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BACKGROUND: We have previously demonstrated that peroxisome proliferator-activated receptor (PPARg) activation inhibits
hepatocarcinogenesis. We aim to investigate the effect of PPARg on hepatocellular carcinoma (HCC) metastatic potential and
explore its underlying mechanisms.
METHODS: Human HCC cells (MHCC97L, BEL-7404) were infected with adenovirus-expressing PPARg (Ad-PPARg) or Ad-lacZ and
treated with or without PPARg agonist (rosiglitazone). The effects of PPARg on cell migration and invasive activity were determined
by wound healing assay and Matrigel invasive model in vitro, and in an orthotopic liver tumour metastatic model in mice.
RESULTS: Pronounced expression of PPARg was demonstrated in HCC cells (MHCC97L, BEL-7404) treated with Ad-PPARg,
rosiglitazone or Ad-PPARg plus rosiglitazone, compared with control (Ad-LacZ). Such induction markedly suppressed HCC cell
migration. Moreover, the invasiveness of MHCC97L and BEL-7404 cells infected with Ad-PPARg, or treated with rosiglitazone was
significantly diminished up to 60%. Combination of Ad-PPARg and rosiglitazone showed an additive effect. Activation of PPARg by
rosiglitazone significantly reduced the incidence and severity of lung metastasis in an orthotopic HCC mouse model. Key mechanisms
underlying the effect of PPARg in HCC include upregulation of cell adhesion genes, E-cadherin and SYK (spleen tyrosine kinase),
extracellular matrix regulator tissue inhibitors of metalloproteinase (TIMP) 3, tumour suppressor gene retinoblastoma 1, and
downregulation of pro-metastatic genes MMP9 (matrix metallopeptidase 9), MMP13, HPSE (heparanase), and Hepatocyte growth
factor (HGF). Direct transcriptional regulation of TIMP3, MMP9, MMP13, and HPSE by PPARg was shown by ChIP-PCR.
CONCLUSION: Peroxisome proliferator-activated receptor-gamma exerts an inhibitory effect on the invasive and metastatic potential of
HCC in vitro and in vivo, and is thus, a target for the prevention and treatment of HCC metastases.
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Despite significant advances in early detection and therapy,
hepatocellular carcinoma (HCC) still remains the third leading
cause of cancer-related deaths worldwide (Bosch et al, 2004). The
high mortality rate of HCC is mainly attributable to late
presentation at advanced stage, where curative surgical resection
is no longer feasible or of limited efficacy (Mann et al, 2007).
Tumour recurrence in HCC can occur as metastases, whereas more
than 90% of HCC-related deaths are the result of secondary local
or distant disease. However, efficacious or curative drug therapy
for HCC and its metastases remains elusive.

Peroxisome proliferator-activated receptor-gamma (PPARg) is a
ligand-activated transcription factor that belongs to the nuclear

hormone receptor super family; its roles include control of several
biological processes related to growth, differentiation, cell cycle, and
apoptosis (Koeffler 2003). Activation of PPARg has been shown to
inhibit proliferation in several cancers in vitro and in vivo (Koeffler
2003; Grommes et al, 2004). Our group has recently reported that
PPARg activation by its agonist (Yu et al, 2006) or ectopic expression
of PPARg by Ad-PPARg transfection (Yu et al, 2010) inhibits HCC
growth and progression by suppressing cell proliferation, inducing
cell apoptosis, and causing cell cycle arrest (Yu et al, 2006, 2010).
The PPARg expression in HCC is significantly reduced in tumour
tissues compared with surrounding non-tumourous liver, especially
in poorly differentiated tumour than in well-differentiated tumour
(Yu et al, 2006). Peroxisome proliferator-activated receptor-gamma
also has a role in inhibiting tumour growth and metastatic spread in
colon (Takano et al, 2008) and thyroid cancers (Ohta et al, 2001;
Chen et al, 2006) as well as lung carcinoma (Panigrahy et al, 2002).
However, PPAR’s effect on invasive and metastatic potential of HCC
has yet to be defined.
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The aim of the present study was to determine the effect and the
underlying molecular mechanism of PPARg on HCC cell migration
and invasion using HCC cell lines and formation of distant
metastases in vivo in an orthotopic murine liver tumour model.

MATERIALS AND METHODS

Human HCC cell lines and culture

The human HCC cell line MHCC97L, stably labelled with
luciferase, was a gift from K Man, Department of Surgery, The
University of Hong Kong (Man et al, 2010). BEL-7404 was obtained
from the Institute of Biochemistry and Cell Biology (SIBS,
Shanghai, China) (Chen et al, 1980). Cells were cultured in DMEM
(Dulbecco’s modified Eagle medium) supplemented with 10%
foetal bovine serum (Invitrogen, Carlsbad, CA, USA) and
incubated at 37 1C and 5% CO2.

Adenovirus-mediated PPARc gene transfer

Recombinant adenovirus expressing the mouse PPARg-1 cDNA
(Ad-PPARg) or E. coli b-galactosidase gene (Ad-LacZ, control
adenovirus vector) (gift from JK Reddy, Department of Pathology,
Feinberg School of Medicine, Northwestern University, Chicago)
was propagated, isolated in human embryonic kidney 293
(HEK293) cells, then purified with Adeno-X Maxi Purification
Kit (Clontech, Mountain View, CA, USA); the adeno virus with
infectious titre range from 1.0� 109 to 1010 pfu (plaque-forming
unit) ml� 1 was stored at � 80 1C until use.

RNA extraction, cDNA synthesis, and RT–PCR

Total RNA was extracted from cell pellets by Trizol (Invitrogen)
and reverse transcribed into cDNA using MultiScribe Reverse
Transcriptase (Applied Biosystems, Foster city, CA, USA) accord-
ing to the manufacturer’s instructions. The target gene expression
was determined by RT–PCR using specific primers of target genes
(Table 1). GAPDH was served as an internal control for total cDNA
content. Samples were amplified using the ABI Prism 7700
Sequence Detection System (Applied Biosystems).

Tumour cell migration assay

Wound healing assay was performed for analysis of cell migration
in vitro. Briefly, MHCC97L (5� 105 cells per well) or BEL-7404
(5� 105 cells per well) cells were seeded in 12-well plates and
infected with Ad-LacZ (70 multiplicities of infection, MOI) or
Ad-PPARg (70 MOI), and treated with or without rosiglitazone
(50mM) at 37oC until 90% confluent (Yu et al, 2010). Sterile tips
were used to scratch cell layers, which were subsequently washed
with PBS, and cultured with DMEM media and 1% FBS. Cells were
photographed (phase-contrast microscope) at 0, 24, 36, and 48 h
after incubation. The distance travelled by cells was measured
between the two boundaries of an acellular area and results of
treatment groups expressed as a ratio to Ad-Lacz-treated cells.
Each experiment was performed in triplicate.

Tumour cells invasion assay

Matrigel invasion assay (Becton Dickinson, Waltham, MA, USA)
was performed as previously described (Yu et al, 2009). MHCC97L
and BEL-7404 cells infected with Ad-PPARg or Ad-LacZ (2.5� 104

per well) treated with or without rosiglitazone (a selective PPARg
agonist) at 0, 24, 36, and 48 h, then harvested and added into the
trans-well containing 600ml DMEM media and 10% FBS in the
lower chamber. After 48 h, cells that had invaded through the
Matrigel membrane were stained with crystal violet, and counted

(four high-power fields, � 100 magnification). Experiments were
conducted in triplicate.

Orthotopic murine liver tumour model of distant
metastasis

An orthotopic HCC metastasis mouse model was established using
MHCC97L, which has metastatic potential to lung (Man et al,
2010). MHCC97L cells (2� 106 cells in 0.1 ml PBS) were injected
subcutaneously into the left dorsal flank of 4-week-old male Balb/c
nude mice. Subcutaneous tumours were harvested once the
subcutaneous tumours reached about 10 mm3 and cut into
1.0 mm3 pieces. One piece of tumour was then implanted into
the left liver lobes in a separate group of nude mice (6-week-old)
(10 per group) (Man et al, 2010). After tumour implantation, mice
were randomly treated with or without rosiglitazone (200 p.p.m. in
chow), a dosage was selected base on our previous experiments
(Yu et al, 2010). Liver tumour growth and lung metastasis were
monitored by Xenogen IVIS-200, an optical in vivo imaging system
(Caliper Life Science, Hopkinton, MA, USA) weekly. Mice were
euthanised at week 7 after tumour implantation (Man et al, 2010),
tumours and lung nodules were analysed histologically. Signal
intensity of tumours detected by Xenogen IVIS was expressed
as Radiant Efficiency (radiance/illumination power density¼
p s� 1 cm� 2 sr� 1). All experimental procedures were approved by
the Animal Ethics Committee of the Chinese University of Hong Kong.

cDNA expression array

Gene expression profiles were analysed by the Human Tumour
Metastasis PCR Array according to the protocol (SABiosciences,
Frederick, MD, USA). Briefly, total RNA was extracted from
MHCC97L cells infection with Ad-PPARg (70 MOI) or Ad-LacZ
(70 MOI) (control) for 48 h. One mg of total RNA was treated and
cDNA was prepared using RT2 First Strand Kit (SABiosciences).
Pairs of test and control samples were mixed with RT2 qPCR
Master mix, distributed to PCR array in 96-well plates, cycling with
real-time PCR. Each array contained 84 genes with ascribed
functions related to metastasis pathways. Data were analysed using
SABiosciences software. Genes with fold-changes more than or less
than 1.5 were considered to be of biological significance.

Chromatin immunoprecipitation (ChIP) assay

Chromatin immunoprecipitation analysis was performed using
Red ChIP Kit (Diagenode, Liège, Belgium). After transfection with
Ad-PPARg (70 MOI) or Ad-LacZ (70 MOI) for 48 h, MHCC97L cells
were fixed and collected for ChIP assay. DNA–protein complexes
were precipitated using specific antibody of PPARg (Santa Cruz
Biotechnology, Santa Cruz, CA, USA). DNA fragments were
decross-linked and purified from complexes; immunoprecipitated
and input DNA were used as templates for ChIP-PCR.

Characterisation of PPARc-binding region and
semi-quantitatation of ChIP-PCR

To evaluate the direct modulation of transcriptional activity on the
promoters of metastasis-related genes by PPARg, the Genomatix
tool, ModelInspector, was used to scan all the known PPARg-
binding regions linked to metastasis-related genes. Human
promoter regions (size between 2 kb) in the Genomatix promoter
database were scanned. Matched binding sites were selected with
core and matrix similarity of 40.8 (http://www.genomatix.de/
online_help/help_matinspector/matinspector_help.html). The pre-
dicted PPARg-binding sites on the promoter of target genes were
validated by ChIP-PCR (specific primers listed in Table 1).
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Western blot analysis

Total protein was extracted from cell pellets and protein
concentration measured by Bradford assay (Bio-Rad, Hercules,
CA, USA). A total of 30 mg of protein was separated by 12%
sodium dodecyl sulphate–polyacrylamide gel electrophoresis, then
transferred onto equilibrated polyvinylidene difluoride membrane
(Amersham Biosciences, Buckinghamshire, UK). Membranes were
probed with primary antibodies for tissue inhibitors of metallo-
proteinase 3 (TIMP3), heparanase (HPSE), and E-cadherin (Santa
Cruz Biotechnology).

Statistical analysis

Data were presented as means±s.d. Multiple group comparisons
were analysed by one-way ANOVA after Bonferroni’s correction.
Non-parametric data between two groups was computed by
Chi-square test or Fisher Exact test. The difference for two
different groups was determined by Student’s t test. A P-value of
less than 0.05 was considered statistically significant.

RESULTS

Peroxisome proliferator-activated receptor-gamma
suppresses HCC cell migration and invasiveness of
MHCC97L and BEL-7404 human HCC cell lines

The MHCC97L and BEL-7404 cells were infected with Ad-PPARg
or Ad-LacZ (control) in the presence or absence of rosiglitazone
for 48 h and induction of PPARg was confirmed by Western blot
(Figure 1A). Enhanced PPARg expression by Ad-PPARg or
rosiglitazone, markedly slowed cell migration scratchy ‘wound’ at
edges of MHCC97L and BEL-7404 HCC cells (Figure 1B).
Quantitative analyses at 36 h confirmed a significant reduction in
wound closure in Ad-PPARg or rosiglitazone-treated cells compared
with Ad-LacZ-infected control cells (Figure 1C). There appeared to
be an additive effect of Ad-PPARg plus rosilitazone compared with
Ad-PPARg or rosiglitazone only in BEL-7404 cell line (Figure 1C).

To study the effect of PPARg conferred on the invasiveness of
HCC, MHCC97L and BEL-7404 cells were infected with Ad-PPARg,
or treated with rosiglitazone using a Matrigel model (Figure2A).
In vitro invasively growing HCC cells were significantly impaired
by up to 60% when infected with Ad-PPARg or primed by
rosiglitazone at 48 h (Figure 2B). Moreover, the combination of
Ad-PPARg and rosiglitazone incrementally suppressed cell inva-
sion compared with Ad-PPARg or rosiglitazone alone (Figure 2B).

Activation of PPARc by rosiglitazone inhibits HCC
metastases to the lung in vivo

In light of the observed anti-migration and anti-invasion effects of
PPARg on HCC cell lines in vitro, we tested whether activation of

PPARg by rosiglitazone could alter metastatic potential of
MHCC97L in vivo in an orthotopic metastasis mouse model,
where subcutaneously grown tumours derived from MHCC97L cells
expressing luciferase were implanted into the livers of nude mice;
small successful transplantation of tumours were confirmed by
xenogen imaging 2 weeks after surgery (Figure 3A). Mice were
randomly treated with rosiglitazone or vehicle for 7 weeks and then
re-imaged in vivo. By week 7, 87.5% (7 out of 8) of the vehicle-treated
control mice demonstrated lung metastases after orthotopic
implantation. In contrast, only 33% (3 out of 9) of rosiglitazone-
treated animals developed lung metastases (Po 0.05) (Figure 3B).
The luciferase signals emanating from the lungs originally from the
MHCC97L cells expressing luciferase in the rosiglitazone-treated
mice were significantly lower than in the vehicle-treated group
(1.7� 105 vs 3.14� 106 p s� 1 cm� 2 sr� 1, Po 0.05) (Figure 3C).
Subsequent histology confirmed that lung nodules were secondary/
metastatic deposits from liver (Figure 3B). Collectively, these results
provide clear evidence that PPARg activation inhibits lung metastasis
in an orthotopic HCC model in vivo.

Peroxisome proliferator-activated receptor-gamma
modulates the expression profiles of metastasis-related
genes in MHCC97L cells

To elucidate the molecular mechanisms underlying the inhibitory
effect of PPARg on HCC cell invasiveness, gene expression profiles
in Ad-PPARg-infected MHCC97L were analysed using a human
tumour metastasis pathway PCR array. When compared with
control Ad-LacZ-infected cells, PPARg altered downstream targets
involved in cell adhesion, extracellular matrix (ECM) proteins, cell
growth, and cell motility (Table 2), all of which are critical to the
regulation of cancer cell invasiveness and metastasis. Peroxisome
proliferator-activated receptor-gamma exerted its anti-metastatic
effects by increasing the expression of cell adhesion genes,
E-cadherin (5.2-fold), spleen tyrosine kinase (SYK) (1.7-fold),
and ECM regulator metallopeptidase inhibitor 3 (TIMP3) (7.2-
fold), a physiological inhibitor of matrix metallopeptidases
(MMPs). The PPARg also suppressed expression of pro-metastatic
genes, such as MMP9 (� 1.7-fold), MMP13 (� 2.0-fold), HPSE
(� 6.5-fold), and significantly diminished hepatocyte growth
factor (HGF) (� 2.2-fold), a cellular growth and motility regulator.
Further, PPARg-induced retinoblastoma 1 (RB1) expression, a
potent tumour suppressor gene by four-fold (Table 2).

To validate these changes on expression profiling, western blot
and semi-quantitative RT–PCR were performed on MHCC97L and
BEL-7404 cells infected with Ad-PPARg or Ad-LacZ in the presence
or absence of rosiglitazone. Ectopic expression of PPARg by Ad-
PPARg or activation of PPARg by rosiglitazone, increased
E-cadherin and TIMP3 protein expression with a concomitant
diminution of HPSE in both HCC cell lines (Figure 4A1).
Combination of Ad-PPARg and rosiglitazone exerted an additive
effect on the induction of E-cadherin and TIMP3 and suppression

Table 1 Primer sequences for semi-quantitative PCR detection

Gene Forward primer (50 to 30) Reverse primer (50 to 30)

mRNA primers
MMP9 TTGACAGCGACAAGAAGTGG GCCATTCACGTCGTCCTTAT
MMP13 GAAGATGATTTGTCTGAGGAA GCCGAAGAAAGACTGCATT
GAPDH ACAACAGCCTCAAGATCATCAG GGTCCACCACTGACACGTTG

DNA primers
TIMP3 promoter 1 AGGGTCTTTGCACTTGCTGT ATCCTCGCTGAGAAGTGGAC
MMP9 promoter 1 TGGGGAGGATATCTGACCTG AAGAGCACAAGGGTGGACTG
MMP9 promoter 2 CAGGGCTGGAGAACTGAAAG CCTGCCAAAAGACCATGATTC
MMP13 promoter 1 GAAAAAGTCGCCACGTAAGC CCTGGGGACTGTTGTCTTTC
MMP13 promoter 2 GTTCCTGACCTGAGCAGCAT TCCCCTGCAGAAGTAAATGG
HPSE promoter GGGTGGTTGATCTCTTTCCA CCTTCCTCTCCCATCTAGC
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of HPSE (Figure 4A1). A similar enhanced suppressive effect of the
combination of Ad-PPARg and rosiglitazone was observed on
MMP9 and MMP13 mRNA expression by RT–PCR (Figure 4A2).

Direct transcriptional regulation of TIMP3, MMP9,
MMP13, and HPSE by PPARc

To further determine whether PPARg-mediated downstream gene
expression changes were associated with direct promoter binding,

PPARg-binding sites in the promoters of identified targets, TIMP3,
MMP9, MMP13, and HPSE, were mined using ModelInspector
software (Genomatix Software GmbH, Munich, Germany). Chromatin
immunoprecipitation assay with PPARg antibody was performed
in MHCC97L cells followed by PCR confirmation (Figure 4B).
By ChIP-PCR assay, PPARg binds to the promoters of TIMP3,
MMP9, MMP13, and HPSE in MHCC97L cells (Figure.4B). These
findings suggest that TIMP3, MMP9, MMP13, and HPSE are direct
targets of PPARg in liver cancer cells.
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Figure 1 Effect of PPARg on HCC cells motility by wound healing assay. (A) Pronounced expression of PPARg protein was confirmed by western blot
induced in HCC cells (MHCC97L and BEL-7404) treated with rosiglitazone, Ad-PPARg or rosiglitazone plus Ad-PPARg. (B) Representative images of the
cell motility in MHCC97L and BEL-7404 cells under treatment with Ad-LacZ, Ad-LacZþ rosiglitzaone, Ad-PPARg, or Ad-PPARgþ rosiglitazone at 0, 24, and
36 h, respectively. (C) Quantification of cell motility was made by measuring the distance travelled by the cells between the two boundaries of the acellular
area, and the results of the different treatment group were expressed as a ratio to Ad-LacZ-treated cells (control). The experiment was performed for three
times in triplicate. The data are expressed as means±s.d., *Po0.05, **Po0.01, ***Po0.0001, compared with the Ad-lacZ.
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DISCUSSION

The significance of PPARg on the process of metastasis is not well
studied in contrast to the effect of PPARg on tumour growth. In
this study, we show that ectopic expression of PPARg by Ad-PPAR
or its agonist, rosiglitazone, in two HCC cell lines (MHCC97L,
BEL-7404) inhibits metastatic activity in vitro, in particular in
wound healing, cell migration, and invasion. Moreover, the
combination of Ad-PPARg and rosiglitazone results in an
enhanced anti-metastatic effect. Together, these results indicate
that restoration of PPARg allow for interactions with endogenous
or exogenous agonists that activate the anti-metastatic processes
associated with PPARg. The role of PPARg in inhibiting HCC
metastases in vitro was further elucidated in an orthotopic HCC
xenograft model. In this murine model, activation of PPARg
suppressed HCC lung metastasis in nude mice. Surgical resection
or liver transplantation is the curative mainstays of HCC manage-
ment, however, post-operative recurrence predominantly related
to metastasis remains a challenge. Our finding was supported by
recent studies, which indicated that activation of PPARg inhibits
metastasis of lung cancer (Reka et al, 2010) and non-small cell lung
cancer (Choudhary et al, 2010) in vitro and in vivo. Collectively,
our finding that activation of PPARg by rosiglitazone significantly

suppresses metastatic potential could have a beneficial impact on
the clinical practice and in adjuvant therapy of HCC after surgical
resection and transplantation.

The molecular mechanisms by which PPARg exerts its anti-
invasive and anti-metastases functions in HCC have not yet been
defined. To identify key regulators of PPARg-mediated anti-
metastatic effect in HCC, we utilised cDNA microarray and ChIP-
PCR to study MHCC97L cells infected with Ad-PPARg, genes that
were significantly altered in expression levels were then validated
by RT–PCR and immunoblotting. We report that the suppression
of cell invasion and migration mediated by PPARg was mediated
via downregulation of MMPs (MMP9, MMP13), increased expres-
sion of TIMP3 and E-cadherin. Of which, MMP9 and MMP13 are
members of extracellular proteinases with key functions in the
formation and remodelling of tumour invasion (Khasigov et al,
2003). Matrix metallopeptidase 9 has been described to promote
tumour malignant progression, invasion, and metastatic spread by
activating tumour growth factor-b (TGF-b) (Yu and Stamenkovic,
2000). Whereas, MMP13 has a central role in the modulation of
other MMPs (Leeman et al, 2002) such as stimulating pro-MMP9
activation (Knäuper et al, 1997). Elevated MMP13 had been shown
in various human malignancies including breast cancer, colorectal
neoplasms, melanoma, and squamous head and neck tumours,
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Figure 2 Effect of PPARg on HCC cells invasive abilityby Matrigel invasion assay. (A) Representative images of the cell invasive and metastatic ability in
MHCC97L and BEL-7404 cells treated with Ad-LacZ, Ad-LacZþ rosiglitzaone, Ad-PPARg, or Ad-PPARgþ rosiglitazone at 48 h. (B) Quantification of cell
invasion was determined by counting cells that invaded through the Matrigel membrane under a light microscopy(� 100). The relative cell number ratio of
each group was presented by comparing to the Ad-LacZ group (control). The experiment was performed for three times in triplicate. The data are
expressed as mean±s.d., *Po0.001, **Po0.0001, compared with the Ad-lacZ.
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particularly at the invading edge of such cancers; increased
MMP13 expression was associated with poor prognosis, tumour
aggressiveness, and metastases (Leeman et al, 2002; Luukkaa et al,
2006; Kondratiev et al, 2008; Chang et al, 2009).

Tissue inhibitors of metallo proteinase 3 is an important
endogenous inhibitor of MMPs. Upregulation of TIMP3 expression
by PPARg suggested its suppressive functions in tumour invasion
and metastasis via suppressing of MMPs (Bachman et al, 1999;
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Figure 3 Activation of PPARg suppressed HCC metastasis in vivo. (A) Tumours derived from the luciferase-labelled MHCC97L cells were successfully
implanted orthotopically into the livers of nude mice at 2 weeks. Tumour growth in the mice was monitored by a live imaging system detecting the luciferase
signal (unit photons s� 1 cm� 2 steradian). (B) Lung metastasis of the HCC mice treated with or without rosiglitazone (200 p.p.m.) at 7 weeks after
orthotopic implantation. The liver tumours and lung metastatic nodules were examined by Xenogen IVIS and confirmed histologically. (C) Luciferase signal
found in the lungs in the rosiglitazone-treated group was significantly lower than in the vehicle-treated group (log base 10 value is used).
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Table 2 Effect of PPARg on its downstream gene expression profiles of cancer metastasis pathways in HCC cell lines

Full name Gene GeneBank Fold Change (PPARc/control) Function

E-cadherin CDH1 NM_004360 5.2 Cell adhesion
Spleen tyrosine kinase SYK NM_003177 1.7 Cell adhesion
Metallopeptidase inhibitor 3 TIMP3 NM_003810 7.2 Extracellular matrix proteins
Matrix metallopeptidase 9 MMP9 NM_004994 � 1.7 Extracellular matrix proteins
Matrix metallopeptidase 13 MMP13 NM_002427 � 2.0 Extracellular matrix proteins
Heparanase HPA, HPSE NM_006665 � 6.5 Extracellular matrix proteins
Hepatocyte growth factor HGF NM_000601 � 2.2 Cell growth and cell motility
Retinoblastoma 1 RB1 NM_000321 4.1 Cell growth
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Figure 4. (A1) Western blots were performed to confirm the downstream gene expression regulated by PPARg in MHCC97L and BEL-7404. GAPDH was
used as an internal control. The relevant band densitometry analysis was performed and displayed in the lower panel. (A2) Semi-quantitative RT–PCR and real-
time quantitative PCR analyses were performed to validate the candidate genes expression. The data are expressed as means±s.d., *Po0.001, compared
with the Ad-lacZ. (B) Chromatin Immunoprecipitation (ChIP)-qPCR was performed to identify direct targets of PPARg protein. Input (2%) represents the
genomic DNA. (C) Schematic diagram for the mechanisms of anti-metastasis function of PPARg deriving from cDNA array, western blot, and ChIP-qPCR.
PPARg-mediated suppression of cell invasion and migration was associated with several biological effects: (1) Directly upregulating MMPs (MMP9, MMP13) and
downregulating their inhibitor (TIMP3) by direct binding to the promoter of each targets, and subsequent modulation of cell–cell adhesion molecule E-cadherin,
which in turn inhibited the cell–cell adhesion and extracellular matrix (ECM) turnover; (2) Directly inhibiting the transcription of HPSE gene, which contributes to
the suppression of ECM turnover and distant metastasis; (3) Downregulation of HGF to suppress the invasive potential; (4) Upregulation of tumour suppressors
(RB1 and SYK), which protects against tumourigenesis through suppressing ECM turnover, cell proliferation, and causing cell cycle arrest. Blue colour indicates the
direct targets, and green colour indicates second targets of PPARg. The colour reproduction of this figure is available at the British Journal of Cancer online.
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Wild et al, 2003). Matrix metallopeptidase 9 and 13 are important
mediators in the turnover of ECM and degradation of cell surface
molecules such as E-cadherin; they have been described to promote
cancer cell migration (Cowden Dahl et al, 2008). Cell–cell adhesion
molecule, E-cadherin, is also a key component of epithelial adherent
junctions. Loss of E-cadherin expression is a hallmark of epithelial-to-
mesenchymal transition, a plausible mechanism of driving cancer
progression and metastasis (Onder et al, 2008; Makrilia et al, 2009).
We demonstrate further that PPARg inhibits transcription of HPSE
by direct binding to its promoter. Upregulation of HPSE has been
associated with increased lymph node, as well as distant metastases
(Sanderson et al, 2005) and reduced post-operative survival of cancer
patients (Sato et al, 2004).

The anti-metastasis function of PPARg in vitro also appeared to
be associated with the downregulation of HGF by cDNA array.
HGF is known to act as a multifunctional growth factor and is
upregulated in many human cancers including HCC (Ljubimova
et al, 1997; Maulik et al, 2002). Hepotocyte growth factor drives
epithelial cells to undergo EMT and can downregulate EMT-
associated E-cadherin expression in murine liver tumour cells
(Ding et al, 2010). Also, HGF has been reported to stimulate MMP9
expression (Mizuno et al, 2005) and increase MMP3 promoter
activity in HCC (Ozaki et al, 2003), which can lead to increased
cancer cell invasiveness (Reboul et al, 2001; Wang et al, 2007; Lee
et al, 2010). Notably, HGF activity may be mediated by MMPs
(including MMP9 and MMP13) in the extracellular matrix, and
thus induce HCC cells to proliferate and invade (Monvoisin et al,
2002; Mohammed et al, 2005). In contrast, HGF may down-
modulate TIMP-3 expression resulting in increased MMP accu-
mulation, hence contributing to the invasiveness and aggressive-
ness in cancer cells (Castagnino et al, 1998). Thus, the anti-
metastasis effect of PPARg in HCC may be in part related to the
inhibition of HGF expression (Figure 4C).

Tumour suppressor genes, RB1 and SYK, have been reported to
be dysfunctional in several cancers where aberrant expression
levels appear to correlate with poor prognosis (Bailet et al, 2009;
Kouraklis et al, 2009). In contrast, overexpression of RB1 or SYK
in several cancer cell types can inhibit tumour growth and reduce
metastasis in mouse xenografts (Valente et al, 1996; Coopman
et al, 2000). Spleen tyrosine kinase also inhibits the motility of
human breast cancer cells (Zhang et al, 2009) and promotes the
formation of cell–cell contact through mediation of E-cadherin
activity (Larive et al, 2009). In the present study, we describe a
near two-fold induction of SYK and impressive upregulation by
four-fold of RB1 by PPARg in keeping with its proposed anti-
metastatic and -invasive effects.

In conclusion, activation of PPARg has demonstrated efficacy in
suppressing HCC cell migration and invasion in vitro, and in
inhibiting distant metastases from liver in an orthotopic HCC
model in vivo. Peroxisome proliferator-activated receptor-gamma
may provide a potential target for the prevention and treatment of
metastatic HCC.
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