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Spin polarized I-V characteristics and shot noise of Pt atomic wires
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We report a first-principles investigation of spin polarized transport properties of Pt atomic chains in contact
with two semi-infinite Pt slabs along the (111) direction. Our approach is based on the nonequilibrium Green’s
function coupled with density functional theory so that the Coulomb interaction is included in the calculation of
current and shot noise on the Hartree level. For Pt atomic chains with different numbers of Pt atoms, we calculate
the spin polarized /-V curve and shot noise. Our results show that the current increases almost linearly with bias
for all Pt atomic structures. The calculated Fano factors are comparable to the recent experimental data and show

sub-Poissonian behavior.
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I. INTRODUCTION

Understanding the electronic behavior in atomic structures
is the foundation of fabricating promising nanodevices. As
the ultimate limit of a nanodevice, an atomic nanowire-based
tunneling junction has attracted great attention in past decades
because of the fundamentals of electric transport properties
as well as the typical fabrication technologies.! Many atomic
nanowires have been achieved using experimental techniques,
such as mechanically controllable break junctions’ and
self-assembly on a solid surface.®’ Due to the reduction
in dimension, atomic nanowires show interesting properties.
For instance, quantized conductance has been observed in
noble metal nanowires>® and semiconductor nanowires,’
where the conductance is almost the integral multiple of
the conductance quantum 2e?/h. Theoretical investigation
predicted that the conductance of an atomic junction oscillates
with an increase in atom numbers,!%'? which has been ob-
served experimentally.>!> A reversible metal-insulator phase
transition was observed in In atomic nanowire under low
temperatures characterized by STM and reflection high-energy
electron diffraction.'* It was found that a small band gap
appears at the zone boundary with a decrease in temperature,
attributed to the backfolding of bands around the K point.
Recently, several theoretical investigations have predicted that
Pt atomic nanowires can be spin polarized and show ferro-
magnetic properties,'>!7 although the macroscopic Pt bulk
is paramagnetic. Due to the strong ability of magnetization
of unfilled 5d orbitals, the paramagnetic state of bulk Pt is
expected to change to a ferromagnetic state considering the
reduction in dimension with a concomitant increase in the
density of states.!>!3

Shot noise describes the fluctuation of current and is an
intrinsic property of atomic structures due to the quantization
of an electric charge of finite size. An important parameter
to describe shot noise is the Fano factor F, which is defined
as F = §/2el, where S is the shot noise and [ is the average
current. Conventionally, when F is greater than 1, it is referred
to as super-Poissonian shot noise; otherwise, the shot noise
is sub-Poissonian. Shot noise is influenced by two factors:
the Pauli exclusion principle and the Coulomb interaction.
The former leads to a suppression of shot noise, and the
latter contributes a suppression or an enhancement of shot
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noise.'*?! The suppression of shot noise has been confirmed
experimentally in quantum point contacts,?>?* single-electron
tunneling regimes,”**> graphene nanoribbons,’*?” and atom-
size metallic contacts.”® The enhancement of shot noise was
also observed in kinds of GaAs-based quantum contacts
when the system is in the negative differential conductance
region.?** Theoretically, shot noise has been investigated
extensively in mesoscopic systems.?!*> For nanodevices, less
attention has been focused on shot noise,**** especially spin-
dependent shot noise.

Recently, one experimental group measured the shot noise
of Pt atomic nanowires using a controllable break junction
method.> By analyzing the noise spectra, they concluded
that the conducting transmission channels are unpolarized.
This is really a surprising result because it is different from
the previous theoretical investigations.'>~'7On the other hand,
most previous investigations of the Pt nanowire focus on its
electric transport properties under equilibrium,'>~!7 while few
works concentrate on its spin-dependent transport properties.>®
In this paper, we carry out first-principles calculations to
investigate the spin polarized transport properties and shot
noise of several Pt atomic nanowires with different numbers
of atoms. Numerical results show that the I-V curve is
approximately linear with the increase in bias voltage, and
the magnitudes of the /-V curve for different Pt wires are
comparable. For all structures and different bias voltages,
the Fano factor shows sub-Poissonian behavior. The value
of our Fano factor is also comparable to that in a recent
experiment.> Although our numerical data on shot noise are
consistent with those of experimental work, the conclusion
we draw from our numerical results supports the prediction
of previous theoretical investigations. Through analyzing the
Fano factor of spin -polarized Pt tunneling junctions, we
found that the surprising conclusion of the experiment that
Pt atomic nanowire always shows nonmagnetic ground state
is due to a mistake in analyzing the physics of the Fano
factor.

II. THEORETICAL FORMALISM

For nanodevices with a size comparable to the phase
relaxation length, the spin-dependent current can be calculated
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by the Landauer-Biittiker formalism as follows:

=% f del f(€) — fr(@ITHT, )], (1)

where 0 =1, | denotes different spin; f; and fr are the
Fermi distribution functions of the left (L) and right (R) leads,
respectively. The spin polarized transmission matrix 7, is
given by’

T, (€) / A @
ol€) = 5 1olE, 5
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T,(e.ky) = [T1x, Gy, Tri, G, ] 3
where k| = (k,,k,) is the wave vector and is sampled in the
two-dimensional (2D) Brillouin zone. Here G; and Gy are
the retarded and advanced Green’s functions of the system at
ky with the size doubled due to the spin index; I'p x, (Tg,)
is the linewidth function at kj, which describes the coupling

between the left (right) lead and the scattering region. In terms
of transmission eigenchannels, we have

oo’

N
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where 1, , is the nth eigenvalue of the transmission matrix 7,
which describes the spin-dependent transmission coefficient
in the nth eigenchannel, with maximum value 1, and Zn is
over all the eigenchannels.

The gauge-invariant formula of electric noise can be
expressed as”!3°

51 =260 Y. [ deTLL A1 = )+ fall = i)

+260 Y [ deTT, (= TG = S (5)

where G = ¢?/h is the conductance quantum. Note that the
Green’s function in 7, has to be calculated self-consistently
by the equations

1
e—H-U-%x"
where H includes the exchange and correlation potentials

and the Coulomb potential U is obtained from the Poisson
equation,

G'(e,U) = (©)

V2U(x) = 4riq /(de/Zn)G<(e,U), @)

and the lesser Green’s function is related to the retarded and
advanced Green’s functions as

G==iG" ) TpfsG". 8)
B
In terms of eigenchannels, Eq. (5) can be rewritten as

51 =26y / de 3 ol fi(l = fi) + fr(l = fo)]
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In Eq. (9), the first term describes the noise spectrum due to the
thermal electric emission and the second term originates from
the finite bias voltage. In the equilibrium state with V = 0, the
electric noise in Eq. (9) reduces to the thermal noise. In the
low-temperature limit with kg T < eV, the first term in Eq. (9)
tends to 0 and S; reduces to the so-called shot noise S as

N
5 =260 [ de 3 tall = 1) (10)

o,n=1

where the integral is over the energy range from Ep + eV,
to Er + eVg, with V = V| — Vg the bias voltage and E the
Fermi energy. The Fano factor F can be expressed as

F = de Zg,n rn,d(l - rn,a)
- f de qun Tho ’

At equilibrium, F reaches its maximum value of 1 when
all transmission channels are closed, which corresponds
to a Coulomb block. For a spin-degenerate system with N
eigenchannels, where 7,4 =1, , F reaches a minimum
value of 0 when 7, 4 =7, = 1 for each n < N, while for
a spin-polarized system, F reduces to the minimum value of
0 when 7,, =1 and 7, =0 for all n < N. In this case,
transport is ballistic and only electrons with spin o are allowed
to pass through the nanodevice. Beyond the equilibrium state,
the Fano factor can increase drastically with an increase in bias
voltage. In the negative differential resistance regime, the Fano
factor can be larger than 1.*° Experimentally, one can obtain
information on electric transport for individual transmission
channels by measuring the Fano factor of the nanodevice.*!"*?

an

III. STRUCTURE AND CALCULATION METHOD

The left inset in Fig. 1 shows the schematic structure of a
Pt tunneling junction where a monowire with two Pt atoms
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FIG. 1. (Color online) Magnetic moment per atom of an ideal
periodic Pt wire as a function of the bond length d. Right inset:
Transmission coefficient t, versus energy of an ideal periodic Pt
wire when d = 2.8 A. The solid (red) line, dashed (blue) line, and
dotted (black) line indicate the spin-up channel, spin-down channel,
and Fermi level, respectively. Left inset: Schematic structure of a Pt
tunneling junction where a Pt wire with two atoms is sandwiched
between two semi-infinite Pt slabs.
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is sandwiched between two semi-infinite Pt slabs along the
(111) direction. Compared to the actual chemical structures,
two assumptions are employed in our modeling junction
of chemical bonding to facilitate the calculation. First, the
distance between the wire tip and the Pt slab is supposed to
be the same as the bond length of the monowire. Second,
we ignored the contact deformation of the Pt slab, although
some atoms may be slightly away from the Pt slab due to
the string tension of atomic wire.!> Experimentally, the length
of atomic nanowires is controllable by adjusting the force on
the break junctions. To obtain enough information to model
the experimental result of Kumaret al.,>> four structures of
Pt tunneling junctions were investigated, with the number of
atoms N in the monowires equal to 2, 3, 4, and 5.

To investigate the electric transport properties and noise
spectra of Pt tunneling junctions, first-principles calculations
were carried out within the nonequilibriun Green’s function
(NEGF) + density functional theory (DFT) using the trans-
port package NANODCAL.** With this method, the system
Hamiltonian as well as the charge distribution is obtained
from DFT calculations, and spin polarized transport properties
are determined by the NEGF. The LCAO fireball basis set is
used to expand the initial electronic density. The standard
norm-conserving pseudopotential®® is employed to define
the atomic cores and the exchange correlation is treated at
the LSDA level.*® To obtain accurate results, a double-¢
polarization LCAO basis including s, p, and d orbitals is used.
The self-consistency is controlled by a numerical tolerance of
107> a.u.

Once we obtain the self-consistent Hamiltonian H + U
under a given bias voltage, we can obtain the Green’s function
G,’(H using Eq. (6). By substituting G,’(H into Eq. (3), we can
calculate the spin polarized transmission matrix 7,(¢) of the
device according to Eq. (2). And then the spin-polarized
current, shot noise, and Fano factor can be calculated using
Egs. (1), (10), and (11), respectively.

IV. NUMERICAL RESULTS

First, we investigated the electric properties of an ideal
periodic Pt nanowire. Figure 1 shows the magnetic moment
per atom of a Pt wire with an increase in bond length 4. When
d < 2.6 A, the magnetic moment is almost equal to 0 and
the nanowire is spin degenerate. When d > 2.6 A, a nonzero
magnetic moment appears and reaches a plateau with a value
of about 1.24 pp. This value does not change with further
increase in the bond length. This property has been illustrated
in previous theoretical investigations'>!” and explained by
Zabala et al.'® Due to the reduction in dimension accompanied
by the appearance of a flat band, the Stoner stability criterion
against magnetism is violated, which results in a spontaneous
transition of magnetization of metal atomic wires when the flat
band crosses the Fermi level.'® This phase transition property
is especially obvious for the transition metals with unfilled
d orbitals.'> The transmission coefficient z, of a periodic Pt
wire with d = 2.8 A is shown in the right inset in Fig. 1.
Obviously, the Pt wire is spin polarized and has six spin-down
channels but only one spin-up channel around the Fermi level
with Er = 0. When the energy is higher than Er, 7| drops to 4
from 6, which indicates a d-type double-degenerate spin-down
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FIG. 2. (Color online) Spin-dependent transmission coefficient
of a Pt tunneling junction with N =3 under zero bias voltage.
(a) 7y and 7, 4 as a function of energy. (b) 7, and 7, as a function
of energy. The Fermi level is shifted to 0 eV. (c) K sampling 7;(k;)
and (d) K sampling 7 (k) in the 2D Brillouin zone at the Fermi
level.

flat band across the Fermi level.'® In order to illustrate the main
feature of noise spectra for spin-polarized systems, we fixed
d = 2.8 A for all the Pt tunneling junctions in the following
investigation.

Figure 2 shows the transmission coefficient of a Pt tunneling
junction with N = 3 (three Pt atoms) at zero bias voltage.
Figure 2(a) shows 7, 4 and 74, and Fig. 2(b) shows 1, ;| and
7, as a function of energy. Due to the perfect contact, the Pt
tunneling junction shows a comparatively flat transmission
coefficient around the Fermi level for both spin-up and
spin-down electrons, which is different from the numerical
result in Ref. 17, where the resonant peak around the Fermi
level comes from the sharp Pt contact.!” For spin-up electrons,
there are two eigenchannels which contribute to 74 at the
Fermi level, although there is only one spin-up channel for
an ideal periodic Pt wire. This is not surprising since there
are more incoming channels in the Pt slab. The total spin-up
transmission coefficient T4 = 0.8, which is dominated by one
of the eigenchannels with a contribution larger than 94%. For
spin-down electrons, there are three eigenchannels around the
Fermilevel and t, =1.55. 7 = Za 7, is equal to 2.35, which
is consistent with previous theoretical'® and experimental®
results where the conductance of the Pt junction is roughly
from 2 Gy to 4 Gy. Figures 2(c) and 2(d) plot the quantity
7, (ky) at the Fermi level in the 2D Brillouin zone with o =1
and o =, respectively. For ¢ =1, the “hot spots,” where
7 (k) shows sharp resonance features corresponding to a high
transport probability, are distributed symmetrically around the
I' point, which is mostly contributed by the s-type channel of
the Pt wire. However, for ¢ =, the resonant feature at various
ky values is much more complicated than that of a spin-up
channel. The hot spots in the o =] panel is contributed by
three resonant eigenchannels, each of which is a combination
of one s-type and two pd-type orbitals.
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FIG. 3. (Color online) Spin polarized current /, and conductance
G versus bias voltage of Pt tunneling junctions for (a) N = 2,(b) N =
3,(0) N=4,and (d) N =5. I}, I, total current I, and conductance
G are shown by the up triangle, down triangle, open circle, and filled
circle lines, respectively.

Using Eq. (4), we calculated the spin polarized current
I, of Pt tunneling junctions with N =2,3,4,5 as shown
in Fig. 3. For all structures, /; is always smaller than I
for all bias voltages. The total current / shows almost-
linear behavior as a function of bias voltage. The linear
behavior of the I-V curve is especially obvious for N = 2,
where the conductance is almost a constant of 2.75G for
all bias voltages. Hence it makes sense to talk about the
average conductance G = I/V. For N = 3,4,5, the average
conductances increase initially and then decrease around the
average value of 2.5G. For all structures, there are three
spin-up channels and three spin-down channels contributing to
the transmission coefficient. To analyze the contribution from
each eigenchannel under different bias voltages, we projected
the conductance G to each spin polarized eigenchannel. The
eigenchannel conductance is defined as G, , = I,/ V, where
I, = %fde[fL(e) — fr(€)]t,.5(€). Figure 4 shows G, , as
a function of bias voltage. For the structure with N = 2, G, 4
and G3 4 increase with the bias voltage, while Gy, G,
and G3 | decrease with the bias voltage. As a consequence,
the total conductance G is almost a constant as shown in
Fig. 3(a).

The Fano factor versus voltage is shown in Fig. 5. For
all the structures and different bias voltages, the Fano factors
always show sub-Poissonian behavior where F' < 1. With an
increase in bias voltage, the Fano factor decreases initially
and then increases, which is due to the competition among all
G, ., values under different bias voltages. Roughly speaking,
a larger G, , gives a smaller contribution to F', which can be
understood by Eq.(11). Here we show how the transmission
channels contribute to the Fano factor. For the structure with
N = 2, there are six eigen-channels that give F = 0.316 when
V =0 with G, = 0.7223, G, = 0.1115, G534 = 0.0136,
Gl,i = 08753, Ggqi = 07035, and G3'¢ = 0.2592.

In order to illustrate the main feature of noise spectra
for spin polarized tunneling junctions, Fano factors versus
conductance G under different bias voltages from 0 to
1.2 V are given in Fig. 6. From the definition of Fano
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FIG. 4. (Color online) Eigen-channel conductance G, , versus
bias voltage for (a) spin up channels of N = 2; (b) spin down channels
of N = 2; (c) spin up channels of N = 5; (d) spin down channels of
N = 5. The triangle line is the spin conductance G, contributed from
all spin-polarized eigen-channels.

factor F =), (1 — 1;)/ >, =, it is easy to find that the
rrzlaximum value of the Fano factor for a fixed conductance G =
¢ >_; T appears when t; is independent of i. Hence the line
F =1—-G/N vs G gives the maximum for the Fano factor
where N is the number of conducting channels. In Fig. 6, we
use dotted lines to indicate the maximum value of F' for four
or six spin-degenerate eigenchannels. For the minimum value
of Fano factor with a particular spin polarization (SP), there
is no analytic solution. We have calculated it numerically and
plot it in Fig. 6 for different SPs. For instance, the solid (red)
line corresponds to the minimum value of F for unpolarized
spin with an SP equal to O and the (black) line with circles
defines the minimum value of F' where the spin is completely
polarized, with SP = 1.

It is interesting to note that the minimum of F does not
drop directly from the solid (red) line to the (black) line with
circles with an increase in SP from O to 1. For instance, the pink
line (with squares) and the purple line (with triangles) indicate
the minimum value of F with SP = 0.177 and SP = 0.818,

0.47
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FIG. 5. (Color online) Fano factor versus bias voltage for Pt
tunneling junctions with N = 2, 3, 4, and 5.
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FIG. 6. (Color online) Fano factor versus differential conductance
G for N = 1,2,3,4 under different bias voltages. Dotted lines indicate
the maximum value of F for a system with four or six spin-degenerate
eigenchannels. Filled (red) squares and open (blue) circles are,
respectively, equilibrium and nonequilibrium values of F for Pt
tunneling junctions. The triangle near G = 1 is the Fano factor of
the 1D Pt tunneling junction. Inset: Transmission coefficient of the
1D Pt tunneling junction.

respectively. Obviously, all ofd the purple line is above the
solid (red) line for almost all the conductance. This means
that the Fano factor of a spin polarized configuration can be
larger than the minimum value of F of the corresponding spin
unpolarized configuration, and is not necessarily inside the
region enclosed by the lines of the minimum of F with SP = 0
and SP = 1. Our numerical result confirms this point. In Fig. 6,
we plot the Fano factor of all the Pt tunneling junctions when
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the bias voltage is close to O [filled (red) squares] and finite
[open (blue) circles], respectively. We see that all points for the
spin polarized configuration are above the solid (red) line. We
wish to point out that our numerical value for the Fano factor
is very close to the experimental data of Kummar et al.,’
although their interpretation is different. To confirm our result
further, we have calculated the Fano factor of a quasi-1D Pt
magnetic tunneling junction where a Pt nanowire with four
atoms is sandwiched between two semi-infinite quasi-1D Pt
leads. The inset in Fig. 6 shows the spin polarized transmission
coefficient of this structure. It shows that 7, =0 and 74 is
around 1 at the Fermi level, which corresponds to the condition
that SP = 1 and G is an odd number. In this case, F should be
very close to 0, which is indeed consistent with our calculation,
where the Fano factor is shown by the filled triangle in Fig. 6.

In summary, we have investigated the spin polarized
transport properties and Fano factors of several Pt tunneling
junctions. Our numerical results show that, roughly speaking,
the current increases linearly with almost the same slope for all
structures. In addition, the Fano factor shows sub-Poissonian
behavior for all structures and bias voltages. In particular, we
point out that the minimum Fano curve for an intermediate
SP does not necessary lie between the minimum Fano curves
for the unpolarized and fully polarized cases. Our numerical
results confirm that the conductance of Pt atomic wires is spin
polarized.

ACKNOWLEDGMENTS

We gratefully acknowledge the support from the Research
Grant Council (Grant No. HKU 705409P) and University
Grant Council (Contract No. AoE/P-04/08) of the Government
of HKSAR.

“jianwang @hkusua.hku.hk
"For a review see N. Agrait, A. L. Yeyati, and J. M. van Ruitembeek,
Phys. Rep. 377, 81 (2003).
2H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature 395, 780 (1998).
3A. L Yanson, G. Rubio Bollinger, H. E. van den Brom, N. Agrait,
and J. M. van Ruitenbeek, Nature 395, 783 (1998).
‘B.H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, Science
294, 348 (2001).
SR. H. M. Smit, C. Untiedt, G. Rubio-Bollinger, R. C. Segers, and
J. M. van Ruitenbeek, Phys. Rev. Lett. 91, 076805 (2003).
6J. T. Wang, C. F. Chen, E. Wang, and Y. Kawazoe, Phys. Rev. Lett.
105, 116102 (2010).
P. C. Snijders and H. H. Weitering, Rev. Mod. Phys. 82, 307 (2010).
8y, Rodrigues, J. Bettini, A. R. Rocha, L. G. C. Rego, and D. Ugarte,
Phys. Rev. B 65, 153402 (2002).
°J. L. Mozos, C. C. Wan, G. Taraschi, J. Wang, and H. Guo, Phys.
Rev. B 56, R4351 (1997).
ION. D. Lang and Ph. Avouris, Phys. Rev. Lett. 81, 3515 (1998).
TH. S. Sim, H. W. Lee, and K. J. Chang, Phys. Rev. Lett. 87, 096803
(2001).
12K. S. Thygesen and K. W. Jacobsen, Phys. Rev. Lett. 91, 146801
(2003).

13F. Miao, D. Ohlberg, D. R. Stewart, R. S. Williams, and C. N. Lau,
Phys. Rev. Lett. 101, 016802 (2008).

“H. W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi,
J. Schaefer, C. M. Lee, S. D. Kevan, T. Ohta, T. Nagao, and
S. Hasegawa, Phys. Rev. Lett. 82, 4898 (1999).

A, Delin and E. Tosatti, Phys. Rev. B 68, 144434 (2003).

16.. de 1a Vega, A. Martin-Rodero, A. Levy Yeyati, and A. Sal, Phys.
Rev. B 70, 113107 (2004).

17]. Fern4andez-Rossier, D. Jacob, C. Untiedt, and J. J. Palacios, Phys.
Rev. B 72, 224418 (2005).

!8N. Zabala, M. J. Puska, and R. M. Nieminen, Phys. Rev. Lett. 80,
3336 (1998); 82, 3000 (1999).

19y A. Khlus, Sov. Phys. JETP 66, 1243 (1987).

20M. Biittiker, Phys. Rev. Lett. 65, 2901 (1990).

21M. Biittiker, Phys. Rev. B 46, 12485 (1992).

22M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys.
Rev. Lett. 75, 3340 (1995).

2L. DiCarlo, Y. Zhang, D. T. McClure, D. J. Reilly, C. M. Marcus,
L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 97, 036810
(2006).

24H. Birk, M. J. M. de Jong, and C. Schonenberger, Phys. Rev. Lett.
75, 1610 (1995).

165401-5


http://dx.doi.org/10.1016/S0370-1573(02)00633-6
http://dx.doi.org/10.1038/27399
http://dx.doi.org/10.1038/27405
http://dx.doi.org/10.1126/science.1062126
http://dx.doi.org/10.1126/science.1062126
http://dx.doi.org/10.1103/PhysRevLett.91.076805
http://dx.doi.org/10.1103/PhysRevLett.105.116102
http://dx.doi.org/10.1103/PhysRevLett.105.116102
http://dx.doi.org/10.1103/RevModPhys.82.307
http://dx.doi.org/10.1103/PhysRevB.65.153402
http://dx.doi.org/10.1103/PhysRevB.56.R4351
http://dx.doi.org/10.1103/PhysRevB.56.R4351
http://dx.doi.org/10.1103/PhysRevLett.81.3515
http://dx.doi.org/10.1103/PhysRevLett.87.096803
http://dx.doi.org/10.1103/PhysRevLett.87.096803
http://dx.doi.org/10.1103/PhysRevLett.91.146801
http://dx.doi.org/10.1103/PhysRevLett.91.146801
http://dx.doi.org/10.1103/PhysRevLett.101.016802
http://dx.doi.org/10.1103/PhysRevLett.82.4898
http://dx.doi.org/10.1103/PhysRevB.68.144434
http://dx.doi.org/10.1103/PhysRevB.70.113107
http://dx.doi.org/10.1103/PhysRevB.70.113107
http://dx.doi.org/10.1103/PhysRevB.72.224418
http://dx.doi.org/10.1103/PhysRevB.72.224418
http://dx.doi.org/10.1103/PhysRevLett.80.3336
http://dx.doi.org/10.1103/PhysRevLett.80.3336
http://dx.doi.org/10.1103/PhysRevLett.82.3000
http://dx.doi.org/10.1103/PhysRevLett.65.2901
http://dx.doi.org/10.1103/PhysRevB.46.12485
http://dx.doi.org/10.1103/PhysRevLett.75.3340
http://dx.doi.org/10.1103/PhysRevLett.75.3340
http://dx.doi.org/10.1103/PhysRevLett.97.036810
http://dx.doi.org/10.1103/PhysRevLett.97.036810
http://dx.doi.org/10.1103/PhysRevLett.75.1610
http://dx.doi.org/10.1103/PhysRevLett.75.1610

BIN WANG AND JIAN WANG

B A. Nauen, 1. Hapke-Wurst, F. Hohls, U. Zeitler, R. J. Haug, and
K. Pierz, Phys. Rev. B 66, 161303(R) (2002).

26R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi,
J. Salmilehto, A. F. Morpurgo, and P. J. Hakonen, Phys. Rev. Lett.
100, 196802 (2008).

27R. Danneau, F. Wu, M. Y. Tomi, J. B. Oostinga, A. F. Morpurgo,
and P. J. Hakonen, Phys. Rev. B 82, 161405(R) (2010).

28H. E. van den Brom and J. M. van Ruitenbeek, Phys. Rev. Lett. 82,
1526 (1999).

V. V. Kuznetsov, E. E. Mendez, J. D. Bruno, and J. T. Pham, Phys.
Rev. B 58, 10159(R) (1998).

308, S. Safonov, A. K. Savchenko, D. A. Bagrets, O. N. Jouravlev,
Y. V. Nazarov, E. H. Linfield, and D. A. Ritchie, Phys. Rev. Lett.
91, 136801 (2003).

3For a review see A. A. Clerk, M. H. Devoret, S. M. Girvin,
F. Marquardt, and R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155
(2010).

P, B. He and W. M. Liu, Phys. Rev. B 72, 064410 (2005); Z. D. Li,
J. Q. Liang, L. Li, and W. M. Liu, Phys. Rev. E 69, 066611 (2004).

33Y. C. Chen and M. Di Ventra, Phys. Rev. B 67, 153304 (2003);
Phys. Rev. Lett. 95, 166802 (2005).

3H. K. Zhao, L. L. Zhao, and J. Wang, Eur. Phys. J. B 77,441 (2010);
Q. Zhang, D. Fu, B. G. Wang, R. Zhang, and D. Y. Xing, Phys. Rev.
Lett. 101, 047005 (2008).

PHYSICAL REVIEW B 84, 165401 (2011)

35M. Kumar, O. Tal, R. H. M. Smit, and J. M. van Ruitenbeek, e-print
arXiv:1101.3939v1 [cond-mat.mes-hall].

3P, Panigrahi and R. Pati, Phys. Rev. B 76, 024431 (2007).

¥B. G. Wang, J. Wang, and H. Guo, J. Phys. Soc. Jpn. 70, 2645
(2001).

P, X. Xu, V. M. Karpan, K. Xia, M. Zwierzycki, I. Marushchenko,
and P. J. Kelly, Phys. Rev. B 73, 180402(R) (2006).

Y. D. Wei, B. G. Wang, J. Wang, and H. Guo, Phys. Rev. B 60,
16900 (1999).

40G. Iannaccone, G. Lombardi, M. Macucci, and B. Pellegrini, Phys.
Rev. Lett. 80, 1054 (1998).

4P, Roche, J. Ségala, D. C. Glattli, J. T. Nicholls, M. Pepper, A. C.
Graham, K. J. Thomas, M. Y. Simmons, and D. A. Ritchie, Phys.
Rev. Lett. 93, 116602 (2004).

41, DiCarlo, Y. Zhang, D. T. McClure, D. J. Reilly, C. M. Marcus,
L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 97, 036810 (2006).

4], Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407
(2001).

#The basic principle and practical implementation of the NEGF-DFT
formalism to quantum transport can be found in Ref. 43. See also
[http://www.nanoacademic.ca].

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425
(1982).

46]. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

165401-6


http://dx.doi.org/10.1103/PhysRevB.66.161303
http://dx.doi.org/10.1103/PhysRevLett.100.196802
http://dx.doi.org/10.1103/PhysRevLett.100.196802
http://dx.doi.org/10.1103/PhysRevB.82.161405
http://dx.doi.org/10.1103/PhysRevLett.82.1526
http://dx.doi.org/10.1103/PhysRevLett.82.1526
http://dx.doi.org/10.1103/PhysRevB.58.R10159
http://dx.doi.org/10.1103/PhysRevB.58.R10159
http://dx.doi.org/10.1103/PhysRevLett.91.136801
http://dx.doi.org/10.1103/PhysRevLett.91.136801
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/PhysRevB.72.064410
http://dx.doi.org/10.1103/PhysRevE.69.066611
http://dx.doi.org/10.1103/PhysRevB.67.153304
http://dx.doi.org/10.1103/PhysRevLett.95.166802
http://dx.doi.org/10.1140/epjb/e2010-00291-2
http://dx.doi.org/10.1103/PhysRevLett.101.047005
http://dx.doi.org/10.1103/PhysRevLett.101.047005
http://arXiv.org/abs/arXiv:1101.3939v1
http://dx.doi.org/10.1103/PhysRevB.76.024431
http://dx.doi.org/10.1143/JPSJ.70.2645
http://dx.doi.org/10.1143/JPSJ.70.2645
http://dx.doi.org/10.1103/PhysRevB.73.180402
http://dx.doi.org/10.1103/PhysRevB.60.16900
http://dx.doi.org/10.1103/PhysRevB.60.16900
http://dx.doi.org/10.1103/PhysRevLett.80.1054
http://dx.doi.org/10.1103/PhysRevLett.80.1054
http://dx.doi.org/10.1103/PhysRevLett.93.116602
http://dx.doi.org/10.1103/PhysRevLett.93.116602
http://dx.doi.org/10.1103/PhysRevLett.97.036810
http://dx.doi.org/10.1103/PhysRevB.63.245407
http://dx.doi.org/10.1103/PhysRevB.63.245407
http://www.nanoacademic.ca
http://dx.doi.org/10.1103/PhysRevLett.48.1425
http://dx.doi.org/10.1103/PhysRevLett.48.1425
http://dx.doi.org/10.1103/PhysRevB.45.13244

