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Abstract: In this paper, the problems of delay-dependent stability analysis and stabilization are
investigated for linear continuous-time systems with distributed delay. By introducing an integral
partitioning technique, a new form of Lyapunov-Krasovskii functional (LKF) is constructed and
improved distributed delay dependent stability conditions are established in terms of linear
matrix inequalities (LMIs). Based on the criteria, a design algorithm for a state feedback
controller is proposed. The results developed in this paper are less conservative than existing
ones in the literature, which is illustrated by several examples.
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1. INTRODUCTION

Time delay, often encountered in modern complex engi-
neering systems involving multitude of information and
communication networks, is the main causes of instability
and poor performance of dynamic systems Dugard and
Verriest [1998], Li and de Souza [1997]. Therefore, time-
delay systems have attracted many researchers’ atten-
tion and have been extensively studied in the literature,
see Gao et al. [2008], Wang et al. [2008] and Xu and
Lam [2008]. Stability criteria for time-delay systems can
be classified into two categories: delay-independent and
delay-dependent criteria. Generally, the conservatism of
delay-dependent stability conditions is less than that of
delay-independent ones especially when the delay is small.
Recently, the development of the techniques for delay-
dependent stability analysis has been focusing on the ef-
fectiveness in reducing conservatism of stability conditions.
To mention a few, for linear systems with constant time-
delay, a delay-dependent stability criterion is proposed
based on some model transformation techniques in Moon
et al. [2001]. By introducing the slack variables to deal
with the weighted cross products of the state and the
delayed state, the new stability criterion obtained in Xu
and Lam [2005] is less conservative than the result in Moon
et al. [2001]. Gouaisbaut and Peaucelle [2006] employ the
delay-partitioning approach to further reduce the conser-
vatism of the result in Xu and Lam [2005]. Benefiting from
the delay-partitioning approach, many results for other
systems are extended. To mention a few, the stability
of recurrent neural networks with time-invariant delay is
studied in Du and Lam [2009]; the stabilization results for
discrete singular delay systems are given in Feng et al.
[Published online: 20 DEC 2010.]; the stabilization result
of Markovian jump systems with time delay is presented in

⋆ This work was partially supported by GRF HKU 7137/09E.

Fei et al. [2009]. For systems with time-varying delay, the
stability problem is investigated by using the free weight
matrices method in He et al. [2007]. Making use of the
delay bound information, a new Lyapunov functional is
presented in Jiang and Han [2008] which improved the
result in He et al. [2007]. With a new method to estimate
the time derivative of the Lyapunov functional, less con-
servatism results are obtained in Shao [2009]. Recently, by
using the delay partitioning-based Lyapunov Functionals,
better results are given in Fridman et al. [2009].

It is noted that the results mentioned above are derived
for systems with discrete delay. Another type of time-
delay, namely, distributed delay, will appear when the
number of summands in a system equation is increased
and the differences between neighboring argument values
are decreased Xu and Chen [2004]. Systems with dis-
tributed delay can be applied in the modeling of feeding
systems and combustion chambers in a liquid monopro-
pellant rocket motor with pressure feeding Fiagbedzi and
Pearson [1987]. Therefore, a growing attention has been
devoted to studying distributed delay systems in recent
years, see Li et al. [2009], Li et al. [2008] and Yue and Han
[2005]. For H∞ control problem, taken two types of linear
systems with distributed time delay into account,H∞ con-
trollers are designed in Xie et al. [2001]. Different from the
method used in Xie et al. [2001], the descriptor discretized
Lyapunov-Krasovskii Functionals (LKFs) is constructed to
derive an improved results on H∞ control problem in Frid-
man [2009]. Based on the parameter dependent Lyapunov
functional approach, the robust H∞ control problem for a
class of uncertain distributed delay systems subject to real
convex polytopic-type uncertainties is investigated in Wu
et al. [2007]. For the problem of filtering, Xu et al. [2005]
design robust H∞ filter for linear uncertain systems with
both discrete and distributed delays, while the problem
is investigated for descriptor systems in Yue and Han
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[2004]. However, the discrete delay and distributed delay
are assumed to be known real constants in Xu et al. [2005]
and Yue and Han [2004]. Wu et al. [2006] study robust
H∞ and L2-L∞ filtering for the LPV systems with time-
varying discrete and distributed delays. For stability anal-
ysis and stabilization results, robust stabilization condi-
tions in terms of linear matrix inequalities (LMIs) are pre-
sented in Zheng and Frank [2002], and the obtained results
are applied to stabilize the combustion in rocket motor
chambers. Gu [2003] uses Jensen’s inequality and variable
elimination method of matrix inequality to improve the
stability criterion of systems with distributed delay. How-
ever this method is complicated and is difficult to extend
to synthesis problems. By using the analytic solution to
Lyapunov functional equations of distributed delay sys-
tems, a necessary and sufficient condition for distributed
delay systems with unknown but bounded constant delay
is proposed in Suh et al. [2006]. Chen and Zheng [2007] use
the descriptor system approach provided in Fridman [2001]
to investigate the stability of neutral systems with discrete
and distributed delays. Because the stability conditions in
Chen and Zheng [2007] is neutral-delay-independent, the
conservatism is larger than the neutral-delay-dependent
results obtained in Li and Zhu [2008]. By introducing some
triple integral terms into LKFs, the conservatism of the
results in Li and Zhu [2008] is further reduced in Sun et al.
[2009]. It should be pointed out that conservatism is still
serious in these results, which is the motivation for this
study.

In this paper we aim to further reduce the conservatism
of existing results for stability criteria of linear distributed
delay systems. An improved version of distributed delay
dependent condition in terms of LMIs is established by em-
ploying the integral partitioning technique. Based on this,
a delay-dependent sufficient condition for the existence of
a state feedback controller which guarantees stability of
the closed-loop system. In addition to delay dependence,
the obtained results are also dependent on the partitioning
size. The conservatism will decrease with the increase of
partitioning size. Finally, numerical examples are given to
illustrate the effectiveness of the presented results.

The rest of this paper is briefly outlined as follows.
In Section 2, the problem of stabilization is formu-
lated and some definitions and lemmas are given. The
stability analysis results for distributed systems and
the corresponding design method of state-feedback con-
troller are presented in Section 3. Illustrative examples
are provided in Section 4 to show the reduced conser-
vatism of our results. We conclude the paper in Section
5.

Notation: The notation used throughout the paper is
standard. Rn denotes the n-dimensional Euclidean space
and P > 0 (≥ 0) means that P is real symmetric
and positive definite (semi-definite); I and 0 refer to
the identity matrix and zero matrix with compatible
dimensions; AT and A−1 denote the transpose and the
inverse of a matrix A; ⋆ stands for the symmetric terms
in a symmetric matrix and sym(A) is defined as A +
AT . Matrices are assumed to be compatible for algebraic
operations if their dimensions are not explicitly stated.

2. PROBLEM FORMULATION

Consider a class of linear continuous-time distributed time
delay systems described by















ẋ(t) = Ax(t) +Ah

t
∫

t−h

x(s)ds+Bu(t)

x(t) = ϕ(t), ∀t ∈ [−2h, 0]

(1)

where x(t) ∈ R
n is the state vector; u(t) ∈ R

q is the
vector of control input; h > 0 represents the system
distributed delay; A, Ah and B denote constant matrices
with appropriate dimensions; ϕ(t) is the initial function.

Because the term
∫ t−h

t−
(m+1)h

m

x(s)ds (m is a positive integer)

will be used in the proof of Theorem 1, the initial condition
is given on [−2h, 0].
The goal of the paper is to derive less conservative delay-
dependent stability criteria to ensure a larger maximum
upper bound on the distributed delay. Based on this, we
will design a static state feedback controller

u(t) = Kx(t) (2)

such that the closed-loop system

ẋ(t) = (A+BK)x(t) +Ah

t
∫

t−h

x(s)ds (3)

is stable for a given h.
In order to analyze the stability of system (1), the following
integral inequalities are required.

Lemma 1. Sun et al. [2009] For any matrix M > 0 and
a scalar γ > 0, if there exists a Lebesque vector function
w : [0, γ] → R

n, then the following inequalities hold:

−

t
∫

t−γ

wT (s)Mw(s)ds

≤−
1

γ





t
∫

t−γ

wT (s)ds



M





t
∫

t−γ

w(s)ds



 (4)

−

0
∫

−γ

t
∫

t+θ

wT (s)Mw(s)dsdθ

≤−
2

γ2





0
∫

−γ

t
∫

t+θ

wT (s)dsdθ



M





0
∫

−γ

t
∫

t+θ

w(s)dsdθ



 (5)

Proof. The inequality in (4) has essentially been proved
in Gu [2000]. For inequality (5), the proof can be carried
out following the similar line as in the proof of Lemma 1 in
Gu [2000]. Using Schur complement, it is easy to see that

[

wT (s)Mw(s) wT (s)
⋆ M−1

]

≥ 0 (6)

for any t − γ ≤ s ≤ t. Integrating the above inequality
over the triangle defined by t− γ ≤ s ≤ t and −γ ≤ θ ≤ 0
yields
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











0
∫

−γ

t
∫

t+θ

wT (s)Mw(s)dsdθ

0
∫

−γ

t
∫

t+θ

wT (s)dsdθ

⋆
γ2

2
M−1













≥ 0

Using the Schur complement again, we have that (5) holds.

3. MAIN RESULTS

In this section, the improved sufficient condition is derived
firstly by employing the integral partitioning technique,
which guarantees that the system in (1) is stable. The
result of stability analysis for system (1) is presented in
the following theorem.

Theorem 2. For a given scalar h, the system in (1) is
asymptotically stable, if there exist matrices P > 0,Q > 0,
Z > 0 and R > 0 such that the following LMI holds:

Ω < 0 (7)

where

Ω= sym(WT
P PWS) +WT

Q Q̄WQ +WT
Z Z̄WZ +WT

R R̄WR

WP =
[

In 0n,(m+1)n

]

, WS = [A Ah · · · Ah 0n,n ]

WZ =

[

In 0n,(m+1)n

0n,n In 0n,mn

]

WR =

[

A Ah · · · Ah 0n,n
h

m
In −In 0n,mn

]

WQ =

[

0mn,n Imn 0mn,n

0mn,2n Imn

]

R̄=





1

2
(
h

m
)2R 0n,n

⋆ −2(
m

h
)2R





Q̄=

[

Q 0mn,mn

⋆ −Q

]

, Z̄ =





h

m
Z 0n,n

⋆ −
m

h
Z





Proof. Construct a new Lyapunov functional candidate
as

V (x(t)) = xT (t)Px(t) +

0
∫

−
h

m

0
∫

θ

t
∫

t+λ

ẋT (s)Rẋ(s)dsdλdθ

+

t
∫

t− h

m

ηT (θ)Qη(θ)dθ +

0
∫

−
h

m

t
∫

t+θ

xT (s)Zx(s)dsdθ

where

η(t) =









































t
∫

t− h

m

x(s)ds

...
t−

(m−2)h
m

∫

t−
(m−1)h

m

x(s)ds

t−
(m−1)h

m
∫

t−h

x(s)ds









































∈ R
mn

Evaluating the derivative of V (x(t)) along the solutions of
system (1), we obtain

V̇ (x(t)) = 2xT (t)Pẋ(t)

+ ηT (t)Qη(t)− ηT (t−
h

m
)Qη(t−

h

m
)

+
h

m
xT (t)Zx(t)−

t
∫

t− h

m

xT (s)Zx(s)ds

+
1

2
(
h

m
)2ẋT (t)Rẋ(t)

−

0
∫

−
h

m

t
∫

t+θ

ẋT (s)Rẋ(s)dsdθ (8)

By Lemma 1, we have

−

t
∫

t− h

m

xT (s)Zx(s)ds ≤ −
m

h

t
∫

t− h

m

xT (s)dsZ

t
∫

t− h

m

x(s)ds (9)

−

0
∫

−
h

m

t
∫

t+θ

ẋT (s)Rẋ(s)dsdθ

≤ −2(
m

h
)2

0
∫

−
h

m

t
∫

t+θ

ẋT (s)dsdθR

0
∫

−
h

m

t
∫

t+θ

ẋ(s)dsdθ

(10)

Substituting (9)–(10) into (8) yields

V̇ (x(t)) ≤ ζT (t)Ωζ(t) (11)

where

ζ(t) =













x(t)
η(t)

t−h
∫

t−
(m+1)h

m

x(s)ds













∈ R
(m+2)n

Therefore, if Ω < 0, V̇ (x(t)) < 0 is derived and system (1)
is asymptotically stable. This completes the proof.

�

Remark 3. The main technique utilized in this paper is
the integral partitioning idea which partitions the integral
interval into m equal subintervals. When the delay inter-
val [−h, 0] is nonuniformly divided into m segment, i.e.,
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[−h, 0] =
⋃i=m

i=1 hi with 0 = h0 < h1 < · · · < hm = h, we
can construct a new Lyapunov functional candidate as

V̌ (x(t)) = xT (t)Px(t) +

m
∑

i=1

−hi−1
∫

−hi

0
∫

θ

t
∫

t+λ

ẋT (s)Rẋ(s)dsdλ

+

m
∑

i=1

−hi−1
∫

−hi

t
∫

t+θ

xT (s)Zx(s)dsdθdθ

Remark 4. For systems with constant discrete delay,
Gouaisbaut and Peaucelle present the delay partitioning
method to significantly improve the stability analysis cri-
terion in Gouaisbaut and Peaucelle [2006]. Motivated by
this technique, we first investigate the integral partitioning
method to partition the integral for systems with dis-
tributed delay in order to further reduce the conservatism
of existing stability results.

Next, we will present the controller design method for the
system in (1) based on Theorem 1 such that the closed-
loop system is stable.

Theorem 5. For given scalar h, the system in (1) is asymp-

totically stable, if there exist matrices P̃ > 0, Q̃ > 0,
Z̃ > 0, R̃ > 0 and matrix L such that the following LMI
hold:

[

Ω̃ W̃T
S

⋆ −2(
m

h
)2R̃

]

< 0 (12)

where

Ω̃ = sym(WT
P W̃S) +WT

Q Q̂WQ +WT
Z ẐWZ

+2(
m

h
)2WT

R2(R̃− 2P̃ )WR2

W̃S =
[

AP̃ +BL AhP̃ · · · AhP̃ 0n,n
]

Ẑ =





h

m
Z̃ 0n,n

⋆ −
m

h
Z̃





Q̂=

[

Q̃ 0mn,mn

⋆ −Q̃

]

, WR2 =

[

h

m
In −In 0n,mn

]

When the above conditions are satisfied, a state feedback
controller in the form of (2) is given by

K = LP̃−1 (13)

Proof. By replacing A with A+BK in (7), we obtain

sym(WT
P PWS1) +WT

Q Q̄WQ +WT
Z Z̄WZ +WT

R1R̄WR1 < 0

(14)

where

WS1 = [A+BK Ah · · · Ah 0n,n ]

WR1 =

[

A+BK Ah · · · Ah 0n,n
h

m
In −In 0n,mn

]

Using Schur complement, condition (14) is equivalent to
[

Ω̄ WT
S1R

⋆ −2(
m

h
)2R

]

< 0 (15)

where

Ω̄ = sym(WT
P PWS1) +WT

Q Q̄WQ +WT
Z Z̄WZ

−2(
m

h
)2WT

R2RWR2

WR2 =

[

h

m
In −In 0n,mn

]

Define

T1 = diag{P−1, · · · , P−1} ∈ R
mn×mn

T2 = diag{T1, P
−1, P−1, R−1} ∈ R

(m+3)n×(m+3)n

and denote

P̃ = P−1, Q̃ = TT
1 QT1, Z̃ = P̃TZP̃ , R̃ = R−1, L = KP̃

Pre- and post-multiplying (15) by TT
2 and T2 derives

[

Ω1 W̃T
S

⋆ −2(
m

h
)2R̃

]

< 0 (16)

where

Ω1 = sym(WT
P W̃S) +WT

Q Q̃WQ +WT
Z Z̃WZ

−2(
m

h
)2WT

R2P̃
TRP̃WR2

Note

−P̃TRP̃ ≤ R−1 − 2P̃ = R̃− 2P̃ (17)

Then, it follows from (12) and (17) that (16) holds which
guarantees the closed-loop system in (3) to be stable.

4. ILLUSTRATIVE EXAMPLES

In this section, some examples are provided to illustrate
the applicability and reduced conservatism of the proposed
approach.
Example 1: Consider a distributed delay system in (1)
with following parameters:

A =

[

−1.2 0
0.1 −1.9

]

, Ah =

[

−1 0
−1 −1

]

The maximal allowable distributed delay h satisfying (7)
can be calculated by using Matlab LMI Control Toolbox.
Table 1 presents a comparison, which shows that the
conservatism is reduced as the number of partitions grows.
Example 2: Consider a distributed delay system in (1)
with following parameters:

A =

[

0 0
0 1

]

, Ah =

[

−1 −1
0 0.9

]

, B =

[

−2
−1.5

]

, h = 1

By computing the Laplace transform of the system in (1),
we get that its characteristic polynomial is

det[sI −A−
1− e−hs

s
Ah] = 0

By introducing parameters into above equation, we cal-
culate one of the characteristic roots is 1.4172 > 0 which
is an unstable root. The state responses of the system in
(1) is given in Fig. 1. which shows that it is unstable with
above parameters. However, the system can be stabilized
by using Theorem 2. By solving the LMI in (12) with
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Table 1. Allowable maximum distributed delay h obtained by different methods

Methods Li and Zhu [2008] Sun et al. [2009] Wu and Zhou [2008]
Theorem 1

m=1 m=2 m=3 m=5 m=7

h 1.2000 2.0839 1.2000 2.0839 2.6969 3.1309 3.7196 4.0932

10 15 20 25 30 35
−14

−12

−10

−8

−6

−4

−2

0

2

x 10
18

Time (s)

S
ta

te
s

 

 

x1

x2

Fig. 1. State responses of open-loop system

0 5 10 15 20 25 30
−2

−1

0

1

2

3

4

5

6

Time (s)

S
ta

te
s

 

 

x1

x2

Fig. 2. State responses of closed-loop system

partitioning number m = 3, the following matrix variables
can be calculated

P̃ =

[

43.4461 8.5881
8.5881 2.9337

]

, L = [ 42.6283 33.6348 ]

Then, the state feedback controller can be calculated

K = LP−1 = [−3.0502 20.3941 ]

The state responses of closed-loop system is given in Fig.
2. which demonstrates the applicability of our controller
design method. Moreover, to illustrate the reduced conser-
vatism of our result, the feedback controllers obtained for
different m are given in Table 2.

5. CONCLUSIONS

In this paper, the problem of delay-dependent stabiliza-
tion for continuous-time systems with distributed delay
has been investigated. The delay-dependent conditions in

terms of LMIs have been proposed by employing the inte-
gral partitioning method. Based on this, a state-feedback
controller has been designed to guarantee the closed-loop
system is stable. Moreover, the results obtained in this
paper will become less conservative as the partition inter-
val become smaller. Finally, some examples are given to
demonstrate the reduced conservatism and the applicabil-
ity of our methods.
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