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H_, Model Reduction for Positive Systems

Ping Li

Abstract— This paper is concerned with the model reduction
of positive systems. For a given stable positive system, our
attention is focused on the construction of a reduced-order
model in such a way that the positivity of the original system is
preserved and the error system is stable with a prescribed H..
performance. Based upon a system augmentation approach, a
novel characterization on the stability with /., performance
of the error system is first obtained in terms of linear matrix
inequality (LMI). Then, a necessary and sufficient condition
for the existence of a desired reduced-order model is derived
accordingly. A significance of the proposed approach is that
the reduced-order system matrices can be parametrized by a
positive definite matrix with flexible structure, which is fully
independent of the Lyapunov matrix; thus, the positivity con-
straint on the reduced-order system can be readily embedded
in the model reduction problem. Finally, a numerical example is
provided to show the effectiveness of the proposed techniques.

I. INTRODUCTION

In many practical systems, there is such a kind of systems
whose state variables are confined to be positive. Such
systems are frequently encountered in various fields, for
instance, biomedicine, pharmacokinetics, chemical reactions,
industrial engineering, social science and economics. These
systems belong to the class of positive systems, whose state
variable and output are always positive (at least nonnegative)
whenever the initial state and the input are positive [1] [2].
Positivity of the system state for all times will bring about
many new issues, which cannot be solved in general by using
well-established methods for general linear systems, mainly
due to the fact that positive systems are defined on cones
rather than linear spaces. Therefore, the study on this kind
of systems has drawn the attention of many researchers in
recent years [3] [4] [5] [6].

Mathematical modeling of positive systems, such as
molecular dynamics, industrial wastewater treatment, and
chemical reactors, often results in complex high-order mod-
els, which will bring serious difficulties to analysis and syn-
thesis of positive systems, irrespective of the computational
resources available [7]. Therefore, in practical applications,
it is necessary to replace high-order models by reduced ones
with respect to some given criterion. In fact, such a topic
is actually a model reduction problem in control area, and
has received considerable attention in the past decades [8]
[9] [10] [11] [12] [13] [14]. Amongst the many optimality
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criteria for approximation, one is based on the H,, norm
of the associated error system. The characterization of H,
model reduction solution was first proposed in [15], and
many important results have been reported for various kinds
of systems, such as stochastic systems [16] and switched
systems [17] [18]. Very recently, based on the methods
of balanced truncation and matrices inequalities, the model
reduction problem for positive systems has been investigated
in [19] and [20], respectively. It should be pointed out that
traditional approaches developed for general linear systems,
including the widely adopted projection approach and simi-
larity transformation [16] [21], are no longer applicable for
positive systems in general, since they cannot guarantee the
positivity of the reduced-order system. This indicates that
conventional approaches, if used to construct a reduced-order
system, may generate a meaningless approximation for the
actual system whose state is always positive all the time.
Indeed, the introduction of positivity of the reduced-order
system will lead to new difficulties, which cannot be easily
dealt with by existing approaches. Therefore, it is necessary
to develop new approaches to the H,, model reduction prob-
lem for positive systems with positivity preserved. However,
such a problem has not been well studied in the literature,
and still remains as a challenging open issue.

In the present work, we are concerned with the H,, model
reduction problem for positive systems. More specifically,
for a given positive linear continuous-time system, the aim
is to construct a positive lower-order system such that the
H norm of the difference between the original system and
the desired lower-order one satisfies a prescribed H., norm
bound constraint. Based on a system augmentation approach,
the associated error system is first represented as a singular
system form, and a novel characterization on the stability of
the error system under the H, performance is derived in the
form of LMI. Then, a necessary and sufficient condition for
the existence of a desired reduced-order system is proposed,
and an iterative LMI approach is developed to compute the
reduced-order system matrices. It is well worth pointing out
that the approach developed in this paper has the advantage
that the reduced-order system matrices can be parametrized
by a positive definite matrix with flexible structure, which
is fully independent of the Lyapunov matrix. Such a char-
acterization will greatly facilitate the parametrization with
positivity constraints.

The rest of this paper is organized as follows. Section
IT gives some notations and preliminaries. In Section III, a
novel characterization on the stability and the H, analysis
of the error system is developed, and an iterative LMI
algorithm is formulated to construct a reduced-order system.
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A numerical example is given in Section IV to show the
applicability of the results obtained. Finally, we summarize
our results in Section V.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Notation: Let R be the set of real numbers; R™ denotes the
n-column real vectors; R™*™ is the set of all real matrices of
dimension n x m. RI*™ represents the n x m dimensional
matrices with nonnegative components and R? £ Ri“.
For a matrix A € R™*", a;; denotes the element located
at the ith row and the jth column. Matrix A is said to be
nonnegative if V(4,5) a;; > 0; it is said to be positive,
if V(¢,7) ai; = 0, 3(i,4) a;; > 0. In view of the fact
that the definitions of nonnegative and positive matrices are
equivalent, except when a nonnegative matrix is identically
zero which is the degenerate case and is of no interest,
we do not distinguish these two throughout this paper, that
is, we consider that these two conditions are equivalent in
general cases. A matrix A € R"*" is called Metzler, if
all its off-diagonal elements are positive, that is, V (i, 7),
i # j, a;;j = 0. I represents the identity matrix with
appropriate dimension; For any real symmetric matrices P,
@, the notation P > @ (respectively, P > (J) means that the
matrix P — () is positive semi-definite (respectively, positive
definite).

The notation Lo [0,00) represents the space of square
Lebesgue integrable functions over [0,00) with the usual
norm ||-||,. For a transfer function matrix G(s), [|G||,
represents the H,, norm of G(s). In addition, Her (M) £
MT 4+ M is defined for any matrix M € R™*"; associated

with a set of matrices A; € R" " ¢ = 1,2,...,N,
diag ( A1 Az A ) is defined as
A ... 0
dlag( A1 AQ AN )é .
0 ... An

The superscript “I”” denotes matrix transpose and the symbol
# is used to represent a matrix which can be inferred by sym-
metry. Matrices, if their dimensions are not explicitly stated,
are assumed to have compatible dimensions for algebraic
operations.

Consider the following linear asymptotically stable sys-

o z(t) = Axz(t) + Bu(t),
y(t) = Cua(t) + Du(t), (1)
z(0) = =xo,

where z(t) € R™ is the state vector, u(t) € R™ is the input
vector which belongs to Lo [0, 00), y(t) € R? is the output
or measurement vector. Furthermore, A, B, C' and D are
real constant matrices with appropriate dimensions. System
(1) is said to be a positive linear system if for all zo € R}
and all input u(t) € R, we have z(t) € R’ and y(t) € RY
for t > 0.

The following lemma provides a well-known characteri-
zation of positive linear systems.

Lemma 1 ([1]): The system in (1) is positive if and only
if A is Metzler, B, C and D are positive.

In this paper, we aim at approximating system (1) by a
reduced-order stable system described by

z.(t) = Apz,.(t) + Bru(t),
yr(t) = Cra.(t) + Dyu(t), )
xr(o) = Zro,

where z,.(t) € R™ is the state vector of the reduced-order
system (2) with 0 < n, < n, and y,.(t) € R?. A,, B,, C,
and D, are matrices to be determined later.

For the stable system in (1), the transfer function from
input u(¢) to output y(t) is given by

Guy(s) = C (sI — A" B+ D. (3)

Traditionally, the H,, model reduction problem was formu-
lated by finding a reduced-order system (2), such that

||guy - guyr”oo <7, “4)

where
guyr (8) - C’l“ (SI - Ar)71 Br + Dr (5)

is the transfer function of system (2) from wu(¢) to y,.(¢), and
v > 0 is a prescribed scalar.

However, such a specification is not sufficient for positive
systems, since as an approximation of system (1), it is
naturally desirable that system (2) should also be positive,
like system (1) itself. That is, in addition to the H., perfor-
mance in (4), the positivity should also be preserved when
considering the model reduction problem for the positive
system in (1). To ensure the positivity of system (2), if
follows from Lemma 1 that A, should be Metzler, B,., C.
and D, should be positive.

For convenience, denote set S 2 {(A,,B,,C,,D,) :
A, is Metzler, B,., C, and D, are positive}.

Let () = [«7(t),27(#)]" and e(t) = y(t)—y,(t). Then,
from (1) and (2), we obtain the associated error system as

i(t) = Ai(t)+ Bu(?), ©
e(t) = Ci(t)+ Du(t),
where
P A 0 - B
de o ]e-[a]
¢ = [C -C. ],D=D-D,.
Obviously, condition in (4) is equivalent to
1Gue($)lloe <> @)
where
~ At TN .
Guels) = C (sI = A) B+D 8)

is the transfer function from w(¢) to e(t). In addition, the
stability of system (1) and (2) is naturally equivalent to that
of system (6).

Based on the above discussion, the problem of positivity-
preserving H,, model reduction for positive systems in (1)
to be addressed in this paper is formulated as follows.
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Problem PP-H.,-MR (Positivity-Preserving H., Model
Reduction): Given a disturbance attenuation level v > 0,
construct a system (2) such that the following two require-
ments are fulfilled simultaneously.

1) (A, By, C,D,) €S.
(2) The error system in (6) is asymptotically stable and
satisfies the H, performance ||Gyc|l ., < 7

The following result gives a fundamental characterization
on the stability of (6) with H, performance, which will be
used later.

Lemma 2 ([21]): The error system in (6) is asymptoti-
cally stable and satisfies [|Guell, < 7, if and only if there
exists a matrix P > 0, such that

Her (ATP) PB CT
4 T i <0, 9)
i # -l

where P is usually referred to as the Lyapunov matrix.

III. MAIN RESULT

In this section, we aim to construct a positive lower-order
system such that the H., norm of the difference between
the original positive system and the desired lower-order one
satisfies a prescribed H,, norm bound constraint. To achieve
this, we first present a novel characterization on the stability
and the H., performance of (6) by means of a system
augmentation. Then, a necessary and sufficient condition for
the existence of a desired reduced-order system is proposed,
and an iterative LMI approach is developed to compute the
reduced-order system matrices.

A. Novel Stability and H, Performance Characterization

In this subsection, we first represent system (6) by means
of a system augmentation approach, which will facilitate the
parametrization on the positivity constraint. Then, a novel
characterization on the stability and the H, performance of
(6) is developed in terms of linear matrix inequality, which
will play a key role for the computation of the reduced-order
system matrices.

AT BT
C’!' D’!' :| ’

Define
which collects the representation for the system matrices
in (2) into one matrix. We further make the following
definitions:

G,«:{

. (A 0 _ B _ _
A = K 0],3:{0},():[0 0], D=D,
_ [0 0 _ 0 I

Fo= I 0}’M:[0 0}’

_ [0 _

N - _I],H:[o I,

which are entirely in terms of the state space matrices for
system (1), then we have

i\ = A4+FG.M, B=B
o _

Although the system matrices in (2) are encapsulated into
G, one can see that it is still embedded with two other
matrices. In addition, when applying Lemma 2, we have
that G, is still coupled with the Lyapunov matrix P, which
makes them hard to solve. More significantly, such a problem
will become more difficult and arduous, in particular when
additional constraints on G, are taken into account.

To overcome these difficulties, we introduce an auxiliary
variable (t) = G, Mi(t) + G, Nu(t) as a state component,
and choose x(t) [ 27(t) JT(t) }T as a new state
variable. Then the error system in (6) can be equivalently
described by the following descriptor system:

(20 2 a0
where
o= [0 0] A 5]
B - [GfN},cz[c H),D=D.

Remark 1: A major obstacle for the construction of the
reduced-order system in (2) is that it should be positive,
which results in the additional constraints on the system
matrices A, B, C., and D,.. Focusing on this, one can
see that the advantage of the above manipulations lies in the
following aspects. First, these system matrices are assembled
to a single matrix G-, which will be convenient for the syn-
thesis consideration. Second, by means of system augmenta-
tion approach in (10), G, is successfully extracted from the
middle of two matrices, and can be further parametrized by a
free positive definite matrix, which will be shown later. Such
an approach will introduce the flexibility to the construction
of G, in particular when G, has some certain constraints.

Theorem 1: Given the system matrices A,, B,, C, and
D,.. Then the following statements are equivalent:

(i) The error system in (6) is asymptotically stable, and
satisfies ngeHoc <.
(ii) There exist matrices P > 0, X > 0 such that

Her (ATP) PT(I+J)B C7

=42 # =~ DT <0,
# # —vI
an
where
F=-BTj7T (P+PT)JB,
with
P 0
P=| ydear k)
-3XG.M 1X
I 0 00
(1) o= [00)
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Proof: (ii)=(i). Suppose there exist matrices P> 0, X >
0 such that (11) holds. Define a nonsingular matrix

1 0

G G

0
0

A T T
r= 0 1 0
0 0 1

O O ~NO

Pre- and post-multiplying (11) by 77 and T, respectively,
we have

Her (ATP) PB CT PF

ZLqTep — - —I DT 0 | <.
i # -l H
i # # X

12)
Based on Lemma 2, the third leading principal submatrix
of Z indicates that the error system in (6) is asymptotically
stable, and satisfies [|Gyc ||, < v, which completes this part
of the proof.
(i)=>(ii). If the error system in (6) is asymptotically stable,
and satisfies ||Gy.c|| ., < 7, then it follows from Lemma 2 that
there exists a matrix P > 0, such that

Her (ATP) PB CT
O = # 771 ﬁT < 0.
# # -1

Then, for any matrix S > 0, there exists a sufficiently large
scalar a > 0 such that

PF PF
—aS—1 0 el o <0. (13)
H H

By choosing X = «S and applying Schur complement
equivalence to (13), we have

==T"T=1"1 <0,

which completes the whole proof. (|

Remark 2: Although the conditions in (9) and (11) are
equivalent, it should be pointed out that the LMI formulation
in (11) has some advantages over the one in (9). First,
with the LMI characterization in (11), the reduced-order
system matrices, or GG, equivalently, are not coupled with
the Lyapunov matrix P any more, but can be parametrized
by a positive definite matrix X, which is fully independent
of P. Second, it follows from (13) that, if the error system
in (6) is asymptotically stable and satisfies |G|, < 7, the
existence of X will be naturally guaranteed. Finally, one can
see that the structure of X is rather flexible. To be specific,
from the proof of ((ii)=-(i)), we have that X takes the form
X = S, where S can be any positive definite matrix with «
being sufficiently large. The freedom on the structure of X
will greatly facilitate the synthesis considered in this paper
when additional constraints on G, are imposed, which will
be shown subsequently.

B. Synthesis of Positive Reduced-Order System

This subsection is devoted to the synthesis of the reduced-
order system in (2). Based on the analysis in Subsection
III-A, a necessary and sufficient condition for the existence
of a solution to Problem PP-H_-MR is obtained. Then, an
iterative LMI approach is developed to compute the reduced-
order system matrices accordingly.

Theorem 2: Problem PP-H.-MR is solvable, if and only
if there exists a matrix P > 0, a diagonal matrix X > 0,
matrices U, V|, Ly, Lo, L3 and L4 such that

[ L Ly
L_{LS L4]€S, (14)
En4 PF+MTLT =5 CT
-X LN HT
=(U, V)2 7 = = <0,
V) # # Z33 DT
# # #
(15)
where
Ey; = Her (ATP) — Her (UTLM) +UTXU,
3 = PB-MTLTV -UTLN +UTXV,
Z33 = —Her (VILN) + V"XV — 4l

In this case, the system matrices of (2) can be given as

G,=X""'L.
Proof: By expanding (11), we have

(16)

Her (ATP) —~ MTGTXG,M PF+M'GTX

-X
# #
# #
PB—-MTGTXG.N CT
XG,.N ar
_NTGTXG,N —~1 DT | < an
9 -1

Sufficiency: It follows from (14) and X > 0 diagonal, we
have that A, Metzler, B,., C, and D, positive. From (16),
we have L = X G,.. Substituting this into (15), and observing
that, for any U and V,

RSP (eX )
< —oTGTXG,®+ (V—-G,2) X (¥ -G,9)
= —Her (V'XG,®) + ¥ XV,
where

=M 0 N ], v=[U 0 V], 18

we obtain that (17) holds, which further indicates that (11)
holds. According to Theorem 1, this completes the suffi-
ciency proof.

Necessity: If Problem PP-H..-MR is solvable, then for
the given error system in (6), it follows from Theorem 1 that
there exists a matrix P > 0, and a diagonal matrix X > 0
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such that (11) holc}s, or equivalengly, (17) holds. Then, by
choosing U = G,.M and V = G,.N, we have that

—®"GIXG,® = —Her (V" XG,®) + VXV,

where ® and ¥ are defined in (18). Substituting this into
(17), and letting L. = X@G,., one has that (15) holds. This
completes the whole proof. |

Remark 3: From the proof in Theorem 2, one can see
that the construction matrix G, is not coupled with P, but
can be parametrized by X, which makes the construction
specification for G,. € S possible. More specifically, due to
the fact that the structure of X is rather flexible, we can
designate X to be a positive diagonal matrix. As a matter
of fact, X can be chosen as a positive diagonal matrix, or
even a positive scalar matrix, whereas no conservatism will
be introduced consequently.

Let us explain the conditions in Theorem 2 from a
computational perspective. Obviously, the condition in (14)
can be viewed as a set of LMIs, which can be readily verified
by standard software. Now, we turn to inequality (15), which
is generally not a linear matrix inequality with respect to the
parameters If’, X, U, V and L. However, it can be easily
observed that if U and V are held fixed, then it becomes an
LMI problem with respect to the other remaining parameters.
Note that the LMI problem is convex and can be efficiently
solved if a feasible solution exists [22]. This leaves a natural
problem about how to choose U and V properly. Define a
scalar « satisfying

E(U,V) < ofl, (19)

where

IM=diag( I 0 I 0) (20)

and E (U, V) is defined in (15). Inspired by [23], it follows
from the proof of Theorem 2 that o will achieve its minimum
when U = X~'LM and V = X~ 'LN, which leads to an
iterative approach to solve inequality (15).

Now, we are in a position to develop the following iterative
LMI algorithm:

Algorithm 1 (ILMI Approach):

1) START: Set j = 1. For a given H, performance level
~, compute the initial matrices U; and V7 such that the
following auxiliary system,

I(t) = Az(t)+ FI(t) + Bu(t), ’1
e(t) = Cz(t)+HI()+ Du(t), D
with 9(t) = U1Z(t) + Vyu(t) is asymptotically sta-

ble and the transfer function 7T,.(s) from wu(t) to
e(t) satisfies ||Zyell, < -
2) For fixed U; and Vj, solve the following convex

Oftimization problem for the parameters in Q £

P >0, X >0is diagonal, L1, Lo, Ly and L4} ;

™~

| L1 L»
_{Lg LJes

o = mg%naj s.t.
2(U;,V;) < o5ll

J

Denote the corresponding value of X and L as X; and

L;, respectively.

3) If o < 0, then a desired parametric matrix G, is
obtained as G, := X;le. STOP. If not, then go to
next step.

4) If |(a;-‘ - 01;71) /oz;f’ < 41, where §; is a prescribed
tolerance, then go to next step. If not, update U;4, and
‘/j+1 as

Ujsr:=X;'L;M, Vjq = X;'L;N.

Set j := j + 1, then go to Step 2.
5) A solution to Problem PP-H.,-MR may not exist.
STOP.

We give some remarks on Algorithm I before ending this
section.

Remark 4: The problem in Step 1 is convex, which can
be regarded as a state-feedback H,, control problem. Fur-
thermore, if there are no matrices U; and V; such that
system (21) is stable and satisfies || 7|/, < 7, then we can
conclude immediately that there does not exist a solution to
Problem PP-H.,-MR. In addition, it follows from Lemma 2
that finding U; and V; is equivalent to finding Q > 0, W
and V; such that

Her (AQ + FWy) B+ FVi QCT +WTH?

# —~I DT +vIHT
# # -1
(22)

holds, then U; can be obtained as U; = W1 Q !, and V; can
be given directly from (22).

Remark 5: It can be easily seen that «; is monotonically
decreasing with respect to j, that is, o ; < oj. If ] does
not converge to a positive scalar, then o will eventually be
negative after running Algorithm 1 with sufficient iterations,
which corresponds to the stopping criterion in Step 3, and
further indicates that there exists a feasible solution to Prob-
lem PP-H .-MR. Thus, the nonconvergent case is trivial, and
we only need to consider the convergent situation.

<0

IV. ILLUSTRATIVE EXAMPLE

In this section, we present an illustrative example to
demonstrate the applicability of the proposed results.

Consider a positive system in (1) with parameters as
follows:

—2.0 08 15 0.4

A = 06 -16 0 |,B=| 0 |,
04 0 -—15 0

C = [100],D=05

It can be easily verified that this positive system is asymp-
totically stable, and we assume that the H., performance
level is prescribed as v = 0.155. The aim of this example is
to construct a positive first-order system in the form of (2)
to approximate the original system.

By implementing Algorithm I via Yalmip [24], an initial
value of U; and V7 in Step 1 can be obtained from (22) as

0 0 0

—0.5 0
Ui=l10 00 o }’Vl_[o.s]'
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Subsequently, it can be found that the conditions in Theorem
2 are feasible with the following solution:

s [07357 0
X =10 X[ 0 22793 |
~0.6934  0.0002
_ 3
L=107x [ 0.4167  1.4903 ]

Then, according to (16), a desired positive first-order model
in (2) can be readily obtained with the system matrices given

as -

that is,
() = —0.9425z,.(¢) + 0.0003u(t),
yr(t) = 0.1828x,.(t) + 0.6538u(t).

It can be easily verified that the H., performance of the
associated error system is 0.1538, which is less than the
prescribed H,, norm bound v = 0.155. This is also demon-
strated in Figure 1, which gives the singular value plot of
the associated error system.

[ATBT

—0.9425 | 0.0003
C. | D, ’

0.1828 | 0.6538

0.155

0.15

0.145

0.14

0.135

0.13

0.125 L L 5 L
10 10 10 10 10
Frequency (rad/s)

Fig. 1: Singular value plot of associated error system.

V. CONCLUSION

In this paper, we have presented a model reduction
approach that preserves positivity and stability with H,
performance of positive systems. In particular, we have
proposed a novel characterization on the stability and H,
performance of the associated error system by means of a
system augmentation method, which ensures the separation
of the reduced-order system matrices to be constructed from
the Lyapunov matrix. Based on this new characterization,
a necessary and sufficient condition for the existence of a
desired reduced-order system has been established in terms
of matrix equalities, and an iterative LMI approach has been
developed to solve the condition. Finally, the effectiveness
of the proposed method has been illustrated by a numerical
example. The approach adopted in this paper can be applied
to tackle problems involving some constraints on elements
of the required system matrices, such as positivity and
boundedness.
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