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We consider a homogeneous fluid of viscosity ν confined within an oblate spheroidal
cavity, x2/a2+y2/a2+ z2/(a2(1−E 2))= 1, with eccentricity 0< E < 1. The spheroidal
container rotates rapidly with an angular velocity Ω0, which is fixed in an inertial
frame and defines a small Ekman number E = ν/(a2|Ω0|), and undergoes weak
latitudinal libration with frequency ω̂|Ω0| and amplitude Po|Ω0|, where Po is the
Poincaré number quantifying the strength of Poincaré force resulting from latitudinal
libration. We investigate, via both asymptotic and numerical analysis, fluid motion in
the spheroidal cavity driven by latitudinal libration. When |ω̂ − 2/(2− E 2)| � O(E1/2),
an asymptotic solution for E � 1 and Po � 1 in oblate spheroidal coordinates
satisfying the no-slip boundary condition is derived for a spheroidal cavity of
arbitrary eccentricity without making any prior assumptions about the spatial–temporal
structure of the librating flow. In this case, the librationally driven flow is non-
axisymmetric with amplitude O(Po), and the role of the viscous boundary layer is
primarily passive such that the flow satisfies the no-slip boundary condition. When
|ω̂ − 2/(2− E 2)| � O(E1/2), the librationally driven flow is also non-axisymmetric but
latitudinal libration resonates with a spheroidal inertial mode that is in the form of
an azimuthally travelling wave in the retrograde direction. The amplitude of the flow
becomes O(Po/E1/2) at E� 1 and the role of the viscous boundary layer becomes
active in determining the key property of the flow. An asymptotic solution for E� 1
describing the librationally resonant flow is also derived for an oblate spheroidal
cavity of arbitrary eccentricity. Three-dimensional direct numerical simulation in an
oblate spheroidal cavity is performed to demonstrate that, in both the non-resonant and
resonant cases, a satisfactory agreement is achieved between the asymptotic solution
and numerical simulation at E� 1.
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1. Introduction and formulation
As a consequence of their rapid rotation as well as interaction among the Sun,

planets and satellites, many celestial bodies are usually in the shape of a spheroid
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or an ellipsoid and rotating non-uniformly, resulting in libration of those bodies
(Dermott 1979; William et al. 2001; Noir et al. 2009; Baland & Van Hoolst 2010).
Planetary libration represents an important dynamic characteristic that has recently
been employed to examine the physical properties of planetary interiors (see e.g.
Margot et al. 2007; Dufey et al. 2009; Rambaux, Van Hoolst & Karatekin 2011).

There are usually two components of planetary libration: longitudinal (e.g. Margot
et al. 2007) and latitudinal (e.g. Dufey et al. 2009). While longitudinal libration
describes a periodic variation of the rotation speed of a planet around its figure (or
symmetry) axis, latitudinal libration is characterized by a periodic variation of the
figure axis towards and away from its mean direction. In the case of longitudinal
libration, the total instantaneous angular velocity Ω can be written as Ω =Ω0 +Ωlong,
where Ω0 and Ωlong denote the mean angular velocity and the longitudinal libration
vector, respectively, Ω0 × Ωlong = 0 and the amplitude |Ωlong| is a periodic function
of time. In the case of latitudinal libration, we have Ω = Ω0 + Ωlati, where the fast
rotation vector Ω0 is fixed in an inertial frame, the latitudinal libration vector Ωlati

satisfies Ω0 ·Ωlati = 0 and the amplitude |Ωlati| is a periodic function of time. Caused
by similar mechanisms, the amplitude of forced longitudinal libration is likely to be
of the same order as that of forced latitudinal libration. It should be pointed out,
however, that planetary libration is fundamentally different from its precession, for
which the total angular velocity is of the form Ω = Ω0 + Ωprec, where Ω0 denotes
the fast rotation vector around the figure axis, the precession vector Ωprec satisfies
Ω0 × Ωprec 6= 0 and, more significantly, its amplitude |Ωprec| is constant. It follows
that precession describes a change only in the orientation of the rotation axis of a
planet. The present study is concerned with the dynamic response of a homogeneous
incompressible fluid with kinematic viscosity ν confined within a spheroidal cavity
of arbitrary eccentricity E to latitudinal libration. Note that spheroidal or ellipsoidal
geometry has frequently been employed by many authors to study fluid motion in
geophysical and astrophysical contexts (see e.g. Vanyo et al. 1995; Lorenzani &
Tilgner 2001; Noir et al. 2003; Wu & Roberts 2009; Le Bars et al. 2010).

Three key parameters characterize the problem of librationally driven flow in
spheroidal or ellipsoidal cavities: the Ekman number E = ν/(a2Ω0), where Ω0 = |Ω0|
is the mean rate of rotation and a is the equatorial radius of the container, provides a
measure of the relative importance between the typical viscous force and the Coriolis
force; the eccentricity E measures the degree of topographic coupling between the
container and its interior fluid; and the Poincaré number Po = |Ωlati|max/Ω0, where
|Ωlati|max denotes the maximum of |Ωlati|, quantifies the strength of Poincaré forcing.
All three parameters are believed to be small for a typical planet: typical values
of the Ekman number E for many planets and satellites are extremely small, with
E 6 O(10−14); the Poincaré number Po is typically O(10−4) (see e.g. Noir et al.
2009, table 2); and the size of the eccentricity E is moderately small, typically with
E = O(10−1) (Kong, Zhang & Schubert 2010). In other words, many planets and
satellites are typically marked by E� 1 and Po� 1 but with Po/E1/2� 1.

The problem of fluid motion in spherical geometry driven by longitudinal libration
has been extensively studied for several decades. Aldridge & Toomre (1969)
experimentally investigated librationally driven flows in a spherical container, revealing
that several axisymmetric inertial modes can be excited when the librating frequency
is close to that of an inertial mode. Rieutord (1991) and Tilgner (1999) studied
numerically the response to longitudinal libration in spherical systems (see also
Calkins et al. 2010). The recent experimental and numerical study of Noir et al. (2009)
focuses on the nonlinear property of the spherical librating flow when the Poincaré
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number Po is sufficiently large. Busse (2010) showed that longitudinal libration can
drive a weak mean zonal flow in librating spheres, which is confirmed by a recent
experimental and numerical study (Sauret et al. 2010). In spherical geometry, coupling
between the librating container and its interior fluid is purely viscous and the fluid
motion driven by longitudinal libration is weak and has the typical amplitude O(Po).
Motivated by searching for a possible resonance with longitudinal libration, Zhang,
Chan & Liao (2011) (see also Chan, Liao & Zhang 2011) investigated, via both
analytical and numerical methods, the motion of a homogeneous fluid confined in
a librating ellipsoidal cavity with moderate equatorial eccentricity E . However, a
negative conclusion is reached by both the asymptotic analysis and an extensive
numerical simulation. Even when both the libration frequency and the azimuthal
wavenumber of topographic forcing are exactly the same as those of non-axisymmetric
inertial modes, longitudinal libration cannot resonate with any inertial modes in
ellipsoidal geometry: the typical amplitude of the non-axisymmetric librating flow
is O(E 2Po) for E� 1. This implies that fluid motion driven by longitudinal libration,
in either spherical or ellipsoidal geometry, may not, because of small Poincaré number
Po for planets, be physically significant.

The present study continues our search for a possible resonance and attempts to
answer the following question. Would the dynamic response to latitudinal libration
be fundamentally different from that of longitudinal libration? We consider an oblate
spheroidal cavity of arbitrary eccentricity E described by

x2

a2
+ y2

a2
+ z2

a2(1− E 2)
= 1, (1.1)

where 0< E < 1 and the z-axis represents the symmetry axis. The spheroidal container
rotates rapidly with a mean angular velocity Ω0 and a small Ekman number E� 1
and undergoes weak latitudinal libration with a small Poincaré number Po� 1 and
libration frequency Ω0ω̂, where ω̂ is the non-dimensional frequency. We shall unveil
that, via both asymptotic and numerical analysis, latitudinal libration in spheroidal
geometry can directly resonate with a spheroidal inertial mode representing an
azimuthally travelling wave when the libration frequency ω̂ is close to 2/(2 − E 2).
At the resonance, the viscous boundary layer plays an essential role in determining
the flow amplitude that becomes O(Po/E1/2) for E � 1. We shall derive, using
oblate spheroidal coordinates and without making any prior assumptions about the
spatial–temporal structure of the flow, two asymptotic solutions for the resonant and
non-resonant flow satisfying the no-slip boundary condition in an oblate spheroidal
cavity of arbitrary eccentricity. We shall also carry out three-dimensional direct
numerical simulation, valid for both moderately large or small E, of the same problem
for the purpose of validating our asymptotic solutions valid only for E� 1.

In what follows we shall begin by presenting the mathematical formulation of the
problem in § 2. An asymptotic analysis for both non-resonant and resonant flow is
discussed in § 3, while fully three-dimensional numerical simulation is presented in § 4.
A summary and some remarks are given in § 5.

2. Mathematical formulation of the problem
Consider a homogeneous fluid of viscosity ν confined within an oblate spheroidal

cavity defined by (1.1). Suppose that the spheroidal container rotates rapidly with a
mean angular velocity Ω0, which is fixed in the inertial frame and, at the same time,
undergoes latitudinal libration that is marked by the frequency ω̂Ω0 and the amplitude
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|Ωlati| = PoΩ0| sin(ω̂Ω0t)|, which results in a periodic variation of the figure axis
slightly towards and away from the rotation axis Ω0. Motivated by its application to
synchronous planets and moons, we assume that the total angular velocity Ω of the
spheroidal container can be written as

Ω =Ω0 + x̂Ω0 Po sin(ω̂Ω0t), (2.1)

where x̂ is a unit vector that is fixed in a frame of reference attached to the container,
the mantle frame of reference, and perpendicular to the mean angular velocity Ω0, and
Po/ω̂ represents the maximum angular displacement of latitudinal libration. While the
mean angular velocity Ω0 is constant in the inertial frame, it is time-dependent in the
mantle frame of reference. The total angular velocity Ω in the mantle frame can be
written as

Ω =Ω0{ẑ cos[(Po/ω̂) cos(ω̂Ω0t)] − ŷ sin[(Po/ω̂) cos(ω̂Ω0t)] + x̂Po sin(ω̂Ω0t)}, (2.2)

where ẑ is in the direction of the figure axis described by (1.1). This study, both
theoretical and numerical, is only concerned with the problem of weakly latitudinal
libration by assuming that Po� 1 and (Po/ω̂)� 1. It is worth noting that the problem
of synchronous latitudinal libration, defined by (2.1), is readily realizable in laboratory
experiments.

In the mantle frame of reference, the dynamics of latitudinally librational driven
flow, under the assumptions Po� 1 and (Po/ω̂)� 1, is governed by the dimensional
equations:

∂u
∂t
+ u ·∇u+ 2Ω0[ẑ+ x̂Po sin(Ω0ω̂)t − ŷ(Po/ω̂) cos(Ω0ω̂t)] × u+ 1

ρ
∇p

= ν∇2u+ PoΩ2
0 [ω̂r× x̂ cos(Ω0ω̂t)+ r× (ẑ× x̂) sin(Ω0ω̂t)], (2.3)

∇ ·u= 0, (2.4)

where r is the position vector, p is a reduced pressure and u is the three-dimensional
velocity field. The final two terms on the right-hand side of (2.3) are known as the
Poincaré force, which results from latitudinal libration and drives fluid motion in the
spheroidal cavity.

Employing the semi-axis a as the length scale, Ω−1
0 as the unit of time and ρa2Ω2

0
as the unit of pressure, the non-dimensional envelope of the spheroidal cavity is then
described by

x2

1
+ y2

1
+ z2

(1− E 2)
= 1, (2.5)

while the non-dimensional governing equations are:

∂u
∂t
+ u ·∇u+ 2ẑ× u+∇p = E∇2u+ 2Po[(1/ω̂)ŷ× u cos(ω̂t)− x̂× u sin(ω̂t)]

+Po[ω̂r× x̂ cos(ω̂t)+ r× (ẑ× x̂) sin(ω̂t)], (2.6)

∇ ·u= 0. (2.7)

Note that the centrifugal force is combined with all other conservative forces to form
the reduced pressure p. Librationally driven flow on the bounding surface, S , of the
oblate spheroidal cavity (2.5) is at rest, requiring that

n̂ ·u= 0 (2.8)
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and

n̂× u= 0, (2.9)

where n̂ denotes the normal to the bounding surface, S , of the spheroidal cavity.
For deriving an asymptotic solution of the viscous boundary layer on S , it is

mathematically convenient to introduce oblate spheroidal coordinates (η, φ, τ ) with the
corresponding unit vector (η̂, φ̂, τ̂ ) defined by

x2 = (E 2 + η2)(1− τ 2)cos2φ, (2.10)
y2 = (E 2 + η2)(1− τ 2)sin2φ, (2.11)

z2 = η2τ 2. (2.12)

In oblate spheroidal coordinates, the surfaces of constant η form oblate spheroids,
providing a set of coordinate surfaces, with the foci of all the oblate spheroids
being located at

√
x2 + y2 = E and z = 0; while the surfaces of constant τ form

hyperboloids, offering another set of coordinate surfaces, with the foci of all the
hyperboloids also being located at

√
x2 + y2 = E and z = 0. The envelope of the

spheroidal cavity S is simply given by η = √1− E 2. Various differential operators
can be readily cast into oblate spheroidal coordinates: for instance, the pressure
gradient can be written as

∇p= η̂

( √
η2 + E 2√
η2 + E 2τ 2

)
∂p

∂η
+ τ̂

( √
1− τ 2√
η2 + E 2τ 2

)
∂p

∂τ

+ φ̂

[
1√

(η2 + E 2)(1− τ 2)

]
∂p

∂φ
. (2.13)

We shall present our results in terms of oblate spheroidal coordinates, the natural
coordinates for a viscous flow within a spheroidal cavity of arbitrary eccentricity E .

The problem defined by (2.6) and (2.7) subject to the boundary conditions (2.8) and
(2.9) for spheroidal geometry (2.5) will first be solved by an asymptotic method at
E� 1 in § 3, and then by direct three-dimensional simulation using a finite element
method in § 4.

3. Asymptotic analysis
3.1. Asymptotic expansion and solvability condition

For weakly librating flow in a spheroidal cavity of arbitrary eccentricity marked by
Po� 1, the nonlinear term, as well as small perturbations to the primary Coriolis
force 2ẑ × u, may be neglected in the first approximation and the fluid motion is then
governed by

∂u
∂t
+ 2ẑ× u+∇p= E∇2u+ Po[ω̂r× x̂ cos(ω̂t)+ r× (ẑ× x̂) sin(ω̂t)], (3.1)

∇ ·u= 0. (3.2)

It will be discussed later, however, that our asymptotic solution actually satisfies
the nonlinear equation including the term u · ∇u if the nonlinear effect within the
viscous boundary layer is neglected. An asymptotic solution at E � 1 to (3.1) and
(3.2) satisfying the no-slip boundary condition can be sought by assuming that inertial
modes in a spheroidal cavity, which automatically satisfy (3.2) and (2.8), form a
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complete function system and thus can be employed to represent an arbitrary profile of
the interior librating flow. In other words, (3.1) and (3.2) may be solved by making the
following expansions at E� 1:

u=
∑

nk

(Ankunk + c.c.+ ûs + ũs) sin ω̂t +
∑

nk

(Bnkunk + c.c.+ ûc + ũc) cos ω̂t, (3.3)

p=
∑

nk

(Ankpnk + c.c.+ p̂s + p̃s) sin ω̂t +
∑

nk

(Bnkpnk + c.c.+ p̂c + p̃c) cos ω̂t, (3.4)

where Ank and Bnk are complex coefficients to be determined, c.c. denotes the complex
conjugate of the preceding term, and unk and pnk satisfy the equations

0= i2σnkunk + 2ẑ× unk +∇pnk, (3.5)

0=∇ ·unk, (3.6)

where i = √−1, and σnk is the half-frequency of a spheroidal inertial mode with
|σnk| < 1, subject to the boundary condition n̂ · unk = 0 at the bounding surface
of a spheroid η = √1− E 2. In the asymptotic expansion (3.3), the velocity u is
decomposed into a viscous boundary-layer flow, ũs sin ω̂t and ũc cos ω̂t, and the interior
flow, which is represented by spheroidal inertial modes unk. Viscous action on the
inertial modes unk induces a thin viscous boundary layer on S . By producing a
normal mass flux from, or sucking the interior fluid into, the thin viscous boundary
layer, the viscous effect drives the secondary interior flow ûs sin ω̂t and ûc cos ω̂t,
communicating with the interior fluid. It should be pointed out that the asymptotic
expansion (3.3), without making any prior assumption, may be used to represent any
physically acceptable flow for E� 1 in spheroidal geometry.

Since the Poincaré forcing on the right-hand side of (3.1) is marked by the
azimuthal wavenumber m = 1, the pnk and unk in the asymptotic expansions (3.3) and
(3.4) with the required spatial symmetry can be extracted from the general solution
(Zhang, Liao & Earnshaw 2004) and are given by

pnk(η, τ, φ) =
k∑

i=0

k−i∑
j=0

Ckijσ
2i
nk (1− σ 2

nk)
j

× [(1− τ 2)(η2 + E 2)](1/2+j)
(ητ)2i+1 eiφ, (3.7)

η̂ ·unk(η, τ, φ) = i
k∑

i=0

k−i∑
j=0

Ckij

2
√
(η2 + E 2τ 2)(η2 + E 2)

σ 2i−1
nk (1− σ 2

nk)
j−1

×[−η2σnk(2jσnk + σnk + 1)+ (2i+ 1)(η2 + E 2)(1− σ 2
nk)]

× [(1− τ 2)(η2 + E 2)](1/2+j)
η2iτ 2i+1eiφ, (3.8)

φ̂ ·unk(η, τ, φ) =
k∑

i=0

k−i∑
j=0

Ckij

2
√
(1− τ 2)(η2 + E 2)

σ 2i
nk (1− σ 2

nk)
j−1

× (2j+ 1+ σnk) [(1− τ 2)(η2 + E 2)](1/2+j)
(ητ)2i+1 eiφ, (3.9)
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τ̂ ·unk(η, τ, φ) = i
k∑

i=0

k−i∑
j=0

Ckij

2
√
(1− τ 2)(η2 + E 2τ 2)

σ 2i−1
nk (1− σ 2

nk)
j−1

×[τ 2σnk(2jσnk + σnk + 1)+ (2i+ 1)(1− τ 2)(1− σ 2
nk)]

× [(1− τ 2)(η2 + E 2)](1/2+j)
η2i+1τ 2ieiφ, (3.10)

with an arbitrary normalization for mathematical convenience. Here k > 0, n is
restricted by 1 6 n 6 (2k + 1), the indices (n, k) are roughly related to the spatial
wavenumbers in the vertical and radial directions respectively, and Ckij is

Ckij =
[ −1
(1− σ 2

nkE 2)

]i+j [2(k + i+ j)+ 3]!!
2j+1(2i+ 1)!!(k − i− j)!i!j!(1+ j)! , (3.11)

along with (2i−1)!! = (2i−1) · · · (3)(1), (−1)!! = 1 and (0)! = 1. The half-frequencies
of the spheroidal inertial modes in (3.7)–(3.10), σnk, are solutions of

0=
k∑

j=0

(−1)j
[2(2k + 2− j)]!

[2(k − j)+ 1]!j!(2k + 2− j)!

×
[

1− (1− σnk)[2(k − j)+ 1]
σnk(1− E 2)

] [
(1− E 2)σ 2

nk

(1− σ 2
nkE 2)

]k−j

with k > 0. (3.12)

For any given E and k, there exist (2k + 1) different real solutions for (3.12)
corresponding to the (2k+1) different inertial modes, which can be arranged according
to the size of |σnk|,

0< |σ1k|< |σ2k|< |σ3k|< · · ·< |σnk|< · · · . (3.13)

In other words, the index n for σnk in (3.7)–(3.10) denotes the nth smallest root of
(3.12) for given k.

Of the spheroidal inertial modes represented by (3.7)–(3.10), the simplest is
obviously given by setting k = 0, which corresponds to a single inertial mode with
n = 1. The details of this spheroidal inertial mode, u10 and p10, can be easily derived
from the general expressions (3.7)–(3.10). While the solution of (3.12) at k = 0 gives

σ10 = 1
2− E 2

, (3.14)

the expressions (3.7)–(3.10) at k = 0, together with (3.14), yield

p10(η, τ, φ)= 3
2
(η2 + E 2)

1/2
(1− τ 2)

1/2
ητeiφ, (3.15)

η̂ ·u10(η, τ, φ)= i
[

3(2− E 2)

4(1− E 2)

]
τE 2
√

1− τ 2(1− E 2 − η2)√
η2 + τ 2E 2

eiφ, (3.16)

φ̂ ·u10(η, τ, φ)=
[

3(2− E 2)

4(1− E 2)

]
ητeiφ, (3.17)

τ̂ ·u10(η, τ, φ)= i
[

3(2− E 2)

4(1− E 2)

]
η
√
η2 + E 2(1− E 2 + τ 2E 2)√

η2 + τ 2E 2
eiφ. (3.18)

This non-axisymmetric inertial mode is, in some ways, analogous to the spin-over
mode (see e.g. Greenspan 1968) but represents an azimuthally, retrogradely travelling
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wave with the phase speed 2/(2 − E 2). Furthermore, u10ei2t/(2−E 2) and p10ei2t/(2−E 2) are
an exact solution in closed form to

∂[u10ei2t/(2−E 2)]
∂t

+ 2ẑ× [u10ei2t/(2−E 2)] +∇[p10ei2t/(2−E 2)] = E∇2[u10ei2t/(2−E 2)], (3.19)

∇ · [u10ei2t/(2−E 2)] = 0, (3.20)

in a spheroidal cavity of arbitrary eccentricity 0 6 E < 1 satisfying n̂ · u10 = 0 at the
bounding surface of the cavity η =√1− E 2.

A major task of our asymptotic analysis is then to find the analytical expression
for coefficients Ank and Bnk, as well as the viscous boundary layer ũc and ũs, in the
expansions (3.3) and (3.4). After substituting the expansions into (3.1), multiplying the
resulting equation by u∗nk, the complex conjugate of unk, and then integrating over the
spheroid, we obtain two solvability conditions:

Ank(ω̂
2 − ω2

nk)

∫
V
|unk|2 dV + ω̂

∫
V
u∗nk · (ω̂ûs + 2ẑ× ûc +∇p̂c) dV

− iωnk

∫
V
u∗nk · (−ω̂ûc + 2ẑ× ûs +∇p̂s) dV

= Po
∫

V
u∗nk · [ω̂2r× x̂− iωnkr× (ẑ× x̂)] dV, (3.21)

iBnk(ω̂
2 − ω2

nk)

∫
V
|unk|2 dV + ωnk

∫
V
u∗nk · (ω̂ûs + 2ẑ× ûc +∇p̂c) dV

− iω̂
∫

V
u∗nk · (−ω̂ûc + 2ẑ× ûs +∇p̂s) dV

= ω̂Po
∫

V
u∗nk · [ωnkr× x̂− ir× (ẑ× x̂)] dV, (3.22)

where ωnk = 2σnk, k > 0, 1 6 n 6 (2k + 1) and
∫

V denotes the volume integration
over the spheroidal cavity. Meanwhile, there are also two equations for the viscous
boundary layer:

ω̂ũs + 2ẑ× ũc + n̂(n̂ ·∇p̃c)= ∂
2ũc

∂ξ 2
, (3.23)

−ω̂ũc + 2ẑ× ũs + n̂(n̂ ·∇p̃s)= ∂
2ũs

∂ξ 2
. (3.24)

Here we have introduced a stretched boundary-layer variable ξ = E1/2[(1− E 2)
1/2−η]

for which n̂ ·∇ =−E−1/2∂/∂ξ with ξ = 0 at S while ξ =∞ defines the outer edge of
the viscous boundary layer. The no-slip boundary condition (2.9) implies that ũs and
ũc are subject to the following boundary conditions on S :

ũs =−
∑

nk

[Ankunk + c.c.]
η=
√

1−E 2, (3.25)

ũc =−
∑

nk

[Bnkunk + c.c.]
η=
√

1−E 2 . (3.26)

It will be seen that the way of solving (3.21)–(3.22) and (3.23)–(3.24) for non-resonant
librating flow is quite different from that for resonant flow. For this reason, we shall
discuss the two different cases separately.



428 K. Zhang, K. H. Chan and X. Liao

3.2. Non-resonant flow with a passive boundary layer
At an asymptotically small Ekman number with 0 < E � 1, the normal mass flux
from, or sucking the interior fluid into, the viscous boundary layer is of the order
E1/2. When |ω̂2 − ω2

nk| � O(E1/2), the four integrals in the two solvability conditions
(3.21) and (3.22) that are connected with the secondary flow, ûs and ûc, can be
neglected to leading-order approximation. After carrying out the volume integration on
the right-hand sides of (3.21) and (3.22), the two solvability conditions become

Ank(ω̂
2 − ω2

nk)

∫
V
|unk|2 dV = ωnkPo

[
ω̂2(1− E 2)

(2− ωnk)
− 1
]

Ink, (3.27)

iBnk(ω̂
2 − ω2

nk)

∫
V
|unk|2 dV = ω̂Po

[
ωnk(1− E 2)

(2− ωnk)
− 1
]

Ink, (3.28)

where |ωnk|< 2 and Ink represents a two-dimensional summation for given σnk and E ,

Ink = 2π
√

1− E 2

σnk

k∑
i=0

k−i∑
j=0

(−1)i+j

[
σ 2

nk(1− E 2)

(1− σ 2
nkE 2)

]i [
(1− σ 2

nk)

(1− σ 2
nkE 2)

]j

×
[ [2(k + i+ j)+ 3]!!
(2i+ 2j+ 5)!!(k − i− j)!i!j!

]
. (3.29)

In order to determine Ank and Bnk for all possible n and k, it is essential to evaluate the
summation Ink given by (3.29). When k = 0, the summation (3.29), together with σ10

given by (3.14), can be readily evaluated to give

I10 = 2π(2− E 2)
√

1− E 2

5
. (3.30)

When k = 1, we can also easily make a direct summation of (3.29), which gives

In1 = 2π
√

1− E 2

σn1

1∑
i=0

1−i∑
j=0

(−1)i+j σ
2i
n1 (1− σ 2

n1)
j

(1− σ 2
n1E 2)

i+j

×
[
[2(k + i+ j)+ 3]!! (1− E 2)

i

(2i+ 2j+ 5)!!(k − i− j)!i!j!

]
≡ 0 (3.31)

for any value of σn1 with 0 < |σn1| < 1. When k > 2, the two indices (i, j) in
the summation (3.29) are so intimately entangled that a direct summation becomes
difficult. It is found, however, that the summation Ink also vanishes identically for all
k > 2. Since this mathematical property is central to our asymptotic analysis, we shall
present a brief direct proof showing that Ink ≡ 0 for k > 2.

An important step in the proof is to establish a recurrence relationship that links the
large-k summations of (3.29) with the small-k ones, like (3.31) for k = 1, which can
then be evaluated directly. For this purpose, we introduce one additional index, M, by
considering a new summation

PM
nk =

2π
√

1− E 2

σnk

k−M∑
i=0

k−i−M∑
j=0

(−1)i+j

[
σ 2

nk(1− E 2)

(1− σ 2
nkE 2)

]i [
(1− σ 2

nk)

(1− σ 2
nkE 2)

]j

×
[ [2(k + i+ j)+ 3]!!
[2(i+ j+M)+ 5]!!(k − i− j−M)!i!j!

]
, (3.32)
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where k > 2 with (k − M) > 1. Obviously, Ink =P0
nk. At first glance, the new

summation (3.32) appears to be more complicated than the original (3.29). But it
can be shown or verified that PM

nk obeys the following recurrence relationship:

PM
nk =

[
2(M + 1− k)

k −M

]
PM+1

nk , (3.33)

which implies that

P0
nk =

[−2(k − 1)
k

]
P1

nk =
[
(−2)2(k − 1)(k − 2)

k(k − 1)

]
P2

nk = · · ·

=
[
(−2)k−1(k − 1)!

k!
]

Pk−1
nk . (3.34)

In other words, we have established that

Ink =
[
(−2)k−1

k

]
Pk−1

nk . (3.35)

At M = k − 1, the summation (3.32) can be easily carried out:

Pk−1
nk =

2π
√

1− E 2

σnk

1∑
i=0

1−i∑
j=0

(−1)i+j

[
σ 2

nk(1− E 2)

(1− σ 2
nkE 2)

]i [
(1− σ 2

nk)

(1− σ 2
nkE 2)

]j

×
[

1
(1− i− j)!i!j!

]
≡ 0. (3.36)

By virtue of the recurrence relationship (3.35) and the summation (3.36) at M = k − 1,
we conclude that

Ink ≡ 0 for k > 2. (3.37)

On the basis of (3.27), (3.28), (3.30) and (3.37), we obtain that

Ank = 0, Bnk = 0 when n 6= 1, k 6= 0 (3.38)

and

A10 = 4Po(1− E 2)[ω̂2(2− E 2)− 2]
3[ω̂2 (2− E 2)

2−4](2− E 2)
, B10 =− i4Po ω̂E 2(1− E 2)

3[ω̂2 (2− E 2)
2−4](2− E 2)

. (3.39)

This implies that, regardless of the size of the libration frequency ω̂, only the
spheroidal inertial mode u10 is sustained by latitudinal libration. Substitution of Ank

and Bnk into the expansion (3.3) gives rise to an interior solution for the librationally
driven flow in a spheroidal cavity that does not satisfy the no-slip boundary condition.

A complete asymptotic solution of a viscous flow at E� 1 requires a boundary-
layer flow, ũs and ũc. It should be pointed out that, since the librating flow is
generally oscillatory, with its amplitude being a function of time t, its boundary-layer
analysis is slightly more complicated than that for a travelling wave that has constant
amplitude. For an oscillatory flow, ũs and ũc in the expansion (3.3) have to be
treated separately. Mathematically, it may be convenient to derive the two fourth-order
differential equations by applying the operators n̂× and n̂ × n̂× to (3.23) and (3.24),
and then combining the two resulting equations, which yield(

∂2

∂ξ 2
− 2iτ√

1− E 2 + E 2τ 2

)2

(iũc + n̂× ũc)+ ω̂2(iũc + n̂× ũc)= 0 (3.40)
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and (
∂2

∂ξ 2
− 2iτ√

1− E 2 + E 2τ 2

)2

(iũs + n̂× ũs)+ ω̂2(iũs + n̂× ũs)= 0, (3.41)

subject to the following boundary conditions:

[ũc]ξ=0 = Ṽ c =−2PoE 2ω̂
√

1− E 2

[ω̂2 (2− E 2)
2−4] [(cosφ

√
1− E 2 + τ 2E 2)τ̂ + (τ sinφ)φ̂], (3.42)

[ũs]ξ=0 = Ṽ s = 2Po[ω̂2(2− E 2)− 2]√1− E 2

[ω̂2 (2− E 2)
2−4]

× [(sinφ
√

1− E 2 + τ 2E 2)τ̂ − (τ cosφ)φ̂], (3.43)

[ũc]ξ=∞ = [ũs]ξ=∞ = 0, (3.44)(
∂2

∂ξ 2
− 2iτ√

1− E 2 + E 2τ 2

)
[iũc + n̂× ũc]ξ=0 = ω̂(iṼ s + n̂× Ṽ s), (3.45)(

∂2

∂ξ 2
− 2iτ√

1− E 2 + E 2τ 2

)
[iũs + n̂× ũs]ξ=0 =−ω̂(iṼ c + n̂× Ṽ c), (3.46)(

∂2

∂ξ 2
− 2iτ√

1− E 2 + E 2τ 2

)
[iũc + n̂× ũc]ξ=∞ = 0, (3.47)(

∂2

∂ξ 2
− 2iτ√

1− E 2 + E 2τ 2

)
[iũs + n̂× ũs]ξ=∞ = 0. (3.48)

The above boundary conditions are derived from (3.25) and (3.26) together with the
given values of Ank and Bnk as well as the definition of a viscous boundary layer
(Greenspan 1968). This boundary-layer problem can be solved to give the solutions:

ũc = Po
√

1− E 2

[ω̂2 (2− E 2)
2−4] {[(ω̂

2(2− E 2)− 2)(sinφ
√

1− E 2 + E 2τ 2 + iτ cosφ)

−E 2ω̂(i cosφ
√

1− E 2 + E 2τ 2 + iτ sinφ)]τ̂eα
+ξ

− [(ω̂2(2− E 2)− 2)(sinφ
√

1− E 2 + E 2τ 2 + iτ cosφ)

−E 2ω̂(i cosφ
√

1− E 2 + E 2τ 2 + iτ sinφ)]τ̂eα
−ξ

+ [(ω̂2(2− E 2)− 2)(i sinφ
√

1− E 2 + E 2τ 2 − τ cosφ)

+E 2ω̂(cosφ
√

1− E 2 + E 2τ 2 − iτ sinφ)]φ̂eα
+ξ

+ [(ω̂2(2− E 2)− 2)(−i sinφ
√

1− E 2 + E 2τ 2 + τ cosφ)

+E 2ω̂(cosφ
√

1− E 2 + E 2τ 2 − iτ sinφ)]φ̂eα
−ξ } (3.49)

and

ũs = Po
√

1− E 2

[ω̂2 (2− E 2)
2−4] {[(ω̂

2(2− E 2)− 2)(i sinφ
√

1− E 2 + E 2τ 2 − τ cosφ)

+E 2ω̂(cosφ
√

1− E 2 + E 2τ 2 − iτ sinφ)]τ̂eα
+ξ

+ [(ω̂2(2− E 2)− 2)(i sinφ
√

1− E 2 + E 2τ 2 − τ cosφ)

+E 2ω̂(− cosφ
√

1− E 2 + E 2τ 2 + iτ sinφ)]τ̂eα
−ξ
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− [(ω̂2(2− E 2)− 2)(sinφ
√

1− E 2 + E 2τ 2 + iτ cosφ)

+E 2ω̂(i cosφ
√

1− E 2 + E 2τ 2 + τ sinφ)]φ̂eα
+ξ

− [(ω̂2(2− E 2)− 2)(sinφ
√

1− E 2 + E 2τ 2 + iτ cosφ)

−E 2ω̂(i cosφ
√

1− E 2 + E 2τ 2 + τ sinφ)]φ̂eα
−ξ } (3.50)

where

α± =− (1+ iS ±)√
2

∣∣∣∣ 2τ√
1− E 2 + E 2τ 2

± ω̂
∣∣∣∣1/2, (3.51)

with S ± denoting a sign function defined as

S ± = 2τ ± ω̂√1− E 2 + E 2τ 2

|2τ ± ω̂√1− E 2 + E 2τ 2| . (3.52)

Only the imaginary parts of expressions (3.49) and (3.50) are taken as the solution for
ũc and ũs. Across the viscous boundary layer, the librating flow undergoes a smooth
but rapid adjustment to the interior solution and, moreover, the boundary layer plays
only a passive role such that the flow satisfies the no-slip boundary condition. There
exist, however, two critical co-latitudes τc = ±ω̂

√
1− E 2/

√
4− ω̂2E 2 at which the

boundary-layer solutions break down. As confirmed by the result of our numerical
simulation, those singularities seem to have insignificant influences on the librating
flow, which will be discussed in more depth later.

Substitution of Ank and Bnk, together with ũc and ũs, into the asymptotic expansion
(3.3) yields the leading-order solution of the fluid motion satisfying the no-slip
boundary condition driven by latitudinal libration,

u=
[

2Po(ω̂2 (2− E 2)
2−2)Qs

[ω̂2 (2− E 2)
2−4] + ũs

]
sin ω̂t +

[
2PoE 2ω̂Qc

[ω̂2 (2− E 2)
2−4] + ũc

]
cos ω̂t,

(3.53)

where Qc and Qs are associated with the real and imaginary parts of the inertial mode
u10 given by (3.16)–(3.18),

Qc =
[
τE 2
√

1− τ 2(1− E 2 − η2) cosφ√
η2 + τ 2E 2

]
η̂ + [ητ sinφ]φ̂

+
[
η
√
η2 + E 2(1− E 2 + E 2τ 2) cosφ√

η2 + τ 2E 2

]
τ̂ , (3.54a)

Qs =−
[
τE 2
√

1− τ 2(1− E 2 − η2) sinφ√
η2 + τ 2E 2

]
η̂ + [ητ cosφ]φ̂

−
[
η
√
η2 + E 2(1− E 2 + E 2τ 2) sinφ√

η2 + τ 2E 2

]
τ̂ . (3.54b)

It is worth noting that the asymptotic expression (3.53), valid only for E � 1,
represents an oscillatory flow (i.e. its amplitude |u| is a function of time t) within
a spheroidal cavity of arbitrary eccentricity 0 < E < 1, driven by latitudinal libration
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FIGURE 1. Scaled kinetic energy Ekin of the librationally driven flows plotted as a function
of ts = t/T , where T = 2π/ω̂ for β = 0.005, E = 5 × 10−5 and E = 0.5. Three numerical
simulations for ω̂ = 0.5, 1.35, 1.8 are shown as solid lines; the corresponding asymptotic
solutions (dashed lines), computed from the analytical expression (3.57), are also presented.

with its frequency ω̂ satisfying∣∣∣∣ω̂ − 2
(2− E 2)

∣∣∣∣� O(E1/2). (3.55)

To measure the strength of a librating flow, we may introduce the kinetic energy
density, Ekin, defined as

Ekin(t)= 1
2V

∫
V
|u|2 dV, (3.56)

where V is the volume of the spheroidal cavity. The leading order of Ekin can be
computed using the analytical expression (3.53):

Ekin(t)= 2Po2(1− E 2)(2− E 2)

5 [ω̂2 (2− E 2)
2−4]2

×{[ω̂2(2− E 2)− 2]2 sin2ω̂t + ω̂2E 4cos2ω̂t} + O(E1/2). (3.57)

Figure 1 shows the kinetic energy Ekin(t), calculated directly from the asymptotic
expression (3.57), as a function of time for several different frequencies for
Po = 0.005 and E = 0.5 at E = 5 × 10−5. The profile of the flow, computed from
the analytical solution (3.53), is displayed in figure 2(b,d). Its detail will be discussed
in § 4 along with the result of the corresponding numerical simulation.

3.3. Resonant flow with an active boundary layer
Prior to the asymptotic analysis for resonant flow, we make several important
observations in the expressions (3.39) and (3.53). First, the amplitude of the flow
|u| →∞ when the libration frequency ω̂ approaches ω10 = 2σ10 = 2/(2 − E 2). Hence
the asymptotic solution (3.53) breaks down as ω̂→ ω10, suggesting resonance with
latitudinal libration. Second, the two solvability conditions (3.27) and (3.28) neglecting
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(a) (b)

(c) (d)

FIGURE 2. Contours of the flow component τ̂ · u at the equatorial z = 0 plane obtained
from both numerical simulation and asymptotic solution for non-resonant flows: (a) ω̂ = 1.35
(numerical); (b) ω̂ = 1.35 (asymptotic); (c) ω̂ = 1.8 (numerical); (d) ω̂ = 1.8 (asymptotic).
Other parameters of the solutions are Po= 0.005 and E = 5× 10−5 with eccentricity E = 0.5.
Solid contours are for (τ̂ ·u> 0) while dashed contours for (τ̂ ·u< 0).

the effect of the boundary-layer flux cannot determine the values of A10 and B10 at the
resonance. It follows that the four integrals in (3.21) and (3.22), which are neglected
in deriving (3.27) and (3.28), must be included. Third, it is vital to recognize that
A10 → iB10 as ω̂→ ω10. In the expression (3.39) for A10 and B10, we can readily
show that

[ω̂2(2− E 2)− 2] → ω̂E 2 as ω̂→ ω10, (3.58)

signalling that A10 is no longer independent of B10 at the resonance. This feature
is also reflected in the two solvability conditions (3.21) and (3.22), which become
identical in the limit ω̂→ ω10. Finally, a consequence of A10→ iB10 as ω̂→ ω10 is
that the asymptotic solution (3.53) is no longer oscillatory: it becomes an azimuthally,
retrogradely travelling wave in the form of u(η, τ, φ, t)∼ u(η, τ ) exp[i(φ+ω10t)]. More
precisely, the interior part of the asymptotic solution (3.53) becomes proportional to
u10 exp[i(ω10t)], which satisfies (3.19) and (3.20) exactly, implying that the spheroidal
inertial mode u10 with the frequency ω10 = 2/(2 − E 2) can resonate with latitudinal
libration.

The above observations suggest that, after making use of the fact that Ank = 0 and
Bnk = 0 except for n = 1 and k = 0, the asymptotic expansions (3.3) and (3.4) at the
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resonance may be rewritten as

u= [(A10u10 + c.c.)+ ûs + ũs] sin ω̂t + [(B10u10 + c.c.)+ ûc + ũc] cos ω̂t

= 1
2 [−2iA u10 + ( ûc − iûs)+ ( ũc − iũs)]eiω̂t + c.c. (3.59)

Here we have assumed that A = A10 and B10 = −iA , with A being an unknown
complex amplitude to be determined. The pressure p can be rewritten in a similar way,

p= [(A10p10 + c.c.)+ p̂s + p̃s] sin ω̂t + [(B10p10 + c.c.)+ p̂c + p̃c] cos ω̂t

= 1
2 [−2iA p10 + ( p̂c − ip̂s)+ ( p̃c − ip̃s)]eiω̂t + c.c. (3.60)

It is the effect of the viscous boundary layer, which now plays an active role, that
determines the amplitude A of librationally driven flow at the resonance.

As ω̂→ ω10 = 2/(2 − E 2), the two solvability conditions, (3.21) and (3.22), are
merged into a single condition:

ω̂

∫
V
u∗10 · (ω̂ûs + 2ẑ× ûc +∇p̂c) dV − iω10

∫
V
u∗10 · (−ω̂ûc + 2ẑ× ûs +∇p̂s) dV

= Po
∫

V
u∗10 · [ω̂2r× x̂− iω10r× (ẑ× x̂)] dV, (3.61)

where u∗10 denotes the complex conjugate of u10. Note that (3.61) does not explicitly
contain the unknown amplitude A . It is the secondary interior flow, ûc and ûs, that
implicitly links the solvability condition (3.61) with A through the boundary-layer
flux. After some rearrangement, the solvability condition can be written as∫

V
u∗10 · [iω10( ûc − iûs)+ 2ẑ× ( ûc − iûs)+∇( p̂c − ip̂s)] dV

= Po
∫

V
u∗10 · [ω10r× x̂− ir× (ẑ× x̂)] dV. (3.62)

Upon making use of ∇ · u∗10 = 0 and n̂ · u∗10 = 0 on the bounding surface S , the
condition (3.62) reduces to∫ 2π

0

∫ 1

−1
[p∗10n̂ · ( ûc − iûs)]S

√
1− E 2 + τ 2E 2 dτ dφ

= Po
∫

V
u∗10 ·

[(
2

2− E 2

)
r× x̂− ir× (ẑ× x̂

)]
dV, (3.63)

where [p∗10]S denotes the evaluation of p∗10, the complex conjugate of p10, at the
bounding surface S , and [n̂ · (ûc − iûs)]S represents the normal flux at the outer
edge of the viscous boundary layer. In contrast to the non-resonant case, it is now
imperative to derive an asymptotic expression for the mass flux, which is usually
cumbersome and lengthy. In order to obtain the amplitude A at the resonance, the
following three steps are required: (i) derive the viscous boundary-layer solution
( ũc − iũs); (ii) obtain an expression for the boundary-layer flux [n̂ · (ûc − iûs)]S ;
and (iii) carry out the resulting integrations in (3.63). It is worth mentioning that,
because the resonant solution is in the form of an azimuthally travelling wave with
constant amplitude, the boundary-layer solution ( ũc − iũs) is actually simpler than that
for the non-resonant case.
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First, consider the viscous boundary-layer flow ( ũc − iũs) whose governing equation,
a fourth-order differential equation, can be derived from (3.23) and (3.24):(

∂2

∂ξ 2
− 2i

2− E 2

)2

( ũc − iũs)+
(

2τ√
1− E 2 + E 2τ 2

)2

( ũc − iũs)= 0. (3.64)

This can be solved subject to the following four boundary conditions that ensure the
tangential velocity vanishes at the bounding surface of the spheroidal cavity:

[ũc − iũs]ξ=0 = Ṽ 0

= 3(2− E 2)A

2 (1− E 2)
1/2 [− (1− E 2 + τ 2E 2)

1/2
τ̂ + iτ φ̂]ei[φ+2t/(2−E 2)], (3.65a)

[ũc − iũs]ξ=∞ = 0, (3.65b)[
∂2

∂ξ 2
( ũc − iũs)

]
ξ=0

= 2iṼ 0

(2− E 2)
+
(

2τ√
1− E 2 + E 2τ 2

)
n̂× Ṽ 0, (3.65c)[

∂2

∂ξ 2
( ũc − iũs)

]
ξ=∞
= 0. (3.65d)

The boundary-layer solution that satisfies both the fourth-order equation (3.64) and the
four boundary conditions is given by

( ũc − iũs)= 3(2− E 2)A

4 (1− E 2)
1/2 {(τ −

√
1− E 2 + E 2τ 2)(τ̂ + iφ̂)eγ

+ξ

+ (τ +
√

1− E 2 + E 2τ 2)(−τ̂ + iφ̂)eγ
−ξ }ei[φ+2t/(2−E 2)], (3.66)

where γ ± is a function of τ ,

γ ± =−(1+ is±)

[
|τ(2− E 2)±√1− E 2 + E 2τ 2|
(2− E 2)

√
1− E 2 + E 2τ 2

]1/2

, (3.67)

with s± denoting a sign function defined as

s± = τ(2− E 2)±√1− E 2 + E 2τ 2

|τ(2− E 2)
√

1− E 2 + E 2τ 2| . (3.68)

In (3.66), the outer edge of the thin viscous boundary layer is defined by taking the
limit ξ →∞.

Second, the normal component of the mass flux at the outer edge of the viscous
boundary layer, which links the boundary-layer solution to the secondary interior flow,
is given by (Greenspan 1968),

[n̂ · ( ûc − iûs)]S = E1/2

∫ ∞
0

n̂ ·∇ × [n̂× ( ũc − iũs)] dξ, (3.69)

providing the asymptotic matching condition required for evaluating the solvability
condition (3.63). With oblate spheroidal coordinates, (3.69) can be written as

[n̂ · ( ûc − iûs)]S =
E1/2

√
1− E 2 + E 2τ 2

∫ ∞
0

{
∂

∂φ

[
1− E 2 + E 2τ 2

1− τ 2
φ̂ · ( ũc − iũs)

]
+ ∂

∂τ
[
√
(1− E 2 + E 2τ 2)(1− τ 2)τ̂ · ( ũc − iũs)]

}
dξ. (3.70)
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On inserting the boundary-layer solution (3.66) into (3.70) and then performing the
integration over ξ , we obtain an expression for the mass flux at the outer edge of the
viscous boundary layer:

[n̂ · ( ûc − iûs)]S =−
E1/2

√
1− E 2 + E 2τ 2

[
3(2− E 2)A

4
√

1− E 2

]
ei[φ+2t/(2−E 2)]

×
{

1− E 2 + E 2τ 2

√
1− τ 2

[
−τ +√1− E 2 + E 2τ 2

γ +
− τ +

√
1− E 2 + E 2τ 2

γ −

]

+ d
dτ

[√
(1− E 2 + E 2τ 2)(1− τ 2)(τ −√1− E 2 + E 2τ 2)

γ +

]

− d
dτ

[√
(1− E 2 + E 2τ 2)(1− τ 2)(τ +√1− E 2 + E 2τ 2)

γ −

]}
. (3.71)

In the process of computing the normal flux from the viscous boundary layer, it should
be noted that both γ + and γ − are functions of τ .

Third, upon substituting the pressure (p∗10)S given by (3.15) and the mass flux
[n̂ · ( ûc − iûs)]S given by (3.71) into the solvability condition (3.63), we can derive
an equation for the amplitude A :

−9πE1/2A (2− E 2)
3/2

4
= Po

Ir + iIi

∫
V
u∗10 ·

[(
2

2− E 2

)
r× x̂− ir× (ẑ× x̂)

]
dV.

(3.72)

Here Ir and Ii denote the following two complicated integrals:

Ir =
∫ +1

−1

(1− E 2 + E 2τ2)
3/4
(−τ +

√
1− E 2 + E 2τ2)(1− 2τ2 + τ

√
1− E 2 + E 2τ2)

|(2− E 2)τ2 +
√

1− E 2 + E 2τ2 |1/2
dτ,

(3.73a)

Ii =
∫ +1

−1

(1− E 2 + E 2τ2)
3/4
(τ −

√
1− E 2 + E 2τ2)(1− 2τ2 + τ

√
1− E 2 + E 2τ2)

|(2− E 2)τ2 +
√

1− E 2 + E 2τ2 |3/2
dτ.

(3.73b)

The volume integration on the right-hand side of (3.72), after using the expression u10

given by (3.16)–(3.18), can be readily carried out, giving rise to∫
V
u∗10 ·

[(
2

2− E 2

)
r× x̂− ir× (ẑ× x̂)

]
dV = 2π (1− E 2)

1/2
E 2

5
. (3.74)

It follows that, after solving (3.72), the amplitude A is given by

A = PoE 2

E1/2

[
Ir − iIi

I 2
r +I 2

i

]
8 (1− E 2)

1/2

45 (2− E 2)
3/2 . (3.75)

A careful manipulation is, however, required for evaluating Ir and Ii. This is because
there exist two critical co-latitudes τc = ±1/

√
4− E 2 at which the boundary-layer

solution breaks down as it thickens to O(E2/5), as discussed by Roberts & Stewartson
(1965). However, it is generally believed that the effect of the singularities is weak and
insignificant because the mass flux from the critical regions is much smaller than that
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from the rest of the boundary layer (see e.g. Roberts & Stewartson 1965; Busse 1968;
Tilgner & Busse 2001).

We are now in a position to write an asymptotic expression for the resonant flow
in a spheroidal cavity of arbitrary eccentricity driven by latitudinal libration for an
asymptotically small E. By inserting the expressions for A and ũc + iũs into the
expansion (3.59), we obtain the asymptotic solution for the resonant flow:

u=
(
PoE 2

E1/2

)[
2

15
√
(1− E 2)(2− E 2)

](
Ir − iIi

I 2
r +I 2

i

)
×
{[

τE 2
√

1− τ 2(1− E 2 − η2)√
η2 + E 2τ 2

η̂ + η
√
η2 + E 2(1− E 2 + E 2τ 2)√

η2 + E 2τ 2
τ̂ − iητ φ̂

]

+
√

1− E 2

2
[(τ −

√
1− E 2 + E 2τ 2)(τ̂ + iφ̂)eγ

+ξ

+ (τ +
√

1− E 2 + E 2τ 2)(−τ̂ + iφ̂)eγ
−ξ ]
}

ei[φ+2t/(2−E 2)] + c.c. (3.76)

Its kinetic energy Ekin at leading order is simply given by

Ekin =
(
Po2E 4

E

)
4

1125(I 2
r +I 2

i )
. (3.77)

For highly flattened spheroids with large values of eccentricity E , the integrals Ir

and Ii have to be evaluated numerically.
For moderately small eccentricity with E 2 � 1, which represents the case for the

majority of known planets, relatively simple asymptotic expressions for Ir and Ii can
be derived:

Ir =− 2
35(19− 9

√
3)− E 2[ 4

55(
1
9 + 6
√

3)] + O(E 4), (3.78a)

Ii = 2
5(7− 3

√
3)+ E 2[ 4

105(52− 3
√

3)] + O(E 4). (3.78b)

Further details about the above integrals are provided in the Appendix. In this case, an
explicitly analytical solution becomes possible:

u=
(
PoE 2

E1/2

)[
2

15
√
(1− E 2)(2− E 2)

]
×
{[

2(−19+ 9
√

3)
35

− i2(7− 3
√

3)
3

]
− E 2

[
4(1+ 54

√
3)

495
+ i4(52− 3

√
3)

105

]}

×
[

17 312
1225

− 384
√

3
49

+ E 2

(
183 424
17 325

− 8576
√

3
1925

)]−1

×
{[

τE 2
√

1− τ 2(1− E 2 − η2)√
η2 + E 2τ 2

η̂ + η
√
η2 + E 2(1− E 2 + E 2τ 2)√

η2 + E 2τ 2
τ̂ − iητ φ̂

]

+
√

1− E 2

2
[(τ −

√
1− E 2 + E 2τ 2)(τ̂ + iφ̂)eγ

+ξ

+ (τ +
√

1− E 2 + E 2τ 2) (−τ̂ + iφ̂)eγ
−ξ ]
}

ei[φ+2t/(2−E 2)] + c.c., (3.79)
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FIGURE 3. (a) Scaled kinetic energy Ekin/Po
2 plotted as a function of E−1 at the resonance

frequency ω̂ = 8/7 for E = 0.5. The dashed line is computed directly from the asymptotic
expression (3.77), while the solid line represents the result of direct numerical simulation at
four Ekman numbers E = 10−2, 10−3, 10−4 and 5 × 10−5 with Po = 0.005 and E = 0.5.
(b) Scaled kinetic energy Ekin/Po

2 plotted as a function of the libration frequency ω̂ for
E = 5 × 10−5 and E = 0.5. The solid line is based on the result of the asymptotic formulae
(3.57) and (3.77), while the ∗ symbols represent the results of direct numerical simulation.

representing an asymptotic solution for the resonant flow, driven by latitudinal libration,
within a spheroidal cavity with E 2 � 1. The leading-order kinetic energy of the
resonant flow is

Ekin =
(

4Po2E 4

1125E

)[
17 312
1225

− 384
√

3
49

+ E 2

(
183 424
17 325

− 8576
√

3
1925

)]−1

, (3.80)

which is valid when E 2� 1 and E� 1.
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FIGURE 4. A schematic of the spheroidal mesh with E = 0.5 for numerical simulation, with
the denser mesh in the vicinity of its bounding surface.

The most significant result of the asymptotic analysis is perhaps the existence of
an asymptotic law |u| ∼ PoE−1/2 or Ekin ∼ Po2E−1 at E � 1. Figure 3(a) shows,
computed from the asymptotic expression (3.77), the dependence of the kinetic energy
Ekin of the resonant flow on E−1 for the fixed value of E = 0.5 and Po= 0.005, while
figure 3(b) illustrates how the kinetic energy depends on the libration frequency ω̂.
They will be discussed in detail in § 4 along with the corresponding results of direct
numerical simulation.

4. Numerical simulation
The primary purpose of three-dimensional direct numerical simulation, which is

valid for any size of E, is to validate the accuracy of the asymptotic solution
valid only for E � 1. We shall focus on the cases with E � 1 and |Po| � 1.
Local numerical methods like finite element methods are particularly suitable for
non-spherical geometry. For the sake of completeness, we shall briefly discuss the
finite element method, including both spatial and temporal discretization for (2.6) and
(2.7), used in simulating latitudinally libration-driven flow in spheroidal cavities. The
three-dimensional tetrahedralization of a spheroidal cavity in our code produces a finite
element mesh that does not have pole or central numerical singularities. Moreover, the
three-dimensional mesh is flexible enough to construct more nodes in the vicinity of
the bounding surface of the spheroidal cavity for resolving the thin viscous boundary
layer. For the simulation reported here, we have used 302 968 tetrahedral elements
with a total of 1152 054 unknowns. A sketch of the finite element mesh for a
spheroidal cavity with E = 0.5 is illustrated in figure 4. A semi-implicit time stepping
scheme is employed for the time advancement, with an implicit second-order backward
differentiation formula being used for the time derivative:(

∂u
∂t

)n+1

= 3un+1 − 4un + un−1

21t
+ O(1t2), (4.1)
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where un denotes u(tn) with tn+1 − tn =1t. A second-order extrapolation is applied to
the nonlinear term u ·∇u, which at t = tn+1 can be expressed as

un+1 ·∇un+1 = 2(un ·∇un)− (un−1 ·∇un−1)+ O(1t2). (4.2)

This semi-implicit temporal discretization of (2.6) and (2.7) gives

3un+1 − 4un + un−1

21t
+ 2(un ·∇un)− (un−1 ·∇un−1)+ 2ẑ× un+1

=−∇pn+1 + E∇2un+1 + 2Po[ω̂−1ŷ× un+1 cos(ω̂tn+1)− x̂× un+1 sin(ω̂tn+1)]
+Po[ω̂r× x̂ cos(ω̂tn+1)+ r× (ẑ× x̂) sin(ω̂tn+1)], (4.3)

∇ ·un+1 = 0. (4.4)

It should be pointed out that, since the Coriolis term 2ẑ × un+1 is primarily
dominant, the two other Coriolis terms in (4.3), 2Po ω̂−1ŷ × un+1 cos(ω̂tn+1) and
2Po x̂ × un+1 sin(ω̂tn+1), are small and insignificant when Po � 1. There are no
noticeable differences between the numerical solutions obtained with or without having
the two small Coriolis terms. These equations are solved efficiently on modern parallel
computers, starting from an arbitrary initial condition to find un+1 and pn+1 from given
un and un−1. A discussion regarding the accuracy and convergence of our spheroidal
finite element code can be found in Chan, Zhang & Liao (2010).

Consider first the librationally non-resonant flow for |ω̂ − 2/(2 − E 2)| � E1/2 at
E� 1. In this case, a satisfactory agreement between the asymptotic solution and the
numerical simulation is achieved. Figure 1 shows kinetic energies Ekin as a function of
time, computed from both numerical simulation and the asymptotic expression (3.57)
for Po = 0.005 and E = 5 × 10−5 at several different libration frequencies. It can be
seen that the result from the analytical formula (3.57), which is shown by the dashed
lines in figure 1, agrees quantitatively well with direct simulation without substantial
noticeable differences. For example, the numerical simulation in figure 1 gives the
average kinetic energy (Ekin/Po

2)num = 0.164 at ω̂ = 1.35 while the analytical formula
(3.57) yields (Ekin/Po

2)asym = 0.160. Figure 2 depicts the profiles of librating flow for
two different frequencies obtained from both the numerical simulation and asymptotic
solution (3.53). It should be pointed out that our numerical simulation is nonlinear,
representing a solution to the full equation (2.6) whilst the nonlinear term u · ∇u is
neglected in the asymptotic analysis. An excellent agreement between the numerical
and asymptotic analysis is probably attributable to the fact that the interior part of the
asymptotic solution (3.53) has the properties ∇2u= 0 and u · ∇u=∇Φ, where Φ can
be absorbed into the reduced pressure. In other words, the asymptotic solution (3.53),
apart from in the viscous boundary layer, does satisfy (2.6) including the term u · ∇u.
There is, however, a noticeable difference in figure 2 between the asymptotic solution
(3.53) and the corresponding numerical simulation, which would be attributable to the
nonlinear effect in the viscous boundary layer neglected in our asymptotic analysis.

Consider now the librationally resonant flow at the libration frequency ω̂ =
2/(2− E 2). Our asymptotic solution (3.76) predicts that resonance with the spheroidal
inertial mode u10 would result in an asymptotic law |u| ∼ Po/E1/2 or Ekin ∼ Po2/E at
E� 1. This prediction is convincingly confirmed by our direct numerical simulation
performed for various values of E at a fixed value of Po and E . Figure 3(a) (the
solid line) shows the scaled kinetic energy, Ekin/Po

2, as a function of the Ekman
number E from direct numerical simulation. For the purpose of comparison, both
the asymptotic result (the dashed line) from the formula (3.77) and the numerical
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(a) (b) (c)

FIGURE 5. Contours of (a) τ̂ ·u, (b) φ̂ ·u and (c) η̂ ·u in a meridional plane for the resonant
numerical solution obtained at Po= 0.005 and E = 5× 10−5 with eccentricity E = 0.5.

result are displayed in the same figure. Note that the solid line in figure 3(a) is
based on four numerical simulations for E = 0.5 and Po = 0.005 at Ekman number
E = 10−2, 10−3, 104 and 5 × 10−5. There is a satisfactory agreement between the
asymptotic solution and direct numerical simulation when E is sufficiently small.
For example, we obtain (Ekin/Po

2)num = 1.08 for E = 10−4 while the asymptotic
formula (3.77) gives (Ekin/Po

2)asym = 1.13. At a smaller value, E = 5 × 10−5, the
simulation gives (Ekin/Po

2)num = 2.28 while the asymptotic formula (3.77) gives
(Ekin/Po

2)asym = 2.27, as shown in figure 3(a). The profile of a weakly nonlinear
resonant flow in a meridional plane is displayed in figure 5 for E = 5 × 10−5 and
Po = 0.005, indicating the existence of a strong shear in the vicinity of the bounding
surface of the fluid container. In figure 3(b), the scaled kinetic energy is shown as a
function of the libration frequency ω̂ for the fixed Ekman number E = 5 × 10−5 at
E = 0.5. It reveals again a satisfactory agreement between the asymptotic solutions
(the solid line) and direct numerical simulations at several different frequencies (the
∗ symbols). Our numerical simulation also confirms that the librating flow at the
resonance is indeed in the form of an azimuthally, retrogradely travelling wave at the
phase speed 2/(2− E 2), consistent with the asymptotic solution (3.76).

5. Summary and remarks
We have investigated, via both asymptotic and numerical analysis, fluid motion in a

spheroidal cavity driven by latitudinal libration for an asymptotically small E. For the
non-resonant frequency, |ω̂ − 2/(2 − E 2)| � O(E1/2), we have derived an asymptotic
solution for E� 1 that satisfies the no-slip boundary condition without making any
prior assumptions about the flow structure for an arbitrary eccentricity 0 < E < 1.
In this case, the librating flow has the typical amplitude |u| = O(Po) at E� 1 and
the role of the viscous boundary layer is mainly passive for the flow to obey the
no-slip condition. At the resonant frequency, ω̂ = 2/(2 − E 2), latitudinal libration
resonates with the spheroidal inertial mode u10 – which represents an azimuthally
retrogradely travelling wave – and the librating flow reaches a much larger amplitude
|u| = O(Po/E1/2) at E� 1. It is the viscous boundary layer that plays an essential
role in determining the key property of the resonant flow. Through the viscous process,
the thin boundary layer communicates with the bulk of the fluid and determines
the final equilibrium of the resonant travelling wave. The strong velocity shear
between the bulk fluid and the spheroidal container would provide the major source
of energy dissipation. When E 2 � 1, an explicitly analytical solution is derived for
the librationally resonant flow. For an oblate spheroidal cavity of arbitrary eccentricity,
however, there exist two integrals in the asymptotic solution that have to be evaluated
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numerically. We also carry out direct numerical simulation, which shows a satisfactory
agreement with the asymptotic solution at E� 1.

A physically significant finding in this study is the resonance of latitudinal libration
with a spheroidal inertial mode when the libration frequency is close to 2/(2 − E 2). It
should be noted that inertial waves are ubiquitous in rotating fluid systems and may
be excited and maintained by various mechanisms, such as thermal convection (e.g.
Zhang 1994), precession (e.g. Lorenzani & Tilgner 2001), a tidal effect (e.g. Le Bars
et al. 2010) and differential rotation (e.g. Kelley et al. 2007). In the present study,
we have revealed for the first time the resonance of an inertial wave with latitudinal
libration in a spheroidal cavity that gives rise to an asymptotic law |u| ∼ Po/E1/2

at E� 1. The physical reason why resonance can occur in latitudinal libration with
spheroidal geometry (E 6= 0) is actually very simple. As a consequence of spheroidal
geometry, the topographic coupling between the latitudinally librating container and
the interior fluid always forces fluid motion. The fluid motion would be constantly
reinforced to give rise to resonance, as in the situation of a resonant pendulum, when
the flow is in the form of an azimuthally travelling wave marked by the azimuthal
wavenumber m = 1 and the frequency 2/(2 − E 2) such that it is always at exactly the
same phase as that of latitudinal libration. By contrast, this type of resonance cannot
take place in longitudinal libration because all inertial waves in spheroidal geometry
always travel, prograde or retrograde, in the one direction (Zhang et al. 2004). It is
hoped that the latitudinal-libration resonance in a spheroidal cavity, predicted by this
asymptotic theory, will be confirmed by laboratory experiments in the future.

This new finding may have important implications for planetary magnetism.
Although it is a widely accepted hypothesis that thermal or chemical buoyancy within
planetary fluid cores drives planetary dynamos, the validity of this hypothesis might
be questionable for certain planets and moons such as Mercury and Ganymede. In
this case, an alternative mechanism, suggested by the result of this study, would be
a non-thermal planetary dynamo that is driven by resonant latitudinal libration. This
mechanism is possible because the two conditions for resonance – nearly synchronous
rotation and small but non-zero eccentricity – are approximately met by those planets
and moons. A large-amplitude flow with strong shears at E � 1 at resonance is
probably susceptible to instabilities, leading to a more complicated flow, which would
play a key role in the magnetism of nearly synchronous planets that are thermally or
chemically non-convective. Our numerical study on how latitudinally resonant flows
maintain dynamo action in a librating ellipsoid is currently under way.

Both the asymptotic and numerical solutions discussed in this paper are for weakly
librating flow with a small Poincaré number |Po| � 1. When the Poincaré number
becomes sufficiently large, it is anticipated that a strong mean zonal flow is likely to
be generated through nonlinear interaction taking place primarily within the viscous
boundary layer. The result of direct numerical simulation, focusing on strongly
nonlinear flow with large values of Po as well as different values of eccentricity E ,
will be reported in a future paper.
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Appendix. Asymptotic expressions for Ir and Ii

Consider first the simpler integral Ir. Since the integrand is singular at τc =
−1/
√

4− E 2, we may separate Ir into the two different integrals:

Ir = lim
δ→0


∫ τc−δ

−1

(1− E 2 + E 2τ2)
3/4
(−τ +

√
1− E 2 + E 2τ2)(1− 2τ2 + τ

√
1− E 2 + E 2τ2)

|(2− E 2)τ + τ
√

1− E 2 + E 2τ2|1/2
dτ

+
∫ +1

τc+δ
(1− E 2 + E 2τ2)

3/4
(−τ +

√
1− E 2 + E 2τ2)(1− 2τ2 + τ

√
1− E 2 + E 2τ2)

|(2− E 2)τ + τ
√

1− E 2 + E 2τ2|1/2
dτ

 .

(A 1)

We shall assume that E 2 is small but fixed. The root of the complication stems from
the fact that the upper or lower limit of integration is also a function of the expansion
parameter E 2. Expanding both the limits and integrand in terms of E 2 yields the four
integrals:

Ir = lim
δ→0

{∫ −1/2−δ

−1

(1− τ)2(1+ 2τ)

[−(1+ 2τ)]1/2 dτ +
∫ 1

−1/2+δ

(1− τ)2(1+ 2τ)

(1+ 2τ)1/2
dτ

−E 2

[∫ −1/2−δ

−1

(1− τ)2(2+ 6τ + 2τ 2 − 3τ 3)

2 [−(1+ 2τ)]1/2 dτ

+
∫ 1

−1/2+δ

(1− τ)2(2+ 6τ + 2τ 2 − 3τ 3)

2 (1+ 2τ)1/2
dτ
]}
+ O(E 4). (A 2)

Each of the above four integrals is finite and can be readily evaluated, giving rise to

Ir =− 2
35(19− 9

√
3)− E 2[ 4

55(
1
9 + 6
√

3)] + O(E 4). (A 3)

This asymptotic expression provides a reasonably accurate approximation of Ir

when E 2 � 1. For example, the numerical integration of Ir at E = 0.25 gives
(Ir)num =−0.2436 while the asymptotic formula yields (Ir)asym =−0.2427.

The second integral Ii is slightly more complicated because of the 3/2 power in the
denominator of the integrand. Similar to the previous case, we can also separate Ii
into the two different integrals:

Ii = lim
δ→0


∫ τc−δ

−1

(1− E 2 + E 2τ2)
3/4
(−τ +

√
1− E 2 + E 2τ2)(1− 2τ2 + τ

√
1− E 2 + E 2τ2)

|(2− E 2)τ + τ
√

1− E 2 + E 2τ2|3/2
dτ

+
∫ +1

τc+δ
(1− E 2 + E 2τ2)

3/4
(−τ +

√
1− E 2 + E 2τ2)(1− 2τ2 + τ

√
1− E 2 + E 2τ2)

|(2− E 2)τ + τ
√

1− E 2 + E 2τ2|3/2
dτ

 .

(A 4)
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Expanding both the integrand and limits in term of the expansion parameter E 2 yields

Ii = lim
δ→0

{
−
∫ −1/2−δ

−1

(1− τ)2(1+ 2τ)

[−(1+ 2τ)]3/2 dτ −
∫ 1

−1/2+δ

(1− τ)2(1+ 2τ)

(1+ 2τ)3/2
dτ

+E 2

[∫ −1/2−δ

−1

(1− τ)2(1+ 4τ + 3τ 2 − 3τ 3)

2 [−(1+ 2τ)]3/2 dτ

+
[
(1− τ)2(1+ 2τ)

16 [−(1+ 2τ)]3/2
]
τ=−1/2−δ

−
[
(1− τ)2(1+ 2τ)

16 (1+ 2τ)3/2

]
τ=−1/2+δ

+
∫ 1

−1/2+δ

(1− τ)2(1+ 4τ + 3τ 2 − 3τ 3)

2 (1+ 2τ)3/2
dτ
]}
+ O(E 4). (A 5)

Whilst the two leading-order integrals can be directly evaluated, every term in the
order E 2 diverges and must be treated carefully. After carrying out the relevant
integration, we obtain the following limits:

Ii = 2
5
(7− 3

√
3)+ E 2 lim

δ→0

{[
81− 24τ − 93τ 2 + 233τ 3 − 160τ 4 + 35τ 5

210 [−(1+ 2τ)]1/2
]−1/2−δ

−1

+
[
(1− τ)2(1+ 2τ)

16 [−(1+ 2τ)]3/2
]
τ=−1/2−δ

−
[
(1− τ)2(1+ 2τ)

16 (1+ 2τ)3/2

]
τ=−1/2+δ

−
[

81− 24τ − 93τ 2 + 233τ 3 − 160τ 4 + 35τ 5

210 (1+ 2τ)1/2

]1

−1/2+δ

}
+ O(E 4).

= 2
5
(7− 3

√
3)+ E 2

[
4

105
(52− 3

√
3)
]

+ lim
δ→0

{√
2δ
[
−57

32
− 61δ2

20
− δ

4

6

]}
+ O(E 4). (A 6)

Taking the limit δ→ 0 gives the asymptotic expression:

Ii = 2
5(7− 3

√
3)+ E 2[ 4

105(52− 3
√

3)] + O(E 4). (A 7)

This again offers a reasonably accurate approximation for small values of E 2. For
example, the numerical integration of Ii at E = 0.25 gives (Ii)num = 0.8413 while the
corresponding asymptotic formula yields (Ii)asym = 0.8330.
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