V (P )| ≥ 4, then P is in
fact a Hamilton path. Hence, in order to prove (1.2), it suffices to find Tutte paths in
2-connected toroidal graphs. This will be done by applying induction on the face-width
of a graph embedded in the torus. In Section 2, we state and prove a few lemmas about
Tutte paths in plane graphs. In Section 3, we prove a result which will be used to treat the
induction basis: the face width of a graph in the torus is at most two. We then complete
the proof of (1.2) in Section 4.

For convenience, we use A := B to rename B as A.

2 C-flaps and Tutte subgraphs

We begin this section with several known results on Tutte paths in plane graphs. The first
result is the main theorem in [7], where a P -bridge is called a “P -component”.

(2.1) Lemma. Let G be a 2-connected plane graph with a facial cycle C. Assume that
x ∈ V (C), e ∈ E(C), and y ∈ V (G − x). Then G contains a C-Tutte path P between x
and y such that e ∈ E(P ).

Lemma (2.1) can easily be generalized as follows. Let G be a connected plane graph
with a facial walk C. Assume that x ∈ V (C), e ∈ E(C), y ∈ V (G − x), and G has a path
between x and y and containing e. Then G contains a C-Tutte path P between x and y
such that e ∈ E(P ). Hence, when we apply Lemma (2.1), we actually apply this general
version.

In order to state the next result, we need the following concept first introduced in [5].
Let C be a cycle or a path in a graph G. A C-flap in G is either the null graph or an
{a, b, c}-bridge H of G such that

(i) a, b ∈ V (C) ∩ V (H), a 6= b, and c ∈ V (H) − V (C);

(ii) H contains an ab-segment S of C; and

(iii) H has a plane representation with S and c on its outer walk.
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When a C-flap is an {a, b, c}-bridge H, we say that a, b, c are its attachments and define
I(H) = V (H) − {a, b, c} . When a C-flap is null, we say that a, b, c are its attachments if
a = b = c ∈ V (C) and define I(H) = ∅.

See Figure 1 for an illustration. Note that we do not specify the order of a, b on C, and
therefore we do not need the condition in [5] that H contains the clockwise segment of C
between a and b.

Lemmas (2.2) and (2.3) below are the first half and second half, respectively, of (2.5) in
[5], where a C-Tutte path is called an E(C)-snake. Lemma (2.2) is illustrated in Figure 1.
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Figure 1: C-flap and Lemma (2.2)

(2.2) Lemma. Let G be a 2-connected plane graph with outer cycle C. Let x, y ∈ V (C)
be distinct, let e, f ∈ E(C), and assume that x, y, e, f occur on C in this clockwise order.
Then there exist a C-flap H in G with attachments a, b, c (a = b = c = y if H is null) and
a (C − I(H))-Tutte path P between b and x in G − I(H) such that x, a, y, b, e, f occur on
C in this clockwise order, y ∈ (V (H) − {a}) ∪ {b}, {e, f} ⊆ E(P ), and a, c ∈ V (P ).

(2.3) Lemma. Let G be a 2-connected plane graph with outer cycle C. Let x, y ∈ V (C)
be distinct, let e, f ∈ E(C), and assume that x, y, e, f occur on C in this clockwise order.
Then there exists a yCx-Tutte path P between x and y in G such that {e, f} ⊆ E(P ).

Note that the above three lemmas hold when e or f or both are vertices of C. This can
be seen by choosing edges in E(C) incident with these vertices. Hence, when these lemmas
are applied, we will allow e or f or both to be vertices.

The next lemma shows that if in (2.3) we do not insist that y be an end of P , then we
can require P be a C-Tutte path.

(2.4) Lemma. Let G be a 2-connected plane graph with outer cycle C. Let x, y ∈ V (C)
be distinct, let e, f ∈ E(C), and assume that x, y, e, f occur on C in this clockwise order.
Then there exists a C-Tutte path Q from x in G such that y ∈ V (Q) and {e, f} ⊆ E(Q).

Proof. By (2.2), there exist a C-flap H in G with attachments a, b, c (a = b = c = y
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if H is null) and a (C − I(H))-Tutte path P between b and x in G − I(H) such that
x, a, y, b, e, f occur on C in this clockwise order, y ∈ (V (H) − {a}) ∪ {b}, {e, f} ⊆ E(P ),
and a, c ∈ V (P ). See Figure 1.

If H is null, then Q := P gives the desired path. So assume that H is non-null.
Since G is 2-connected and c /∈ V (C), H ′ := H + {ac, bc} is 2-connected. Without loss
of generality, assume that ac, bc are added so that H ′ is a plane graph with outer cycle
C ′ := (aCb∪{c})+{ac, bc}. By (2.3) (with H ′, C ′, b, c, ac, y as G, C, x, y, e, f , respectively),
there exists a cC ′b-Tutte path P ′ between b and c in H ′ such that y ∈ V (P ′) and ac ∈ E(P ′).
Clearly, bc /∈ E(P ′).

Let Q := (P ′−{a, c})∪P . Then every Q-bridge of G is one of the following: a P -bridge
of G − I(H), or a P ′-bridge of H ′, or a subgraph of G induced by an edge of P ′ incident
with a. Hence, Q is a C-Tutte path from x in G such that y ∈ V (Q) and {e, f} ⊆ E(Q).

Again, when Lemma (2.4) is applied, e or f or both may be vertices. Next result is
a technical lemma, and it will be used many times in later proofs. In order to cover all
situations when this lemma is applied, we need to state it in a fairly general setting. See
Figure 2 for an illustration.

(2.5) Lemma. Let K be a connected graph, let Q be a path in K with ends p and q,
let L be a subgraph of K − Q, let Q′ be a cycle in L, and let u ∈ V (Q′). Suppose the
following three conditions are satisfied.

(1) If B is a (L ∪ Q)-bridge of G, then |V (B ∩ L)| ≤ 1 and V (B ∩ L) ⊆ V (Q′).

(2) Let H be the union of Q, Q′, and those (L ∪Q)-bridges of G with an attachment on
Q; then H has a plane representation such that Q and u are on a facial walk and Q′

is its outer cycle.

(3) L contains a Q′-Tutte subgraph T such that (i) u ∈ V (T ) and |V (Q′) ∩ V (T )| ≥ 2,
and (ii) every T -bridge X of L containing an edge of Q′ has a plane representation
such that X ∩ Q′ is a path on its outer walk.

Then K − T contains a path S between p and q such that S ∪ T is a Q-Tutte subgraph
of K, and every T -bridge of L containing no edge of Q′ is also an (S ∪ T )-bridge of K.

Remark. In most cases when (2.5) is applied, K is a plane graph, L is a block of
K − Q, Q and u are on a facial walk of K, and Q′ is a facial cycle of L which bounds the
face of L containing Q. Hence, conditions (1) and (2) of (2.5) hold. Moreover, condition
(3) holds if L has a Q′-Tutte subgraph T such that u ∈ V (T ) and |V (T ) ∩ V (Q′)| ≥ 2.

Proof. Let W denote the set of attachments on Q′ of (L ∪ Q)-bridges of K. Note that
for each w ∈ W , either w ∈ V (T ) or there is a T -bridge X of L such that w ∈ V (X − T ).
For w, w′ ∈ W , we define w ∼ w′ if w = w′ or there is a T -bridge X of L such that
{w, w′} ⊆ V (X − T ). Clearly, ∼ is an equivalence relation on W . Let W1, W2, . . . , Wm

denote the equivalence classes of W with respect to ∼. Then for i ∈ {1, . . . , m}, either
|Wi| = 1 and Wi ⊆ V (T ) (in this case, Bi := Wi ⊆ V (Q′)) or Wi ⊆ V (Bi − T ) for
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some T -bridge Bi of L. Since T is a Q′-Tutte subgraph of L and W ⊆ V (Q′) (by (1)),
|V (Bi ∩ T )| ≤ 2. Hence, by (i) of (3), V (Bi ∩ T ) ⊆ V (Q′)

For each i ∈ {1, . . . , m}, let si, ti ∈ V (Q) such that (I) p, si, ti, q occur on Q in this
order, (II) there are ws, wt ∈ Wi such that {si, ws} is contained in a (L ∪ Q)-bridge of K
and {ti, wt} is contained in a (L ∪ Q)-bridge of K, and (III) subject to (I) and (II), siQti
is maximal. By (2), siQti, i = 1, . . . , m, are edge disjoint. We may therefore assume that
p, s1, t1, s2, t2, . . . , sm, tm, q occur on Q in this order. Let t0 := p and sm+1 := q.
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Figure 2: Illustration of Lemma (2.5)

For each i ∈ {0, . . . , m}, let Ti denote the union of tiQsi+1 and those (L ∪ Q)-bridges
of K whose attachments are all contained in V (tiQsi+1). For each i ∈ {1, . . . , m}, let Ui

denote the union of siQti, Bi, and those (L ∪ Q)-bridges of K whose attachments are all
contained in V (siQti) ∪ Wi.

(a) By the definition of siQti, we conclude that for i ≤ j, Ui ∩ Tj (and for i < j,
(Ui −T )∩ (Uj −T )) is one of the following: ∅, or {ti}, or the union of those (L∪Q)-bridges
of K with ti as their only attachment on L ∪ Q. Similarly, for i < j, Ti ∩ Tj (and also
Ti ∩ Uj) is one of the following: ∅, or {si+1}, or the union of those (L ∪ Q)-bridges of K
with si+1 as their only attachment on L ∪ Q.

(b) We claim that for each i ∈ {0, . . . , m}, Ti contains a tiQsi+1-Tutte path Ri between
ti and si+1.

If |V (tiQsi+1)| ≤ 2, then Ri := tiQsi+1 gives the desired path for (b). Now assume
that |V (tiQsi+1)| ≥ 3. By (2), Ti has a plane representation such that tiQsi+1 is on its
outer walk. Let Ci denote the outer walk of Ti, and choose an edge e from E(tiQsi+1).
By applying (2.1) (with Ti, Ci, ti, si+1 as G, C, x, y, respectively), Ti has a Ci-Tutte path Ri

between ti and si+1 such that e ∈ E(Ri). Clearly, Ri is a tiQsi+1-Tutte path in Ti.

(c) We claim that for each i ∈ {1, . . . , m}, Ui − T contains a path Si between si and ti
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such that Si ∪ (Ui ∩ T ) is an siQti-Tutte subgraph of Ui.
Note that for all i ∈ {1, . . . , m}, |V (Ui ∩ T )| = |V (Bi ∩ T )| ≤ 2. By (ii) of (3), Bi has

a plane representation such that Bi ∩Q′ is a path on its outer walk. Hence, by (2), Ui has
a plane representation such that siQti and Bi ∩ T are on its outer walk. We will work on
such a plane representation of Ui.

If si = ti, then let Si := siQti, and clearly, Si ∪ (Ui ∩ T ) is an siQti-Tutte subgraph of
Ui (because |V (Ui ∩ T )| ≤ 2). So assume that si 6= ti. We distinguish two cases.

First assume that Wi ⊆ V (T ). Then |Wi| = 1. So let w be the only vertex in Wi.
Without loss of generality, we can assume that (siQti∪{w})+ tiw is contained in the outer
walk Di of Ui + tiw. By (2.1) (with Ui + tiw, Di, si, w, tiw as G, C, x, y, e, respectively),
Ui + tiw contains a Di-Tutte path S ′

i between si and w such that tiw ∈ E(S ′

i). Let
Si := S ′

i − w. Then Si ⊆ Ui − T , and it is easy to see that Si ∪ (Ui ∩ T ) = Si ∪ {w} is an
siQti-Tutte subgraph of Ui.

Now assume that Wi 6⊆ V (T ). Then Bi 6= Wi and Bi is a T -bridge of L containing an
edge of Q′. Hence, V (Bi ∩ T ) consists of two vertices w and w′. Assume that w, w′, ti, si

occur on the outer walk of Ui in this clockwise order. Note that (siQti ∪ {w, w′}) +
{wsi, tiw

′} is contained in a cycle of Ui + {wsi, tiw
′}, and so, let U ′

i denote the block in
Ui + {wsi, tiw

′} containing one such cycle. Without loss of generality, we may assume that
(siQti ∪ {w, w′}) + {wsi, tiw

′} is contained in the outer cycle D′

i of U ′

i . By (2.3) (with
U ′

i , D
′

i, w, w′, tiw
′, wsi as G, C, x, y, e, f , respectively), U ′

i contains a w′D′

iw-Tutte path S ′

i

between w and w′ such that {wsi, tiw
′} ⊆ E(S ′

i). Clearly, S ′

i is also an siQti-Tutte path
in Ui + {wsi, tiw

′}. Let Si := S ′

i − {w, w′}. Then Si ⊆ Ui − T , and it is easy to see that
Si ∪ (Ui ∩ T ) = Si ∪ {w, w′} is an siQti-Tutte subgraph of Ui.

By (a), (b) and (c), S := (
⋃m

i=0 Ri) ∪ (
⋃m

i=1 Si) is a path between p and q in K − T . It
is easy to see that every (S ∪ T )-bridge of K is one of the following: a T -bridge of L not
contained in any Ui, or a Ri-bridge of Ti, or an (Si ∪ (Ui ∩ T ))-bridge of Ui. Thus, S ∪ T
is a Q-Tutte subgraph of K, and every T -bridge of L containing no edge of Q′ is also an
(S ∪ T )-bridge of K.

3 Planar graphs

In this section, we prove Theorem (3.3) which will be used to take care of the base case
in the inductive proof of Theorem (1.2). First, we need two lemmas about Tutte paths in
planar graphs, and for the sake of induction we will prove them simultaneously.

(3.1) Lemma. Let G be a 2-connected plane graph with outer cycle C and a facial
cycle D, let y ∈ V (C), and let x ∈ V (D). Then G contains a (C ∪ D)-Tutte path P from
y such that x ∈ V (P ) and no P -bridge of G contains vertices of both C − P and D − P .

A separation (G1, G2) in a graph G is a pair of edge disjoint subgraphs of G such that
G = G1 ∪ G2 and E(G1) 6= ∅ 6= E(G2). A separation (G1, G2) in G is a k-separation if
|V (G1 ∩ G2)| = k.
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(3.2) Lemma. Let G be a 2-connected plane graph with outer cycle C and another facial
cycle D. Let y ∈ V (C), x ∈ V (D), and e ∈ E(C). Assume that there do not exist distinct
vertices p, q ∈ V (C) and a 2-separation (G′

1, G
′

2) in G such that V (G′

1) ∩ V (G′

2) = {p, q},
p, y, e, q occur on C in the clockwise order listed, pCq ⊆ G′

1, and qCp∪D ⊆ G′

2. Then one
of the following holds:

(A) there exist a C-flap H in G with attachments a, b, c (a = b = c = y if H is null) and a
((C− I(H))∪D)-Tutte path P from b in G− I(H) such that D ⊆ G− I(H), e, b, y, a
occur on C in this clockwise order, y ∈ (V (H)−{a})∪{b}, e ∈ E(P ), x, a, c ∈ V (P ),
and no P -bridge of G contains vertices of both C − P and D − P ; or

(B) there exist a, b ∈ V (C)∩V (D), a separation (H, H∗) in G with V (H)∩V (H∗) = {a, b},
and a (C∪D)-Tutte path P from b in G such that e, b, y, a occur on C in this clockwise
order, bCa∪bDa ⊆ H, aCb∪aDb ⊆ H∗, P ⊆ H∗, y ∈ (V (H)−{a})∪{b}, a, x ∈ V (P ),
e ∈ E(P ), and no P -bridge of G distinct from H contains vertices of both C −P and
D − P .

(A) 
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Figure 3: Illustration of Lemma (3.2)

Proof of (3.1) and (3.2). We proceed by induction on |V (G)|. We may assume that
C 6= D; for otherwise, choose f ∈ E(C) − {e} such that f is incident with y, then
P := C − f satisfies both the conclusion of (3.1) and (A) of (3.2) with H null. Thus
|V (G)| ≥ 4. Because we are proving (3.1) and (3.2) simultaneously, we can inductively
assume that both (3.1) and (3.2) hold for all graphs on strictly less than |V (G)| vertices.
Let us remark that e is not defined in (3.1); hence in the proof of (3.1) we are free to specify
e when inductively applying (3.2).

Let G2 be a block of G−y chosen as follows: for (3.1), G2 is a block of G−y containing
an edge of C − y; for (3.2), if e is not incident with y let G2 be the unique block of G − y
containing e, and otherwise let G2 be the unique block of G − y containing the unique
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edge of C adjacent to e but not incident with y. If G2 has only one edge let C2 = G2;
otherwise let C2 be the outer cycle of G2. It follows that every (G2 ∪ {y})-bridge of G
has exactly one attachment in G2, and this attachment belongs to C2. Let v1, v2, . . . , vk

be those attachments of (G2 ∪ {y})-bridges of G on C2 listed in clockwise order such that
vkCv1 = vkC2v1. For i = 1, 2, . . . , k, let Ji be the union of those (G2 ∪ {y})-bridges of G
containing vi, and let Di denote the outer walk of Ji.

PSfrag replacements
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Figure 4: G2 and J1, . . . , Jk

Since C 6= D, we have the following.

(a) Either there is some i ∈ {2, . . . , k} such that D is the union of vi−1C2vi, a subpath
of Ji−1, and a subpath of Ji; or there is some i ∈ {1, 2, . . . , k} such that D is a subgraph of
Ji; or D is a subgraph of G2.

Let us make three observations for the proof of (3.2) before we handle these cases
separately.

(b) If e is incident with y, and if we denote the other end of e by z, then we may assume
that y, z, e occur on C in the clockwise order listed.

To prove (b) assume that y, e, z occur on C in this clockwise order. Let p := y, q := z, let
G′

1 be the subgraph of G induced by e, and let G′

2 := G− e. It follows from the hypothesis
of (3.2) that D is not a subgraph of G′

2, and hence e ∈ E(D). Applying (2.1) to the graph
G′

2 (with G′

2, zCy ∪ zDy, y, z, x as G, C, y, x, e, respectively), we find a (zCy ∪ zDy)-Tutte
path P ′ between y and z in G′

2 such that x ∈ V (P ′). Hence, T := P ′ + e is a (C ∪D)-Tutte
cycle in G with e ∈ E(T ) and x ∈ V (T ). By planarity, no T -bridge of G contains edges of
both C and D. Let P be the path obtained from T by deleting the unique edge f of T − e
incident with y. Note that any P -bridge of G either is induced by f or is a T -bridge of G.
Hence, no P -bridge of G contains vertices of both C − P and D − P , and so, P satisfies
(A) of (3.2) with H null. Thus we may assume that (b) holds.

We deduce from (b) that
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(c) e ∈ E(J1) ∪ E(G2).

Moreover, the choice of G2 implies that

(d) if e 6∈ E(G2), then e has ends y and v1.

Now we distinguish three cases according to (a).

Case 1. There exists some i ∈ {2, . . . , k} such that D is the union of vi−1C2vi, a subpath
Qi−1 of Ji−1, and a subpath Qi of Ji.

In this case, y ∈ V (D), Qi−1 has ends vi−1 and y, and Qi has ends vi and y.
Suppose i = 2 and assume both e ∈ E(J1) and x ∈ V (J1). In this case, we only need

to prove (3.2) (because for (3.1), we specify e below so that e is in G2). Since e ∈ E(J1)
and by (d), E(v1Cy) = {e}. Let H∗ := J1, H := G− (V (J1)−{y, v1}), and let a := v1 and
b := y. Then (H, H∗) is a separation in G with V (H) ∩ V (H∗) = {a, b}, bCa ∪ bDa ⊆ H,
aCb∪aDb ⊆ H∗, and y ∈ (V (H)−{a})∪{b}. If |V (J1)| = 2 then x = v1 and P := J1 gives
a D1-Tutte path from b = y in H∗ such that a, x ∈ V (P ) and e ∈ E(P ), and we have (B)
of (3.2). Now assume that J1 is 2-connected. By (2.1) (with H∗ as G), we find a D1-Tutte
path P between b = y and x in H∗ such that e ∈ E(P ). Therefore, we have (B) of (3.2).

So assume that either i 6= 2 or one of {e, x} does not belong to J1.
Let G′ be obtained from G by deleting V (Jj) − {vj, y} for all j = i, i + 1, . . . , k. Then

C ′ := vkCy ∪ Qi−1 ∪ vi−1C2vk is the outer walk of G′. The following will serve as a proof
of both (3.1) and (3.2) with the proviso that when inductively applying (3.2) in the proof
of (3.1) the edge e is chosen to be the unique edge of C ∩ G′ incident with vk.

Next, we find a (C ′ ∪ Di)-Tutte path P ∗ from y in G′ ∪ Ji such that x, vi ∈ V (P ∗) and
e ∈ E(P ∗). Assume first that x ∈ V (G′). If G′ is 2-connected, then P ∗ can be found by
applying (2.4) to G′ (with G′, C ′, y, x, vi, e, P

∗ as G, C, x, y, e, f, P , respectively). So assume
that G′ is not 2-connected. Then i = 2, and so, either e /∈ E(J1) or x /∈ V (J1). By (2.1)
(with J1, D1, y, v1, e or x as G, C, y, x, e, respectively), we find a D1-Tutte path P1 between
y and v1 in J1 such that e ∈ E(P1) if e ∈ E(J1) and x ∈ V (P1) if x ∈ V (J1). If x /∈ V (G2)
then by (2.1) (with G2, C2, v1, v2, e as G, C, x, y, e, respectively), and if x ∈ V (G2) then by
(2.4) (with G2, C2, v1, x, v2, e as G, C, x, y, e, f , respectively), we find a C2-Tutte path P2

from v1 in G2 such that v2 ∈ V (P2), e ∈ E(P2), and x ∈ V (P2) if x ∈ V (G2). It is easy
to check that P ∗ := P1 ∪ P2 is the desired path. Now we may assume that x 6∈ V (G′).
Thus x ∈ V (Ji)−{y, vi}. By (2.1) (with G′, C ′, y, vi, e as G, C, x, y, e, respectively), we find
a C ′-Tutte path P ′ in G′ with ends y and vi such that e ∈ E(P ′). Again by (2.1) (with
Ji, Di, vi, y, x as G, C, x, y, e, respectively), we find a Di-Tutte path P ′′ with ends y and vi

such that x ∈ V (P ′′). It is easy to check that P ∗ := P ′ ∪ (P ′′ − y) gives the desired path.
This completes the construction of the path P ∗.

Suppose vk ∈ V (P ∗). If there exists no P ∗-bridge of G containing edges of both C and
D, then P := P ∗ satisfies both the conclusion of (3.1) and (A) of (3.2) with H null. So
assume that there exists a P ∗-bridge of G containing edges of both C and D, then this
bridge is Jk and i = k. In this case, y is an end of P ∗ and x 6∈ V (Jk) − {y, vk}. Therefore
for (3.2), the path P := P ∗, graphs H := Jk and H∗ = G − (V (H)− {y, vk}), and vertices
b := y, a := vk satisfy (B). To prove (3.1), we apply (2.1) (with G′, C ′, y, vk, x as G, C, x, y, e,
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respectively) to find a C ′-Tutte path Q between y and vk in G′ such that x ∈ V (Q). We
also apply (2.1) to Jk (with Jk, Dk, y, vk as G, C, x, y, respectively) to find a Dk-Tutte path
R between y and vk. Then it is easy to see that P := Q ∪ (R − y) satisfies the conclusion
of (3.1).

Now assume that vk 6∈ V (P ∗). Then i 6= k (since vi ∈ V (P ∗)) and e is not incident
with vk, and so, we only need to prove (3.2) (because for (3.1), e is incident with vk). Let
H be the P ∗-bridge of G containing vk, and let a, b, c be its attachments labeled so that
b = y, a ∈ V (C) and c ∈ V (C2) − V (C). Since i 6= k, D ⊆ G − I(H). It follows from the
construction of P ∗ (in particular, vi ∈ V (P ∗)) that P ∗ is a ((C − I(H)∪ D)-Tutte path in
G−I(H) and no P ∗-bridge of G contains edges of both C and D. Hence, P := P ∗, H, a, b, c
satisfy (A) of (3.2).

Case 2. There is some i ∈ {1, 2, . . . , k} such that D is a subgraph of Ji.
First, we dispose of the case i = 1. To this end assume that i = 1, let p := y, q := v1, let

K be obtained from G by deleting vertices and edges of J1 except p and q, and let us consider
the separation (K, J1) in G. To prove (3.1), let J ′

1 := J1 +yv1 and C ′ := v1Cy+yv1 (so that
C ′ is the outer cycle of J ′

1). Inductively applying (3.1) to J ′

1 (with J ′

1, C
′, x, y as G, C, x, y,

respectively) we find a (C ′ ∪ D)-Tutte path P ′ from y in J ′

1 such that x ∈ V (P ′) and no
P ′-bridge of J ′

1 contains vertices of both C ′ −P ′ and D−P ′. If yv1 /∈ E(P ′), then P := P ′

satisfies the conclusion of (3.1) (and K is a P -bridge of G with two attachments and contains
no vertex of D). If yv1 ∈ E(P ′), then we apply (2.1) to K (with K, y, v1, vk as G, x, y, e,
respectively) to find a yCv1-Tutte path P ′′ between y and v1 such that vk ∈ V (P ′′), and
clearly, P := (P ′ − yv1) ∪ P ′′ satisfies the conclusion of (3.1). Now let us prove (3.2). The
hypothesis of (3.2) implies that e ∈ E(J1). By (d), the edge e has ends y and v1, and
so, J1 is 2-connected. By inductively applying (3.2) to J1 (with J1, D1, y, x as G, C, y, x,
respectively), we find a1, b1, c1, H1, P (as a, b, c, H, P , respectively) satisfying (A) of (3.2) or
we find a1, b1, (H1, H

∗

1), P , (as a, b, (H, H∗), P , respectively) satisfying (B) of (3.2). Notice
that K becomes a P -bridge of G with attachments y and v1. Also note that if the graph H1

obtained by induction is non-null then H1 contains no vertex of C and y is an attachment
of H1. Hence, (A) of (3.2) holds with H null.

So we may assume that i > 1.
Let G′ be obtained from G by deleting V (Jj) − {vj, y} for all j = i, i + 1, . . . , k. Note

that G′ + yvi is 2-connected, and let C ′ := (viC2vk ∪ vkCy) + yvi (so that C ′ is the outer
cycle of G′ + yvi). By (2.3) (with G′ + yvi, C

′, y, vi, vk, e as G, C, x, y, e, f , respectively),
there exists a C ′-Tutte path P ′ between y and vi in G′ such that e ∈ E(P ′) and vk ∈ V (P ′).
Let G3 = Ji + yvi and let e3 be the edge of G3 with ends y and vi. If i = k, then let C3 be
the cycle of G3 consisting of the edge e3 and the path yCvk. If i < k let C3 be an arbitrary
facial cycle of G3 that includes the edge e3. In either case we may assume that a plane
representation of G3 is chosen so that C3 is its outer cycle and y, vi, e3 appear on C3 in the
clockwise order listed.

To prove (3.1), we inductively apply (3.1) to G3 (with G3, C3, y, x as G, C, y, x, respec-
tively), and we find a (C3 ∪ D)-Tutte path P3 from y in G3 such that x ∈ V (P3) and no
P3-bridge of G3 contains vertices of both C3 −P3 and D −P3. If e3 /∈ E(P3), then P := P3

satisfies the conclusion of (3.1) (and G′ ∪ Ji+1 ∪ . . . ∪ Jk is contained in a P3-bridge of G
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with two attachments). If e ∈ E(P3), then P := P ′ ∪ (P3 − y) satisfies the conclusion of
(3.1).

To prove (3.2), we wish to inductively apply (3.2) to G3 (with G3, C3, y, x, e3 as G, C, y, x, e,
respectively). Since e3 is incident with y and because y, vi, e3 occur on C3 in this clockwise
order, we see that the hypothesis of (3.2) is satisfied. Hence, there are two possibilities.
(A) There exist a C3-flap H3 in G3 with attachments a3, b3, c3 (a3 = b3 = c3 if H3 is null)
and a ((C3 − I(H3)) ∪ D)-Tutte path P3 from b3 in G3 − I(H3) such that D ⊆ G − I(H3),
e3, b3, y, a3 occur on C3 in this clockwise order, y ∈ (V (H3) − {a3}) ∪ {b3}, e3 ∈ E(P3),
x, a3, c3 ∈ V (P3), no P3-bridge of G3 contains vertices of both C3−P3 and D−P3. (B) There
exist a3, b3 ∈ V (C3) ∩ V (D), a separation (H3, H

∗

3) in G3 with V (H3) ∩ V (H∗

3 ) = {a3, b3},
and a (C3 ∪D)-Tutte path P3 from b3 in G3 such that e3, b3, y, a3 occur on C3 in this clock-
wise order, b3C3a3∪b3Da3 ⊆ H3, a3C3b3∪a3Db3 ⊆ H∗

3 , P3 ⊆ H∗

3 , y ∈ (V (H3)−{a3})∪{b3},
e3 ∈ E(P3), a3, x ∈ V (P3), and no P3-bridge of G3 distinct from H3 contains vertices of
both C3 − P3 and D − P3. Since e3 is incident with y we see that b3 = y. If i 6= k, then
P := P ′ ∪ (P3 − y) satisfies (A) of (3.2) with H null. If i = k, then P := P ′ ∪ (P3 − y), H3

or (H3, H
∗

3 ∪ G′) (as H or (H, H∗)), and the vertices a3, b3, c3 (as a, b, c) satisfy (A) or (B)
of (3.2).

Case 3. D is a subgraph of G2.
We will construct the desired path P as the union of two paths P1, P2 in graphs G1 (to

be defined), G2, respectively. This will be done simultaneously for (3.1) and (3.2), with the
understanding that when inductively applying (3.2) to G2 in the proof of (3.1) we let e be
the unique edge of C2 ∩ C incident with vk.

Since D ⊂ G2 and G2 is a block, G2 is 2-connected. To construct P2 we wish to
inductively apply (3.2) to G2, C2, D, v1, x, e (as G, C, D, y, x, e, respectively) if e ∈ E(G2),
or we wish to inductively apply (3.1) to G2, C2, D, v1, x (as G, C, D, y, x, respectively) if
e /∈ E(G2). In order to apply (3.2) to G2, we must verify the absence in G2 of vertices
p, q and a 2-separation as in the hypothesis of (3.2). Suppose for a contradiction that
there exist distinct vertices p, q ∈ V (C2) and a 2-separation (G′′

2, G
′

2) in G2 such that
V (G′′

2) ∩ V (G′

2) = {p, q}, p, v1, e, q occur on C2 in the clockwise order listed, pC2q ⊆ G′′

2,
and qC2p ∪D ⊆ G′

2. Since v1 and e both belong to pC2q ∩C, we deduce that p, q ∈ V (C).
Let G′

1 := G′′

2 ∪ J1 ∪ J2 ∪ . . . ∪ Jk; then (G′

1, G
′

2) is a 2-separation in G that contradicts
the hypothesis of (3.2). This verifies the absence of vertices p, q and a corresponding 2-
separation in G2, and hence we may inductively apply (3.2) to G2, C2, D, v1, x, e when
e ∈ E(G2).

First, we construct P2. If e /∈ E(G2) (this only applies to the proof of (3.2)), then by
inductively applying (3.1) to G2, we find a (C2 ∪ D)-Tutte path P2 from v1 in G2 such
that x ∈ V (P2) and no P2-bridge of G2 contains vertices of both C2 − P and D − P , and
we define H2 to be null. Now assume e ∈ E(G2). By inductively applying (3.2) to G2,
we have two possibilities. (A) There exist a C2-flap H2 in G2 with attachments a2, b2, c2

(a2 = b2 = c2 = v1 if H2 is null), and a ((C2 − I(H2)) ∪ D)-Tutte path P2 from b2 in
G − I(H2) such that D ⊆ G2 − I(H2), e, b2, v1, a2 occur on C2 in this clockwise order,
v1 ∈ (V (H2) − {a2}) ∪ {b2}, e ∈ E(P2), x, a2, c2 ∈ V (P2), and no P2-bridge of G2 contains
vertices of both C2 − P2 and D − P2. (B) There exist a2, b2 ∈ V (C2) ∩ V (D), a separation
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(H2, H
∗

2 ) in G2 with V (H2) ∩ V (H∗

2) = {a2, b2}, and a (C2 ∪ D)-Tutte path P2 from b2

in G2 such that e, b2, v1, a2 occur on C2 in this clockwise order, b2C2a2 ∪ b2Da2 ⊆ H2,
a2C2b2 ∪ a2Db2 ⊆ H∗

2 , P2 ⊆ H∗

2 , v1 ∈ (V (H2) − {a2}) ∪ {b2}, a2, x ∈ V (P3), e2 ∈ E(P2),
and no P2-bridge of G2 distinct from H2 contains vertices of both C2 − P2 and D − P2.

We now define the graph G1 and construct the path P1 in G1. Assume first that H2 is
null. Let G1 := J1, and apply (2.1) to J1 to find a D1-Tutte path P1 between y and v1 in
G1 such that e ∈ E(P1) if e ∈ E(J1). Now assume that H2 is non-null. Then e ∈ E(G2).
Since e, b2, v1, a2 occur on C2 in the clockwise order listed, it follows that b2 ∈ V (C). We
may assume that a2 ∈ V (c1C2vk); for otherwise, we only need to prove (3.2) (because
e ∈ E(P ) is incident with vk), and the vertices a2, b2, c2 (as a, b, c) or a2, b2 (as a, b), the
graph H2 ∪ J1 ∪ . . .∪ Jk (as H), and the path P2 (as P ) satisfy (A) or (B) of (3.2). Let G1

be the union of H2 and those Ji with vi ∈ (V (H2)−{a2})∪{b2}. Assume first that we have
(A) above for P2. Note that G′

1 := G1+{a2c2, c2b2, ya2} is 2-connected, and we may assume
that G′

1 has a plane representation such that a2c2, b2c2, ya2 and C∩G1 are on its outer cycle
C ′

1. By applying (2.3) to the graph G′

1 we find a C ′

1-Tutte path P ′

1 between y and a2 such
that a2c2, c2b2 ∈ E(P ′

1), and let P1 := P ′

1 − {a2, c2}. Now assume that we have (B) above
for P2. Then we apply (2.1) to the graph G′′

1 := G1 + a2y to get a ((C ∪ D) ∩ G′′

1)-Tutte
path P ′

1 between a2 and b2 such that a2y ∈ E(P ′

1), and let P1 = P ′

1 − a2.
Let P := P1 ∪ P2. If vk ∈ V (P ) we let a = b = c = y and let H be null. If vk 6∈ V (P ),

then vk belongs to a P2-bridge H ′ of G2 with two attachments. Let a, c be the attachments
of H ′ such that c ∈ V (C2) − V (C) and a ∈ V (C) ∩ V (C2), let b = y, and let H be the
union of H ′ and those Ji with vi ∈ V (H ′) − {c}. Then H is a C-flap with attachments
a, b, c, and P is a path from b in G− I(H) such that a, c ∈ V (P ) and e ∈ E(P ). Note when
vk /∈ V (P ), e /∈ E(G2) and, therefore, we only need to show (3.2).

To prove that P satisfies the conclusions of (3.1) and (3.2), we first notice that P is
a ((C − I(H)) ∪ D)-Tutte path in G1 ∪ G2 = G1 ∪ (G2 − I(H2)), and by planarity, no
P -bridge of G1 ∪ G2 contains vertices of both C − P and D − P . Let J be a P -bridge of
G distinct from H. Then J is either a P -bridge of G1 ∪G2, or J = Ji for some i (in which
case J has at most two attachments), or J is the union of a P2-bridge J ′ of G2 − I(H2)
and some of the Ji’s (in which case, J ′ includes an edge of C2, and hence has exactly two
attachments on P2, and so we deduce that J has exactly three attachments on P ). Hence,
P is a ((C − I(H)) ∪ D)-Tutte path in G − I(H). Note that D ⊆ G − I(H), and so, we
have (A) of (3.2). For (3.1), because e is incident with vk, we have vk ∈ V (P2). Therefore
H is null, and hence P is a (C ∪ D)-Tutte path in G satisfying (3.1).

Now we show that (3.2) also holds when the vertex x is replaced by an edge f not
incident with e. See Figure 3 for an illustration (with f replacing x).

(3.3) Theorem. Let G be a 2-connected plane graph with outer cycle C and another
facial cycle D. Let y ∈ V (C), f ∈ E(D), and e ∈ E(C). Assume that {e, f} is a matching
in G, and assume that there do not exist distinct vertices p, q ∈ V (C) and a 2-separation
(G′

1, G
′

2) in G such that V (G′

1)∩V (G′

2) = {p, q}, p, y, e, q occur on C in the clockwise order
listed, pCq ⊆ G′

1, and qCp ∪ D ⊆ G′

2. Then one of the following holds:
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(A) there exist a C-flap H in G with attachments a, b, c (a = b = c = y if H is null) and a
((C− I(H))∪D)-Tutte path P from b in G− I(H) such that D ⊆ G− I(H), e, b, y, a
occur on C in this clockwise order, y ∈ (V (H)−{a})∪{b}, e, f ∈ E(P ), a, c ∈ V (P ),
and no P -bridge of G contains vertices of both C − P and D − P ; or

(B) there exist a, b ∈ V (C)∩V (D), a separation (H, H∗) in G with V (H)∩V (H∗) = {a, b},
and a (C∪D)-Tutte path P from b in G such that e, b, y, a occur on C in this clockwise
order, bCa∪bDa ⊆ H, aCb∪aDb ⊆ H∗, P ⊆ H∗, y ∈ (V (H)−{a})∪{b}, a ∈ V (P ),
e, f ∈ E(P ), and no P -bridge of G distinct from H contains vertices of both C − P
and D − P .

Proof. Let G′, D′ denote the graphs obtained from G, D, respectively, by subdividing
the edge f with a vertex x. It is clear that G′, C, D′, y, x, e (as G, C, D, y, x, e, respectively)
satisfy the hypothesis of (3.2). By applying (3.2) to G′, C, D′, y, x, e, we find P ′ (as P in
(3.2)) and H (respectively, (H, H∗)) satisfying (A) (respectively, (B)) of (3.2).

First assume that x is not an end of P ′. Then it is easy to check that P := (P ′−x)+ f
and H (respectively, (H, (H∗ − x) + f)) satisfy (A) (respectively, (B)) of (3.3).

So assume that x is an end of P ′. Let x1, x2 denote the neighbors of x, and assume
that xx1 ∈ E(P ′). If x2 /∈ V (P ′) then x2 is contained in some P ′-bridge of G′ with two
attachments (one of these is x), and so, it is easy to check that P := ((P ′ − x) ∪ {x2}) + f
and H (respectively, (H, (H∗ − x) + f)) satisfy (A) (respectively, (B)) of (3.3). Therefore,
we may assume that x2 ∈ V (P ′). Choose the edge g of P ′ incident with x2 such that
P := ((P ′ − x) + f)− g is a path. Because {e, f} is a matching in G, we have g 6= e. Now
P and H (respectively, (H, (H∗ − x) + f)) satisfy (A) (respectively, (B)) of (3.3).

4 Toroidal graphs

Let G be a graph embedded in the torus and let R be a face of G. We define the R-width
of G to be the minimum number |γ ∩ G| taken over all non-null homotopic simple closed
curves γ in the torus passing through R. Note that we can homotopically shift curves in
the torus so that curves that we will deal with meet G only at vertices.

To prove (1.2), we will choose a face R of G and apply induction on the R-width of
G. Lemma (4.1) below deals with the base case. For the sake of induction, we introduce
(4,C)-connected graphs. Let G be a connected graph and C be a subgraph of G; then we
say that G is (4,C)-connected if, for any T ⊆ V (G) such that |T | ≤ 3 and G − T is not
connected, every component of G − T contains a vertex of C.

(4.1) Lemma. Let G be a 2-connected graph embedded in the torus with face width
at least 2, let R be a face of G bounded by a cycle C in G, and let y ∈ V (C). Assume
that the R-width of G is 2 and G is (4,C)-connected. Then there exist a C-flap H in G
with attachments a, b, c (a = b = c = y if H is null) and a (C − I(H))-Tutte path P from
b in G− I(H) such that b, y, a occur on C in this clockwise order, y ∈ (V (H)−{a})∪ {b},
a, c ∈ V (P ), and every P -bridge B of G containing an edge of C has a plane representation
with B ∩ (C ∪ P ) on its outer walk. Moreover, |V (P ) ∩ V (C)| ≥ 2 and |V (P )| ≥ 4.
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Proof. Let u, v ∈ V (C) be distinct such that there is a non-null homotopic simple
closed curve γ passing through R and meeting G only in u and v. We may choose the
triple (γ, u, v) such that y ∈ V (uCv) − {v}, and subject to this, uCy is minimal.

We cut the torus open along γ and, as a result, we obtain a plane graph G′ and vertices
u′, v′, u′′, v′′ of G′ such that (by choosing appropriate notation) (1) u′ and v′ belong to the
outer walk C ′ of G′, and E(uCv) induces a path F ′ on C ′ in the clockwise order from u′ to
v′, (2) u′′ and v′′ belong to a facial walk C ′′ of G′, and E(vCu) induces a path F ′′ on C ′′

in the clockwise order from u′′ to v′′, and (3) identifying u′ with u′′ as u and identifying v′

and v′′ as v, we obtain G from G′.
Clearly, u′, v′ /∈ V (C ′′) and u′′, v′′ /∈ V (C ′). For otherwise, there is a non-null homo-

topic simple closed curve in the torus intersecting G only at u or v. This contradicts the
assumption that the face-width of G is at least 2.

Note that if y 6= u then y ∈ V (F ′) − {u′, v′}. Let y := u′ if y = u. Also note that if
|V (F ′)| ≥ 3 then F ′+u′v′ is a cycle, and if |V (F ′)| = 2 then F ′+u′v′ = F ′ and G′+u′v′ = G′.
So when |V (F ′)| ≥ 3, we draw u′v′ in the infinite face of G′ so that F ′ + u′v′ is the outer
cycle of G′ + u′v′. Because the face width of G is 2, F ′ ∩F ′′ = ∅ and (G′ +u′v′)−F ′′ has a
cycle containing F ′ + u′v′. Let L denote the block of (G′ + u′v′) − F ′′ containing one such
cycle, and let D′ denote the outer cycle of L. Then D′ = F ′ + u′v′ if |V (F ′)| ≥ 3, and
otherwise, F ′ ⊆ D′. Let D be the cycle bounding the face of L which contains F ′′ (as a
subset of the plane). Let u∗, v∗ ∈ V (F ′′) with u∗F ′′v∗ maximal such that u′′, u∗, v∗, v′′ occur
on F ′′ in this order and u∗ and v∗ are attachments of some (L ∪ F ′′)-bridges of G′ + u′v′

which also have attachments on L. Let x, z ∈ V (D) such that {x, u∗} is contained in a
(L ∪ F ′′)-bridge of G′ + u′v′, {z, v∗} is contained in a (L ∪ F ′′)-bridge of G′ + u′v′, and
subject to these conditions, zDx is minimal. Then zDx − {z, x} contains no attachment
of any (L ∪ F ′′)-bridge of G′ + u′v′. See Figure 5. Possibly, z = x.

Next we define a graph M and a subgraph PM of M , according to whether or not we
have x = z. First, assume x 6= z. We let u1 = u′′ and v1 = v′′, let V (M) = {x, u′′, v′′} and
E(M) = ∅, and let PM = ∅. Now assume x = z. Let u1, v1 ∈ V (F ′′) such that u′′, u1, v1, v

′′

occur on F ′′ in order, {x, u1} is contained in a (L∪F ′′)-bridge of G′+u′v′, {x, v1} is contained
in a (L∪F ′′)-bridge of G′ +u′v′, and subject to these conditions, u1F

′′v1 is minimal. When
u1 6= v1, let M denote the union of u1F

′′u′′∪v′′F ′′v1 and those (L∪F ′′)-bridges of G′ +u′v′

whose attachments are all contained in V (u1F
′′u′′)∪V (v′′F ′′v1)∪{x}. When u1 = v1, let M

be obtained from the union of F ′′ and those (L∪F ′′)-bridges of G′+u′v′ whose attachments
are all contained in V (F ′′)∪{x} by splitting the vertex u1 = v1 to two vertices u1 and v1 in
a natural way. We apply (2.3) to M + {u1x, v1x, u′′v′′} to find a (u′′F ′′u1 ∪ v′′F ′′v1)-Tutte
path P ′

M from u′′ to v′′ and through u1x and v1x. Let PM = P ′

M − x, which consists of
disjoint paths from u′′, v′′ to u1, v1, respectively.

We divide the remainder of the proof into two cases.

Case 1. x /∈ {u′, v′}, and both edges of D incident with x are incident with the edge
u′v′.

In this case, we must have x = z, for otherwise, the edge of zDx incident with x is not
incident with u′ or v′ (because zDx ⊆ C ′′ and u′, v′ /∈ V (C ′′)). Also the two edges of D
incident with x must be xu′ and xv′.
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Therefore u1 6= u′′ and v1 6= v′′, for otherwise, there is a non-null homotopic simple
closed curve in the torus intersecting G only at u or v, contradicting the assumption that
the face width of G is at least 2. Moreover, because G is (4, C)-connected, {u′, v′, x} induces
a facial triangle in G′ + u′v′. Hence, x has exactly two neighbors in L, namely u′ and v′.

Let L′ denote the plane graph obtained from G′ +u′v′ by deleting M −{u1, v1}, adding
edges u1u

′ and v1v
′, and deleting u′v′ when |V (F ′)| > 2, such that Q := (u1F

′′v1 ∪ F ′) +
{u1u

′, v1v
′} is the outer cycle of L′ on which v′, v′v1, u1u

′, u′, y occur in clockwise order.
By applying the mirror image version of (2.2) (with L′, Q, v′, y, u′u1, v

′v1 as G, C, x, y, e, f ,
respectively), there exist a C-flap H in L′ with attachments a, b, c (a = b = c = y if H is
null) and a (Q− I(H))-Tutte path P ′ from b to v′ in L′− I(H) such that u′, b, y, a, v′ occur
on Q (and hence, on D′) in clockwise order, y ∈ (V (H) − {a}) ∪ {b}, u1u

′, v1v
′ ∈ E(P ′),

and a, c ∈ V (P ′). (Note that H is null when |V (F ′)| = 2.) By planarity, no P ′-bridge of
L′ contains vertices of both F ′ and u1F

′′v1.
Let P denote the path in G induced by (E(P ′) − {u′u1, v

′v1}) ∪ E(PM) ∪ {xv′}. Then
P is a path from y to x, u, v, x, u1, v1 ∈ V (P ), and b, y, a occur on C in clockwise order.
Hence, |V (P ) ∩ V (C)| ≥ 2 and |V (P )| ≥ 4 (because x /∈ {u′, v′}, u′′ 6= u1 and v′′ 6= v1).
Clearly, H is a C-flap in G. Moreover, every P -bridge of G is either a P ′-bridge of L′, or
a P ′

M -bridge of M , or a bridge induced by the edge u′x. Hence, P is a (C − I(H))-Tutte
path from b in G − I(H) such that a, c ∈ V (P ). It is also clear that every P -bridge of G
containing an edge of C is either a P ′

M -bridge of M containing an edge of M ∩ F ′′, or a
P ′-bridge of L′ containing an edge of F ′ or u1F

′′v1 but not both. Hence, every P -bridge
B of G containing an edge of C has a plane representation with B ∩ (C ∪ P ) on its outer
walk. So P gives the desired path.

Case 2. Either x ∈ {u′, v′} or there is an edge f ∈ E(D) incident with x such that
{f, u′v′} is a matching.

When x ∈ {u′, v′}, we pick an arbitrary vertex x′ ∈ V (D)−{u′, v′}. Next, we show that
we may apply (3.2) to L, D′, D, y, x′, u′v′ (as G, C, D, y, x, e, respectively) and, in the case
when the edge f exists, apply (3.3) to L, D′, D, y, f, u′v′ (as G, C, D, y, f, e, respectively).
When |V (F ′)| = 2, we apply a mirror image version of (3.2) or (3.3), and the hypothesis
of (3.2) or (3.3) holds because y = u′. When |V (F ′)| ≥ 3, we claim that there do not exist
vertices p, q ∈ V (D′) and a 2-separation (G′

1, G
′

2) in L such that V (G′

1) ∩ V (G′

2) = {p, q},
p, y, u′v′, q occur on D′ in this clockwise order, pD′q ⊆ G′

1, and qD′p ∪ D ⊆ G′

2. This is
obvious if u′ = y. So assume that u′ 6= y. Suppose the above p, q, and (G′

1, G
′

2) do exist.
Then we can choose a non-null homotopic simple closed curve γ1 in the torus such that γ1

meets G only in p and q and passes through R. Because y ∈ pCq − q and because pCy is
properly contained in uCy, (γ1, p, q) contradicts the choice of (γ, u, v). So we may apply
(3.2) to L, D′, D, y, x′, u′v′ or apply (3.3) to L, D′, D, y, f, u′v′.

By (3.2) (when x ∈ {u′, v′}) and (3.3) (when f exists), there are two possibilities, and
we treat them in two separate cases.

Subcase 2.1. There exist a C-flap H in L with attachments a, b, c (a = b = c = y if H is
null) and a ((D′ − I(H))∪D)-Tutte path P ′ from b in L− I(H) such that D ⊆ L− I(H),
u′v′, b, y, a occur on D′ in this clockwise order (or when |V (F ′)| = 2, u′v′, a, y = b occur
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on D′ in this clockwise order), y ∈ (V (H) − {a}) ∪ {b}, x′ ∈ V (P ′) when x ∈ {u′, v′},
f ∈ E(P ′) when the edge f exists, u′v′ ∈ E(P ′), a, c ∈ V (P ′), and no P ′-bridge of L
contains vertices of both D′ − P ′ and D − P ′.

Note that when |V (F ′)| = 2, H must be null. For otherwise, H−{a, b, c} is a component
of G − {a, b, c} containing no vertex of C, contradicting the assumption that G is (4,C)-
connected. See Figure 5.
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Figure 5: Subcase 2.1

Next we apply (2.5) to find a path P1 from u1 to v1. For this purpose, we view (G′ +
u′v′) − (M − {u1, v1, x}), L, u1, v1, x, u1F

′′v1, D, P ′ as K, L, p, q, u, Q, Q′, T in (2.5), respec-
tively. It is straightforward to verify that the conditions of (2.5) are satisfied. (In particular,
|V (P ′)∩V (D)| ≥ 2 because f ∈ E(D)∩E(P ′) or because x, x′ ∈ V (P ′)∩V (D).) By (2.5),
there is a path P1 (as S in (2.5)) between u1 and v1 in ((G′ +u′v′)− (M −{u1, v1, x}))−P ′

such that P ′∪P1 is an u1F
′′v1-Tutte subgraph of (G′+u′v′)−(M−{u1, v1, x}) and every P ′-

bridge of L containing no edge of D is also a (P ′∪P1)-bridge of (G′+u′v′)−(M−{u1, v1, x}).
By planarity, no (P ′ ∪ P1)-bridge of (G′ + u′v′) − (M − {u1, v1, x}) contains edges of both
F ′ and u1F

′′v1. Hence, P ′ ∪ P1 ∪ PM is a ((D′ − I(H)) ∪ F ′′)-Tutte subgraph of G′ + u′v′.
Clearly, H is a C-flap in G, and E((P ′ − u′v′) ∪ P1 ∪ PM) induces a (C − I(H))-Tutte

path P from b in G − I(H) such that a, c ∈ V (P ). It is also clear that every P -bridge
of G containing an edge of C is a (P ′ ∪ P1 ∪ PM)-bridge of G′ + u′v′ containing an edge
of F ′ or F ′′ but not both. Hence, every P -bridge B of G containing an edge of C has a
plane representation with B ∩ (C ∪ P ) on its outer walk. Because u, v ∈ V (P ) ∩ V (C),
|V (P ) ∩ V (C)| ≥ 2.

We conclude this case by showing |V (P )| ≥ 4. This is obvious when the edge f exists,
because f ∈ E(P ∩ D) and {f, u′v′} is a matching. Now assume x ∈ {u′, v′}. Then
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|V (P )| ≥ 3 (because u, v, x′ ∈ V (P )). Suppose |V (P )| = 3. Then |V (PM ∪ P1)| = 2. This
implies that u′′ = u1, v′′ = v1, and u′′v′′ ∈ E(G′). Therefore, since G is (4,C)-connected,
{x, u′′, v′′} is not a cut in G. Hence V (M) = {x, u′′, v′′} and E(M) = {xu′′, xv′′}. This
shows x ∈ C ′′, contradicting the fact that u′, v′ /∈ C ′′. So we have |V (P )| ≥ 4.

Subcase 2.2. There exist a′, b′ ∈ V (D′) ∩ V (D), a separation (H ′, H∗) in L with
V (H ′)∩ V (H∗) = {a′, b′}, and a (D′ ∪D)-Tutte path P ′ from b′ in L such that u′v′, b′, y, a′

(u′v′, a′, y, b′ when |V (F ′)| = 2) occur on D′ in this clockwise order, b′D′a′∪ b′Da′ ⊆ H ′ (or
a′D′b′ ∪ a′Db′ ⊆ H ′ when |V (F ′)| = 2), a′D′b′ ∪ a′Db′ ⊆ H∗ (or b′D′a′ ∪ b′Da′ ⊆ H∗ when
|V (F ′)| = 2), P ′ ⊆ H∗, y ∈ (V (H ′) − {a′}) ∪ {b′} (y = b′ when |V (F ′)| = 2), x′ ∈ V (P ′)
when x ∈ {u′, v′}, f ∈ E(P ′) when the edge f exists, u′v′ ∈ E(P ′), a′ ∈ V (P ′), and no
P ′-bridge of L other than H ′ contains vertices of both D′ − P ′ and D − P ′.

Note that there are vertices of u1F
′′v1 which are co-facial with a′ or b′. Let s, t ∈

V (u1F
′′v1) such that (a) u′′, u1, s, t, v1, v

′′ occur on F ′′ in this order, (b) s is co-facial with
b′ (or a′ when |V (F ′)| = 2) and t is co-facial with a′ (or b′ when |V (F ′)| = 2), and (c)
subject to (a) and (b), sF ′′t is maximal. Let J denote the union of H ′, sF ′′t, and those
(L ∪ F ′′)-bridges of G′ + u′v′ whose attachments are all contained in V (sF ′′t) ∪ V (H ′).
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Since G is 2-connected, J∗ := J + {a′t, sb′} (or J∗ := J + {a′s, b′t} when |V (F ′)| = 2) is
2-connected. Without loss of generality, assume that C∗ := (b′D′a′ ∪ sF ′′t) + {a′t, sb′} (or
C∗ := (a′D′b′ ∪ sF ′′t) + {a′s, tb′} when |V (F ′)| = 2) is the outer cycle of J∗. By (2.2), with
J∗, C∗, a′, y, sb′, a′t (or a′, y, b′t, a′s when |V (F ′)| = 2) as G, C, x, y, e, f , respectively, there
exist a C∗-flap H with attachments a, b, c (a = b = c = y if H is null) and a (C∗ − I(H))-
Tutte path P ∗ between b and a′ in J∗−I(H) such that sb′, b, y, a, a′ (or a, y = b, b′t, sa′ when
|V (F ′)| = 2) occur on C∗ in this clockwise order, y ∈ (V (H) − {a}) ∪ {b}, a, c ∈ V (P ∗),
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and {a′t, sb′} ⊆ E(P ∗) (or {a′s, b′t} ⊆ E(P ∗) when |V (F ′)| = 2). Note when |V (F ′)| = 2,
y = b and H is null because G is (4,C)-connected. So H is also a C-flap in G. By planarity,
no P ∗-bridge of J∗ contains edges of both D′ and F ′′.

Next we apply (2.5) to find a path P1 from u1 to s and a path P2 from t to v1. Note that,
since x ∈ V (D) ∩ V (P ′), x divides the attachments on D ∩ H∗ of (L ∪ F ′′)-bridges so that
the P ′-bridges of H∗ used in constructing P1 are different from those used in constructing
P2.

Let L1 denote the union of L, u1F
′′s, and those (L∪F ′′)-bridges of G whose attachments

are all contained in V (H∗)∪V (u1F
′′s). Then L1 is connected because x ∈ V (H∗). We view

L1, L, u1, s, x, u1F
′′s, D, P ′ as K, L, p, q, u, Q, Q′, T in (2.5), respectively. It is straightfor-

ward to verify that the conditions of (2.5) hold. (Recall that |V (P ′) ∩ V (D)| ≥ 2 because
f ∈ E(D ∩ P ′).) By (2.5), L1 − P ′ has a path P1 (as S in (2.5)) between u1 and s such
that P1 ∪ P ′ is a u1F

′′s-Tutte subgraph of L1 and every P ′-bridge of L containing no edge
of D is also a (P1 ∪P ′)-bridge of L1. By planarity, no (P1 ∪P ′)-bridge of L1 contains edges
of both u1F

′′s and D′. Hence, P1 ∪ P ′ is a (D′ ∪ u1F
′′s)-Tutte subgraph of L1.

Let L2 denote the union of L, edge ta′ (or tb′ when |V (F ′)| = 2), tF ′′v1, and those (L∪
F ′′)-bridges of G whose attachments are all contained in V (H∗)∪V (tF ′′v1). Note that L2 is
connected because of the edge ta′ (or tb′ when |V (F ′)| = 2). We view L2, L, t, v1, x, tF ′′v1, D, P ′

as K, L, p, q, u, Q, Q′, T in (2.5), respectively. By (2.5), L2−P ′ has a path P2 between t and
v1 such that P2∪P ′ is a tF ′′v1-Tutte subgraph of L2 and every P ′-bridge of L containing no
edge of D is also a (P2 ∪ P ′)-bridge of L2. By planarity, no (P2 ∪ P ′)-bridge of L2 contains
edges of both tF ′′v1 and D′. Hence, P2 ∪ P ′ is a (D′ ∪ tF ′′v1)-Tutte subgraph of L2.

Now E(P ′∪P ∗∪P1∪P2∪PM )−{u′v′, a′t, sb′} (or E(P ′∪P ∗∪P1∪P2∪PM )−{u′v′, a′s, b′t}
when |V (F ′)| = 2) induces a (C − I(H))-Tutte path P from b in G− I(H) such that b, y, a
occur on C in this clockwise order, y ∈ (V (H)−{a})∪{b}, and a, c ∈ V (P ). It is clear that
every P -bridge of G is one of the following: a (P ′ ∪P1)-bridge of L1, or (P ′ ∪P2)-bridge of
L2, or a P ∗-bridge of J∗, or a P ′

M -bridge of M . Hence, every P -bridge B of G containing
an edge of C has a plane representation with B ∩ (C ∪ P ) on its outer walk. Because
u, v ∈ V (P ) ∩ V (C), |V (P ) ∩ V (C)| ≥ 2.

By exactly the same argument as in the end of Subcase 2.1, we can show |V (P )| ≥ 4.

Before we proceed to the general case, let us prove the following lemma which will be
used to extend Tutte paths through C-flaps. See Figure 7 for an illustration.

(4.2) Lemma. Let G be a 2-connected plane graph with outer cycle C, let s, t, b, c, a ∈
V (C) be distinct such that tCs = tbcas, and let y ∈ V (sCt − s). Suppose that G −
((sCt − s) ∪ {a, c}) contains a path from b to s. Then there exist an sCt-flap H ′ in
G with attachments a′, b′, c′ (a′ = b′ = c′ = y if H ′ is null) and disjoint paths S and
T in (G − {a, c}) − I(H ′) such that s, a′, y, b′, t occur on C in this clockwise order, y ∈
(V (H ′)−{a′})∪{b′}, S is from s to b, T is from t to b′, a′, c′ ∈ V (S∪T ), and S∪T ∪{a, c}
is a (C − I(H ′))-Tutte subgraph of G.

Proof. Because G−((sCt−s)∪{a, c}) contains a path between b and s, sCb is contained
in a cycle in G − {a, c}. Let G′ denote the block of G − {a, c} containing sCb, and let C ′
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denote the outer cycle of G′. Thus sC ′b = sCb. Note that every (G′ ∪ {a, c})-bridge of G
has at most one attachment on G′ (because G′ is a block of G) and at least one attachment
in {a, c} (because G is 2-connected).

By planarity of G, there exists z ∈ V (bC ′s) such that, for each (G′ ∪ {a, c})-bridge B
of G, B ∩ C ′ ⊆ zC ′s if a ∈ V (B), and B ∩ C ′ ⊆ bC ′z if c ∈ V (B). See Figure 7.

By (2.2) (with G′, C ′, s, y, tb, z as G, C, x, y, e, f , respectively), there exist a C ′-flap H ′

with attachments a′, b′, c′ (a′ = b′ = c′ = y if H ′ is null) and a (C ′ − I(H ′))-Tutte path P
between b′ and s in G′− I(H ′) such that s, a′, y, b′, tb, z occur on C ′ in this clockwise order,
y ∈ (V (H ′)−{a′})∪{b′}, tb ∈ E(P ), and a′, c′, z ∈ V (P ). Let S and T denote the disjoint
paths in P − tb such that S is between s and b and T is between t and b′.

Note that a′, c′ ∈ V (S ∪ T ) and H ′ is an sCt-flap in G. Also note that every (S ∪ T ∪
{a, c})-bridge of G other than those contained in H ′ is either a P -bridge of G′− I(H ′), or a
(G′ ∪{a, c})-bridge of G, or induced by the edge tb. Because tCs = tbcas, no (G′ ∪ {a, c})-
bridge of G with three attachments contains an edge of C. Hence, S ∪ T ∪ {a, c} is a
(C − I(H ′))-Tutte subgraph of G.

We now prove (1.2) when the R-width is even for some face R.

(4.3) Lemma. Let G be a 2-connected graph embedded in the torus with face width
at least 2. Let R be a face of G, let C be the subgraph of G consisting of vertices and
edges of G incident with R, and let y ∈ V (C). Assume that the R-width of G is a
positive even integer, and G is (4,C)-connected. Then there exist a C-flap H ′ in G with
attachments a′, b′, c′ (a′ = b′ = c′ = y if H ′ is null) and a (C − I(H ′))-Tutte path P from b′

in G−I(H ′) such that b′, y, a′ occur on C in this clockwise order, y ∈ (V (H ′)−{a′})∪{b′},
a′, c′ ∈ V (P ), and every P -bridge B of G containing an edge of C has a plane representation
with B ∩ (C ∪ P ) on its outer walk. Moreover, |V (P ) ∩ V (C)| ≥ 2 and |V (P )| ≥ 4.

Proof. Because the face width of G is at least 2, C is a cycle in G. By (4.1), we may
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assume that the R-width of G is at least 4. Hence, G−C contains a cycle which bounds an
open disc in the plane containing R. Let L be the block of G−C containing one such cycle.
Then L has a face R′ which contains R (as subsets of the torus). Since L is 2-connected
and the R′-width of L is at least 2, R′ is bounded by a cycle, say D. Since G has face width
at least 2 and because D bounds a disc in the torus, L has face width at least 2. Since G
is (4,C)-connected, L is (4,D)-connected.

Clearly, every (L ∪ C)-bridge of G has at most one attachment on L and all these
attachments are contained in V (D). Let L∗ be the union of C, D, and all (L ∪ C)-bridges
of G. Then L∗ is contained in the closed disc in the torus bounded by D. Hence, we view
L∗ as a plane graph such that D is its outer cycle and C is a facial cycle. See Figure 8.

Let v1, . . . , vn be the attachments on D of (L ∪ C)-bridges of G, and occur on D in
this clockwise order. Let pi, qi ∈ V (C) such that qiCpi is maximal subject to the following
conditions: (a) {pi, vi} is contained in a (L ∪ C)-bridge of G, (b) {qi, vi} is contained in a
(L∪C)-bridge of G, and (c) no (L∪C)-bridge of G with an attachment in V (D)−{vi} has
an attachment in V (qiCpi)−{pi, qi}. Since G is (4,C)-connected, pi and qi are well defined
and there is some pj 6= pi (because otherwise G − {vi, pi} has a component containing
no vertex of C, contradicting (4, C)-connectivity of G). For i = 1, . . . , n, let Ji denote
the union of qiCpi and those (L ∪ C)-bridges of G whose attachments are all contained
in V (qiCpi) ∪ {vi}. Note that y ∈ V (pkCpk+1) − {pk+1} for some k ∈ {1, . . . , n}, where
pn+1 = p1, qn+1 = q1 and vn+1 = v1. In particular, pk 6= pk+1.

Because the R′-width of L is both even and less than the R-width of G, by induction
hypothesis (with L, D, R′, vk+1 as G, C, R, y, respectively), there exist a D-flap H with
attachments a, b, c (a = b = c = vk+1 if H is null) and a (D−I(H))-Tutte path T in L−I(H)
from b such that b, vk+1, a occur on D in this clockwise order, vk+1 ∈ (V (H) − {a}) ∪ {b},
a, c ∈ V (T ), and every T -bridge B of L containing an edge of D has a plane representation
with B ∩ (D ∪P ) on its outer walk. Note that |V (T )| ≥ 4 and |V (T )∩V (D)| ≥ 2 by (4.1)
or by induction hypothesis when the R′-width of L is at least 4.

We distinguish two cases.

Case 1. H is null.
In this case, T is a D-Tutte path from vk+1 in L.
Let J denote the union of pkCpk+1 and those (L ∪ C)-bridges of G whose attachments

are all contained in V (pkCpk+1) ∪ {vk+1}. Since G is 2-connected, J + pkvk+1 is also 2-
connected. We can view J + pkvk+1 as a 2-connected plane graph such that pkCpk+1 and
pkvk+1 are contained in its outer cycle Ck. By (2.1) (with J + pkvk+1, Ck, pk+1, y, pkvk+1 as
G, C, x, y, e, respectively), J + pkvk+1 has a Ck-Tutte path R between pk+1 and y such that
pkvk+1 ∈ E(R).

To find a path S from pk+1 to pk, we let K = G − (V (J) − {pk, pk+1, vk+1}). We view
pk+1Cpk, D, vk+1 as Q, Q′, u in (2.5), respectively. It is straightforward to check that the
conditions of (2.5) are satisfied (using the plane representation of L∗). By (2.5), there is
a path S in K − T between pk and pk+1 such that S ∪ T is a pk+1Cpk-Tutte subgraph of
K and every T -bridge of L containing no edge of D is also an (S ∪ T )-bridge of K. By
the plane representation of L∗, every (S ∪ T )-bridge B of K containing an edge of C has a
plane representation with B ∩ (S ∪ T ∪ C) on its outer walk.
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Let P := S ∪ T ∪ (R − pkvk+1). Then every P -bridge of G is either an (S ∪ T )-bridge
of K or a R-bridge of J + pkvk+1. Hence P is a C-Tutte path from y in G such that every
P -bridge B of G containing an edge of C has a plane representation with B ∩ (C ∪ P )
on its outer walk. Clearly, |V (P ) ∩ V (C)| ≥ 2 (because pk, pk+1 ∈ V (P ) ∩ V (C)) and
V (P ) 6⊆ V (C) and |V (P )| ≥ 4 (because |V (T )| ≥ 4).

Case 2. H is non-null.
Let vl, vm ∈ I(H) ∩ V (D) such that b, vm, vk+1, vl, a occur on D in this clockwise order

and such that vmDvl is maximal. See Figure 8. Note that if pm−1 = pl then we do not
have pm−1 = pm = . . . = pk+1 = . . . = pl because pk+1 6= pk. Let J denote the union of
pm−1Cpl (when pm−1 6= pl) or C (when pm−1 = pl), H, and those (L∪C)-bridges of G whose
attachments are all contained in V (pm−1Cpl) ∪ I(H) (when pm−1 6= pl) or V (C) ∪ I(H)
(when pm−1 = pl), where p0 = pn.

Next we define J ′. If pm−1 6= pl, then let J ′ = J (and so, J ′ has a plane representation
with pm−1Cpl and {a, b, c} on its outer walk), and let t := pm−1 and s := pl. See Figure 8.
Now assume that pm−1 = pl. Then pk 6= pl or pk+1 6= pl (because pk 6= pk+1. Since G is
(4, C)-connected, every (L∪C)-bridge of G with an attachment in D− I(H) is induced by
a single edge and has pm−1 = pl as an attachment. Also vm 6= vl; for otherwise, G−{vl, pl}
has a component containing no vertex of C, contradicting (4, C)-connectivity of G. Let
J ′ be the plane graph obtained from J by splitting the vertex pm−1 = pl to s and t in a
natural way such that C becomes a path and the neighbors of pm−1 = pl in J contained in
Jl (respectively, not contained in Jl) become the neighbors of s (respectively, t) and such
that J ′ has a plane representation with E(C) and {a, b, c} on its outer walk. See Figure 9.
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Let J ′′ := J ′ + {tb, bc, ca, as}, and let C ′′ be the cycle of J ′′ induced by E(C) ∪
{tb, bc, ca, as}. We can view J ′′ as a 2-connected plane graph with outer cycle C ′′ such
that tC ′′s = tbcas. It is easy to see that y ∈ V (sC ′′t − s) (since y ∈ pkCpk+1 − pk+1) and
J ′′ − ((sC ′′t − s) ∪ {a, c}) has a path from b to s.

By (4.2) (with J ′′, C ′′ as G, C, respectively), there exist an sC ′′t-flap H ′ in J ′′ with
attachments a′, b′, c′ (a′ = b′ = c′ = y if H ′ is null) and disjoint paths S ′, T ′ in (J ′′−{a, c})−
I(H ′) such that s, a′, y, b′, t occur on C ′′ in this clockwise order, y ∈ (V (H ′)− {a′}) ∪ {b′},
S ′ is between s and b, T ′ is between b′ and t, a′, c′ ∈ V (S ′ ∪ T ′), and S ′ ∪ T ′ ∪ {a, c} is
an (C ′′ − I(H ′))-Tutte subgraph of J ′′. Note that t, b′, y, a′, s occur on C in this clockwise
order,

If pm−1 = pl, then identifying t and s to pm−1 = pl in T ∪ S ′ ∪ T ′ gives the desired path
P in G. Note that |V (P )| ≥ 4 because |V (T )| ≥ 4. Moreover, |V (P ) ∩ V (C)| ≥ 2, for
otherwise, C is contained in a P -bridge of G whose attachments on P are a cut of size at
most 3 in G (because |V (T )| ≥ 4) showing that G is not (4, C)-connected, a contradiction.

So assume that pm−1 6= pl. Let K = G − (V (J) − (V (H) ∪ {s, t})). We view s, t, sCt,
D, a as p, q, Q, Q′, u in (2.5), respectively. It is easy to verify that the conditions of (2.5)
are satisfied (using the plane representation of L∗). By (2.5), there is a path S in K − T
between s and t such that S ∪ T is an sCt-Tutte subgraph of K and every T -bridge of L
containing no edge of D is also an (S ∪ T )-bridge of K. Note that each (S ∪ T )-bridge B
of K containing an edge of C has a plane representation with B ∩ (S ∪ T ∪C) on its outer
walk. Because |V (T )| ≥ 4, |V (P )| ≥ 4. Since pm−1, pl ∈ V (P ), we have |V (P )∩V (C)| ≥ 2.
Hence, P := S ∪ T ∪ S ′ ∪ T ′ gives the desired path in G.

Proof of (1.2). Let G be a 4-connected graph embedded in the torus, and let ρ be the
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face width of G. If ρ = 0, then G is a 4-connected planar graph, and so, has a Hamilton
cycle by a theorem of Tutte [8]. So assume that ρ ≥ 1.

Suppose ρ = 1. Then there is a non-null homotopic simple closed curve γ meeting G
only in one vertex, say u. Cutting the torus open along γ, we obtain a plane graph G′

with two vertices u′, u′′ such that G can be obtained from G′ by identifying u′ and u′′ as u.
Since G is 4-connected, the blocks of G′ can be labeled as B1, . . . , Bn such that Bi ∩ Bi+1

consists of a single vertex vi, Bi ∩ Bj = ∅ if j > i + 1, and v0 := u′ ∈ V (B1) − {v1} and
vn := u′′ ∈ V (Bn) − {vn−1}. Because G is 4-connected, n = 1 or n = 2, and if n = 2 then
exactly one of B1 or B2 is induced by an edge. Without loss of generality, assume that B1

is 2-connected and v0 is contained in the outer cycle C1 of B1. We may assume v1 /∈ V (C1);
as otherwise, G is planar and G has a Hamilton cycle by a theorem of Tutte. By (2.1)
(with B1, C1, v0, v1 as G, C, x, y, respectively), B1 has a C1-Tutte path P1 between v0 and v1.
Since G is 4-connected and P1 is a C1-Tutte path in B1, V (C1) ⊆ V (P1). Hence |V (P1)| ≥ 4
(because v1 /∈ V (C1)). Let P ′ := P1 if n = 1, and otherwise let P ′ := P1 ∪B2. Then P ′ is a
Tutte path in G′ between u′ and u′′. Because G is 4-connected and |V (P ′)| ≥ |V (P1)| ≥ 4,
P ′ is a Hamilton path in G′ between u′ and u′′. Clearly, E(P ′) induces a Hamilton cycle T
in G. Hence, G has a Hamilton path.

Therefore we may assume that ρ ≥ 2. Let γ be a non-null homotopic simple closed
curve in the torus that meets G exactly ρ times (only at vertices).

Case 1. ρ is even.
Let R be a face of G that γ passes through, and let C be the cycle of G consisting of

vertices and edges of G incident with R.
Assume ρ = 2. Then the R-width of G is 2. By (4.1), G has a Tutte path P from some

b ∈ V (C) such that |V (P )| ≥ 4. Since G is 4-connected, P is a Hamilton path in G.
Now assume ρ ≥ 4. By (4.3), G has a Tutte path P from some b′ ∈ V (C) such that

|V (P )| ≥ 4. Since G is 4-connected and |V (P )| ≥ 4, P is a Hamilton path in G.

Case 2. ρ is odd.
Let u ∈ γ ∩ V (G). Then G − u has face width ρ − 1 ≥ 2. Let R be the face of G − u

which contains u (as a subset of the torus). Let C denote the cycle in G − u consisting of
vertices and edges incident with R, and choose a vertex y ∈ V (C) such that yu ∈ E(G).
Then G − u is (4,C)-connected. Applying (4.1) or (4.3) to G − u, R, y, we can show that
there is a C-flap H ′ in G− u with attachments a′, b′, c′ (a′ = b′ = c′ = y if H ′ is null) and a
(C − I(H ′))-Tutte path P ′ from b′ in (G− u)− I(H ′) such that b′, y, a′ occur on C in this
clockwise order, y ∈ (V (H ′) − {a′}) ∪ {b′}, a′, c′ ∈ V (P ′), and |V (P ′)| ≥ 4.

If H ′ is null, then P ′ is a C-Tutte path in G−u from y. In this case, P := (P ′∪{u})+yu
is a Tutte path in G. Because G is 4-connected and |V (P )| ≥ 4, P is a Hamilton path in
G.

Therefore we may assume that H ′ is non-null. Let H∗ denote the union of H ′, u,
and all edges of G with both ends in I(H ′) ∪ {u}. Because G is 4-connected, H∗ is
connected. In fact, H∗ + {a′u, b′c′} is 2-connected. Assume without loss of generality that
a′u and b′c′ are contained in the outer cycle C∗ of H∗ + {a′u, b′c′}. By applying (2.3) (with
H∗ + {a′u, b′c′}, C∗, c′, a′, a′u, b′c′ as G, C, x, y, e, f , respectively), H∗ + {a′u, b′c′} contains a
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Tutte path P ∗ between a′ and c′ such that {a′u, b′c′} ⊆ E(P ∗). Let P := P ′∪(P ∗−{a′, c′}).
Then every P -bridge of G is either a P ′-bridge of G− u, or a P ∗-bridge of H∗ + {a′u, b′c′}.
Hence, P is a Tutte path of G. Because G is 4-connected and |V (P )| ≥ 4, P is a Hamilton
path in G.
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