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We consider the pricing of exotic options when the price dynamics of the underlying risky
asset are governed by a discrete-time Markovian regime-switching process driven by an
observable, high-order Markov model (HOMM). We assume that the market interest
rate, the drift, and the volatility of the underlying risky asset’s return switch over time ac-
cording to the states of the HOMM, which are interpreted as the states of an economy. We
will then employ the well-known tool in actuarial science, namely, the Esscher transform
to determine an equivalent martingale measure for option valuation. Moreover, we will
also investigate the impact of the high-order effect of the states of the economy on the
prices of some path-dependent exotic options, such as Asian options, lookback options,
and barrier options.
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1. Introduction

Regime switching models are important models in econometrics and finance. They have
received much attention among academic researchers and practitioners in modeling eco-
nomic and financial time series. The origin of this important class of models goes back
to the seminal work of Hamilton [1] in which a class of Markovian regime-switching
autoregressive time series models was first introduced to explain the US business cycle.
This class of models has received much attention among (financial) econometricians and
various extensions to the model have been introduced in the literature, such as Markov-
ian regime switching ARCH-type models and their variants by Cai [2], Hamilton and
Susmel [3], Gray [4], and Klaassen [5]. In finance, regime-switching models are often
used to incorporate the switching of model parameters, such as the market interest rates
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of a bank account and the volatility of equity returns, due to the structural change in
macro-economic factors and business cycles. The switching behaviors of market interest
rates and volatility of equity returns are well documented in some empirical finance lit-
erature. Ang and Bekaert [6] investigate the performance of regime-switching models in
fitting interest rate data from United States, Germany, and United Kingdom (see also Ang
and Bekaert [7]). They found that regime-switching models have better out-of-sample
forecasts than models without switching regimes. They also found that the switching of
regimes in interest rates match well with business cycles in the United States. Ang and
Bekaert [8] investigate the performance of regime-switching models in fitting equity re-
turns from the United States, Germany, and the United Kingdom and found empirically
that the regime-switching effect in the model parameters, such as volatility of equity re-
turns, is significant. Some empirical studies including Schwert [9] and Kim et al. [10]
found that the regime-switching effect is present in monthly stock returns and that a
Markovian regime-switching specification is appropriate for modeling the monthly stock
return volatility.

Recently, the spotlight has turned to the valuation of options under regime-switching
models. Some works in this area include Naik [11], Guo [12], Buffington and Elliott
[13, 14] and Elliott et al. [15], and others. Most of the literature concerns the pricing
of options under a continuous-time Markov-modulated process. However, there is not
much work on the valuation of options under a discrete-time Markov-modulated frame-
work. The advantage of a discrete-time framework is its flexibility to incorporate more
features in the model, such as the high-order effect in the underlying Markov chain for the
model parameters. Incorporating the high-order effect in the underlying Markov chain
provides more flexibility in modeling the temporal behavior of the states of an economy
and its impact on asset price dynamics. The impact of such a high-order effect on the
behavior of option prices is not well explored in the literature. The development of op-
tion pricing model with the high-order effect incorporated contributes to the literature
by not only advancing the option pricing technology via providing a flexible model, but
also helping us to gain a better understanding on the behavior of option prices under the
flexible setting.

In this paper, we consider the pricing of exotic options when the price dynamics of
the underlying risky asset are governed by a discrete-time Markovian regime-switching
process driven by an observable, high-order Markov model (HOMM). The discrete-time
framework provides a natural and intuitive way to incorporate the high-order effect in the
underlying Markov chain. We assume that the market interest rates of a bank account, the
drift, and the volatility of the underlying risky asset’s return switch over time according to
one of the states of the HOMM. We do not contend that the model we considered is the
same as those regime-switching time series models that are ready to fit real interest rates
data and volatility of stock returns. However, our model does extract the main feature of
those models, namely, the regime-switching effect, and provides a generalization to in-
corporate the high-order effect. Our goal is to investigate the impact of such a high-order
regime-switching effect on the behavior of prices of exotic options, which, we believe, has
not been well explored in the literature. Here, we interpret the states of the HOMM as the
states of an economy. We will employ the well-known tool in actuarial science, namely,
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the Esscher transform to determine an equivalent martingale measure for option valua-
tion in the incomplete market setting. We will investigate the impact of the high-order
effect of the economic states on the prices of some path-dependent exotic options, such
as Asian options, lookback options, and barrier options.

The rest of the paper is organized as follows. In Section 2, we present the Markov-
modulated process with the HOMM for modeling the price dynamics of the underlying
risky asset. We will illustrate the use of the Esscher transform to determine an equivalent
martingale measure for option valuation in Section 3. Section 4 conducts some simula-
tion experiments and investigates the impact of the high-order effect of the economic
states on the option prices. Finally, concluding remarks are given in Section 5.

2. Asset price dynamics by the HOMM

In this section, we present a Markovian regime-switching process driven by an observable,
high-order Markov chain (HOMM) for modeling asset price dynamics. First, we consider
a discrete-time economy with two primary-traded assets, namely, a bank account and a
share. Let � be the time index set {0,1, . . .} of the economy. We fix a complete probability
space (Ω,�,�), where � is a real-world probability. We suppose that the uncertainties
due to the fluctuations of market prices and the economic states are described by the
probability space (Ω,�,�). In the sequel, we will define a HOMM for describing the
states of an economy.

Let X := {Xt}t∈� be an lth-order discrete-time homogeneous HOMM taking values in
the state-space:

� := {x1,x2, . . . ,xM
}
. (2.1)

Write

i(t, l) := (it, it−1, . . . , it−l
)
, (2.2)

where t ≥ l, l = 1,2, . . . , and it, it−1, . . . , it−l ∈ {1,2, . . . ,M}.
The state transition probabilities of X are then specified as follows:

P
(
it+1 | i(t, l)

)
:= P[Xt+1 = xit+1 | Xt = xit , . . . ,Xt−l = xit−l

]
, it+1 = 1,2, . . . ,M. (2.3)

To determine the HOMM completely, we need to define the following initial distribu-
tions:

P
(
il+1 | i(l, l)

)
:= πil+1|i(l,l), it+1 = 1,2, . . . ,M. (2.4)

Now, we will describe the Markov-modulated process for the price dynamics of the un-
derlying risky asset. We assume that the market interest rate of the bank account, the
drift, and the volatility of the risky asset switch over time according to the states of the
economy modeled by X .

Let rt, j be the market interest rate of the bank account in the tth period. For each
j = 0,1, . . . , l, we write Xt, j for (Xt,Xt−1, . . . ,Xt− j), for each t ≥ l, j = 0,1, . . . , l. We suppose



4 Journal of Applied Mathematics and Decision Sciences

that rt depends on the current value and the past values of the HOMM up to lag j, that
is,

rt, j := r(Xt, j
)
. (2.5)

Then, the price dynamic B := {Bt}t∈� of the bank account is given by

Bt = Bt−1ert, j , B0 = 1, �-a.s. (2.6)

Let S := {St}t∈� be the price process of the risky stock. For each t ∈�, let Yt := ln(St/St−1)
be the logarithmic return in the tth-period. We denote by

μt, j :=μ(Xt, j
)
,

σt, j :=σ(Xt, j
) (2.7)

the drift and the volatility, respectively, of the risky stock in the tth-period. In other words,
the drift and the volatility depend on the current value and the past values of the HOMM
up to lag j. In particular,

μ
(
xit , xit−1 , . . . ,xit− j

)= μi(t, j),

σ
(
xit , xit−1 , . . . ,xit− j

)= σ i(t, j),
(2.8)

where μi(t, j) > 0 and σ i(t, j) > 0, for all i(t, j).
Let {ξt}t=1,2,... be a sequence of i.i.d. random variables with common distribution

N(0,1), a standard normal distribution with zero mean and unit variance. We assume
that ξ and X are independent. Then, we suppose that the dynamic of Y is governed by
the following Markov-modulated model:

Yt = μ
(

Xt, j
)− 1

2
σ2(Xt, j

)
+ σ
(

Xt, j
)
ξt, t = 1,2, . . . . (2.9)

By convention, Y0 = 0, �-a.s.
When j = 0, the Markov-modulated model for Y becomes

Yt = μ
(
Xt
)− 1

2
σ2(Xt

)
+ σ
(
Xt
)
ξt, t = 1,2, . . . , (2.10)

where the drift and the volatility are governed by the current state of the Markov chain X
only.

If we further assume that l = 1, the Markov-modulated model for Y is similar to the
first-order HOMM for logarithmic returns in Elliott et al. [16].

3. Regime-switching Esscher transform

The Esscher transform is a well-known tool in actuarial science. The seminal work of
Gerber and Shiu [17] pioneers the use of the Esscher transform for option valuation.
Their approach provides a convenient and flexible way for the valuation of options under
a general asset price model. The use of the Esscher transform for option valuation can be
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justified by the maximization of the expected power utility. It also highlights the interplay
between actuarial and financial pricing, which is an important topic for contemporary
actuarial research as pointed out by Bühlmann et al. [18]. Elliott et al. [15] adopt the
regime-switching version of the Esscher transform to determine an equivalent martingale
measure for the valuation of options in an incomplete market described by a Markov-
modulated geometric Brownian motion. Here, we consider a discrete-time version of the
regime-switching Esscher transform and apply it to determine an equivalent martingale
measure for pricing options in an incomplete market described by our model.

First, for each t ∈�, let �X
t and �Y

t denote the σ-algebras generated by the values of
the Markov chain X and the logarithmic returns Y up to and including time t, respec-
tively. We suppose that both �X

t and �Y
t are observable information sets. We write �t for

�Y
t ∨�X

T , for each t ∈�.
Let �t be a �X

T -measurable random variable, for each t = 1,2, . . . . That is, the value of
�t is known given the information set �X

T . We interpret �t as the regime-switching Ess-
cher parameter at time t conditional on �X

T . LetMY (t,�t) denote the moment generating
function of Yt given �X

T evaluated at �t under �, that is,

MY
(
t,�t

)
:= E(e�tYt |�X

T

)
, (3.1)

where E(·) is the expectation under �.
Here we assume that there exists a �t such that MY (t,�t) <∞. Then, we define a

process

Λ := {Λt}t∈� (3.2)

with Λ0 = 1, �-a.s., as follows:

Λt :=
t∏

k=1

e�kYk

MY
(
k,�k

) . (3.3)

Lemma 3.1. Assume that Yt+1 is conditionally independent of �Y
t given �X

T . Then, Λ is a
(�,�)-martingale.

Proof. We note that Λt is �t-measurable, for each t ∈�. Given that Yt+1 is conditionally
independent of �Y

t given �X
T ,

E
(
Λt+1

Λt
|�t

)
= E

[
e�t+1Yt+1

MY
(
t+ 1,�t+1

) |�X
T

]

= 1, �-a.s.
(3.4)

Hence, the result follows.
Now, we define a discrete-time version of the regime-switching Esscher transform in

Elliott et al. [15] �� ∼� on �T associated with

(�1,�2, . . . ,�T
)

(3.5)
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as follows:

��(A)= E(ΛT·IA
)
, A∈�T . (3.6)

Let MY (t,z | � ) be the moment generating function of Yt given �X
T under �� evaluated

at z, that is,

MY (t,z | � )= E�(ezYt |�X
T

)
, (3.7)

where E�(·) is an expectation under ��. �

Lemma 3.2. We have

MY (t,z | � )= MY
(
t,�t + z

)

MY
(
t,�t

) . (3.8)

Proof. By the Bayes’ rule, Lemma 3.1, and the fact that Yt is independent of �Y
t−1 given

�X
T ,

MY (t,z | � )= E�(ezYt |�Y
t−1∨�X

T

)

= E
(
Λt

Λt−1
ezYt |�t−1

)

= E
(
e(z+�t)Yt |�Y

t−1∨�X
T )

MY
(
t,�t

)

= MY
(
t,�t + z

)

MY
(
t,�t

) .

(3.9)

The seminal works of Harrison and Pliska [19, 20] establish an important link be-
tween the absence of arbitrage and the existence of an equivalent martingale measure un-
der which discounted price processes are martingales. This is known as the fundamental
theorem of asset pricing and has been extended by several authors, including Dybvig and
Ross [21], Back and Pliska [22], and Delbaen and Schachermayer [23], among others.
In our case, we specify an equivalent martingale measure by the risk-neutral regime-
switching Esscher transform and provide a necessary and sufficient condition on the
regime-switching Esscher parameters (�1,�2, . . . ,�T) for �� to be a risk-neutral regime-
switching Esscher transform. �

Proposition 3.3. The discounted price process {St/Bt}t∈� is a (�,��)-martingale if and
only if

�t+1 :=�(Xt+1, j
)=

rt+1, j −μt+1, j

σ2
t+1, j

, t = 0,1, . . . ,T − 1. (3.10)
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Proof. By Lemma 3.2,

E�
(
St+1

Bt+1
|�t

)
= St
Bt
e−rt+1E�

(
eYt+1 |�t

)

= St
Bt
e−rt+1MY (t+ 1,1 | � )

= St
Bt
e−rt+1

MY
(
t+ 1,�t+1 + 1

)

MY
(
t+ 1,�t+1

)

= St
Bt

, �-a.s.,

(3.11)

if and only if

MY
(
t+ 1,�t+1 + 1

)

MY (t+ 1,�t+1
) = ert+1 . (3.12)

Since Yt+1 |�X
T ∼N(μt+1, j − (1/2)σ2

t+1, j ,σ
2
t+1, j),

MY
(
t+ 1,�t+1

)= exp
[
�t+1

(
μt+1, j −

1
2
σ2
t+1, j

)
+

1
2
�2
t+1σ

2
t+1, j

]
. (3.13)

Then,

MY
(
t+ 1,�t+1 + 1

)

MY
(
t+ 1,�t+1

) = exp
(
μt+1, j +�t+1σ

2
t+1, j

)
. (3.14)

Hence, we have the result that

E�
(
St+1

Bt+1
|�t

)
= St
Bt

, �-a.s., (3.15)

if and only if

�t+1 =
rt+1, j −μt+1, j

σ2
t+1, j

. (3.16)

The risk-neutral dynamics of Y under �� are presented in the following corollary. �

Corollary 3.4. Suppose v := {vt}t=1,2,...,T is a sequence of i.i.d. random variables such that
vt ∼N(0,1) under ��. Then, under ��,

Yt+1 = r
(

Xt+1, j
)− 1

2
σ2(Xt+1, j

)
+ σ
(

Xt+1, j
)
vt+1, t = 0,1, . . . ,T − 1, (3.17)

and the dynamics of X remain unchanged under the change of measures.

Proof. By Lemma 3.2,

MY (t+ 1,z | � )= exp
[
z
(
μt+1, j −

1
2
σ2
t+1, j

)
+

1
2
z
(
2�t+1 + z

)
σ2
t+1, j

]
. (3.18)
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By Proposition 3.3,

�t+1 =
rt+1, j −μt+1, j

σ2
t+1, j

. (3.19)

This implies that

MY (t+ 1,z | � )= exp
[
z
(
rt+1, j − 1

2
σ2
t+1, j

)
+

1
2
z2σ2

t+1, j

]
. (3.20)

Hence,

Yt+1 = r
(

Xt+1, j
)− 1

2
σ2(Xt+1, j

)
+ σ
(

Xt+1, j
)
vt+1, t = 0,1, . . . ,T − 1. (3.21)

Since the processes X and ξ are independent, the dynamics of X remain unchanged when
we change the measures from � to ��.

We will consider the pricing of three different types of exotic options, namely, Asian
options, lookback options, and barrier options. First, we deal with an arithmetic average
floating-strike Asian call option with maturity T . The payoff of the Asian option at the
maturity T is given by

PAA(T)=max
(
ST − JT ,0

)
, (3.22)

where the arithmetic average JT of the underlying stock price is

JT = 1
T

T∑

t=0

St. (3.23)

Then, we consider the pricing of a down-and-out European call option with barrier level
L, strike price K , and maturity at time T . The payoff of the barrier option at time T is

PB(T)=max
(
ST −K ,0

)
I{min 0≤t≤TSt>L}, (3.24)

where IE is the indicator function of an event E. Finally, we deal with a European-style
lookback floating-strike call option with maturity at time T . The payoff of the lookback
option is

PLB(T)=max
(
ST −m0,T ,0

)
, (3.25)

where m0,T :=min0≤t≤TSt. �

4. Simulation experiments

In this section, we give some simulation experiments to investigate the effect of the order
of the HOMM on the pricing of the following options: Asian option, barrier option, and
lookback option described in the previous section. In particular, we will investigate the
behaviors of the option prices implied by the second-order HOMM (Model I), the first-
order HOMM (Model II), and the model without switching regimes (Model III). For
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illustration, we assume that the Markov chain has two states in each of the three models.
That is, the economy has two states with State “1” and State “2” representing a “Good”
economy and a “Bad” economy, respectively. We employ the Monte Carlo simulation
to compute the option prices. 5000 simulation runs are generated for computing each
option price. All computations were done in a standard PC with C codes. We remark that
the simulation of option prices can be done in EXCEL, see for example, Sundaresan [24,
Chapter 14]. Moreover, the simulation of the high-order Markov chain can also be done
in EXCEL as in Ching et al. [25]. Hence, the simulation process of our models can also be
done in EXCEL.

We specify some specimen values for the model parameters. First, we specify these
values for Model I. Let ri j be the daily market interest rate when the economy in the
current period is in the jth state and the economy in the last period is in the ith state, for
i, j = 1,2. We suppose that

r11 = 0.06
252

= 0.0238%, r12 = 0.02
252

= 0.00794%,

r21 = 0.04
252

= 0.0159%, r22 = 0.01
252

= 0.00397%.
(4.1)

Here, we assume that one year has 252 trading days. In other words, the corresponding
annual market interest rates are 6%, 2%, 4%, and 1%, respectively. Let σi j denote the daily
volatility when the economy in the current period is in the jth state and the economy in
the last period is in the ith state. We assume that

σ11 = 0.1√
252

= 0.63%, σ12 = 0.3√
252

= 1.89%,

σ21 = 0.2√
252

= 1.26%, σ22 = 0.4√
252

= 2.52%.
(4.2)

In other words, the corresponding annual volatilities are 10%, 30%, 20%, and 40%, re-
spectively. Let

πi jk := P(Xt = k | Xt−1 = i, Xt−2 = j
)

for i, j,k = 1,2. (4.3)

We suppose that

π111 = 0.7, π121 = 0.3, π211 = 0.6, π221 = 0.2. (4.4)

We assume that the two initial states of the second-order HOMM X0 = 1 and X1 = 2.
Then, we specify the values of the model parameters for Model II. For each i = 1,2, let
ri and σi denote the daily market interest rate and the daily volatility when the current
economy is in the ith state, respectively. We suppose that

r1 = r11 = 0.0238%, r2 = r12 = 0.00794%,

σ1 = σ11 = 0.63%, σ2 = σ12 = 1.89%.
(4.5)

Let

πi j := P(Xt = j | Xt−1 = i,
)

for i, j = 1,2. (4.6)
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Figure 4.1. Simulated states of the second-order HOMM.

We assume that

π11 = π111 = 0.7, π21 = π121 = 0.3. (4.7)

We further assume that the initial state X0 = 1. For Model III, we assume that the daily
market interest rate

r = r11 = 0.0238%, (4.8)

and the daily volatility

σ = σ11 = 0.63%. (4.9)

To understand the impact of the order of the HOMM on the dynamics of the states of
the economy and the return process of the underlying share, we provide plots of the
realizations of the processes X and Y under Models I, II, and III with the parameter
values described as above in the following figures.

Figures 4.1, 4.2, and 4.3 depict simulated paths of the second-order HOMM, the first-
order HOMM, and the zero-order HOMM, respectively.

Comparing Figures 4.1, 4.2, and 4.3, it becomes apparent that the level of persistency
of the states of the HOMM increases as the order of the HOMM becomes higher.

In the sequel, we assume that the current price of the underlying share S0 = 100.
Figure 4.4 depicts the simulated log return processes Y from the second-order HOMM,
the first-order HOMM, and the zero-order HOMM.

From Figure 4.4, it is clear that the log return process Y becomes more volatile when
the order of the HOMM becomes higher. If the log return process Y of the stock is more
volatile, the prices of options written on the stock become higher. We will see in the
following that the prices of options will become higher when the order of the HOMM is
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Figure 4.2. Simulated states of the first-order HOMM.

3

2.5

2

1.5

1

0.5

0
0 20 40 60 80 100 120

Time

Si
m

u
la

te
d

st
at

es
of

th
e

ze
ro

-o
rd

er
H

O
M

M

Figure 4.3. Simulated states of the zero-order HOMM.

higher. Hence, the simulated state processesX and log return processes Y here explain the
simulated option prices for the exotic options and provide us with a better understanding
on the impact of the order of the HOMM on the option prices.

In all cases, we assume that the time to maturity ranges from 21 trading days (one
month) to 126 trading days (six months) with an increment of 21 trading days. Figure 4.5
depicts the prices of the Asian options implied by Model I, Model II, and Model III for
various maturities.

Assume the barrier level L = 80 and the strike price K = 100. Figure 4.6 depicts the
prices of the barrier options implied by the three models for various maturities.
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Figure 4.5. Prices of Asian options versus maturities.

Figure 4.7 depicts the prices of the lookback options implied by the three models for
various maturities.



Wai-Ki Ching et al. 13

10

9

8

7

6

5

4

3

2

1

0
30 40 50 60 70 80 90 100 110 120

Maturity

P
ri

ce
s

of
d

ow
n

-a
n

d
-o

u
t

E
u

ro
p

ea
n

ca
ll

op
ti

on
s

Model I
Model II
Model III

Figure 4.6. Prices of Barrier options versus maturities.
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Figure 4.7. Prices of lookback options versus maturities.

We can regard Model III (i.e., the no-regime-switching case) as a zero-order HOMM
and Model I as a first-order HOMM. Then, from Figures 4.5, 4.6, and 4.7, we see that
the prices of the Asian options, the barrier options, and the lookback options increase
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substantially as the order of the HOMM does. These prices are sensitive to the order of
the HOMM. This is true for the options with various maturities. In other words, the
high-order effect in the states of economy has significant impact on the prices of these
path-dependent exotic options. The differences between the prices implied by the first-
order HOMM and those implied by the zero-order HOMM are more substantial than
the difference between the prices obtained from the second-order HOMM and those ob-
tained from the first-order HOMM.

5. Conclusion

We investigated the pricing of exotic options under a discrete-time Markovian regime-
switching process driven by an observable HOMM, which can incorporate the high-order
effect in the states of the economy. We supposed that the market interest rate, the stock
appreciation rate, and the stock volatility switch over time according to the states of the
economy. The Esscher transform has been employed to select a pricing measure under
the incomplete market setting. We investigated the impact of the high-order effect on
the prices of some path-dependent exotic options, including Asian options, lookback op-
tions, and barrier options, through simulation experiments. We found that the presence
of the high-order effect in the states of the economy has significant impact on the prices
of the path-dependent exotic options with various maturities.
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