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Abstract

Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal
location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we
present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with
the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of
these, one was detected during active surveillance employed by this project, three by active surveillance performed by
Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the
neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from
7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active
surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds
located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds
during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All
Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV
outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in
domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to
detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to
and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible
populations during our study.
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Introduction

Since its emergence in 1997 and subsequent re-emergence in

2003, highly pathogenic avian influenza virus (HPAIV) subtype

H5N1 has caused the deaths of at least 357 people in 15 countries

[1] and been responsible for losses of many millions of domestic

poultry, negatively impacting economic growth and food security

in affected countries. Prior to 2005, outbreaks in wild birds were

sporadic, associated with high mortality, and thought to relate to

spillover from infected domestic poultry [2–6]. This situation

changed in April 2005, with an outbreak among wild migratory

waterbirds at Qinghai Lake in northern China, when over 6,000

wild birds died over a period of two months [7–9].

Following events at Qinghai, there was a marked increase in

outbreaks involving wild birds elsewhere in Asia, Europe and

Africa. However, the extent to which wild birds contributed to the

spatial expansion of HPAIV outbreaks, particularly in relation to

that of the legal and illegal movement of wild and domestic fowl is

difficult to resolve [10,11]. Many outbreaks involving wild birds

occurred in close proximity to cases among domestic poultry [12],

making it difficult to attribute the source of infection to a wild or

domestic host. In such environments, it can be difficult to isolate

the contribution that wild birds play in cycles of HPAIV

transmission [13].

In response to the Qinghai outbreak, a wild bird surveillance

system was implemented in Mongolia in 2005 to elucidate the role
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of wild birds in the transmission of HPAIV H5N1. Bird species

show variable susceptibility to infection with HPAIV H5N1, with

experimental exposures resulting in high mortality rates among

swans, geese and gulls [14,15], and variable levels of mortality or

subclinical infections in ducks [15–17] Active surveillance

approaches involved searching for the presence of HPAIV through

screening diagnostic specimens from healthy, ill and dead birds

and from the environment. In contrast, passive surveillance relied

on reports of sick and dead birds received from the general public,

who were requested to report waterbird mortality to provincial

veterinary authorities.

Several features make Mongolia an ideal location for under-

standing the epidemiology of HPAIV in wild birds. Mongolia

supports large populations of migratory waterfowl and shorebirds

[18], including species breeding across Mongolia’s extensive

wetlands during the boreal summer, then departing to spend the

winter in milder climates in Australasia, the Indian Subcontinent,

Africa, Southeast Asia, China, Korea, and Japan [19–23]. HPAIV

H5N1 is either endemic or has occurred in domestic and/or wild

bird populations in all these areas except for Australasia. Other

species visit Mongolia for short periods to feed while migrating to

and from more northerly breeding areas. Mongolia also represents

an important site for molting Anseriformes (ducks, geese and

swans) that congregate during the post-breeding period when early

frosts force them to vacate their Siberian breeding sites.

Mongolia presents an opportunity to study virus in wild

populations in isolation from domestic poultry. It has a small

domestic poultry industry with a population of fewer than 100,000

birds in 2005 [24], an overall density of ,1 km22 [25], with most

birds raised for egg production in moderately biosecure facilities

located in urban centers. In contrast, China produces approxi-

mately 5,900,000,000 domestic birds annually [26]. To date,

Mongolia’s modest poultry population has remained free from

HPAIV outbreaks. With little backyard production, the potential

for wild birds being exposed to domestic sources of virus is

negligible, allowing conclusions to be drawn on the status and

transmission of HPAIV in wild bird populations without the

complication of local spillover from domestic hosts.

Herein we report the seven-year findings of this surveillance

program, including the success of various approaches of active and

passive surveillance in detecting HPAIV outbreaks, together with

the results of investigations once they were detected. Isolates of low

pathogenic avian influenza viruses (LPAIV) in Mongolia have

been reported elsewhere [27], and so will only be summarized

briefly here. The implications of the project findings are discussed

both with respect to future surveillance efforts, as well as to

understanding the epidemiology of HPAIV in wild bird popula-

tions.

Methods

Study Area
Lying between the latitudes of 42uN and 51uN, Mongolia is a

vast, land-locked country of approximately 1.5 M km2, that

extends east-west across 2,500 km of Central Asia between Russia

and China. Although a country of climatic and geographic

extremes, much of the land area consists of open steppe,

transitioning to taiga forest in the north and the Gobi Desert in

the south and west. Wetlands and lakes of variable size fleck the

landscape, with approximately 3,000 rivers stretching over

67,000 km in the north [28]. Mongolia is populated by just over

three million people, over half of which depend directly or

indirectly on the traditional nomadic system of livestock produc-

tion, raising goats, sheep, cattle, yaks and horses [29].

Active Surveillance
Active surveillance was directed at the detection of HPAIV

outbreaks (defined for the purposes of the study as presence of one

or more clinically ill or dead birds from which HPAIV could be

isolated), and the presence of HPAIV in clinically unaffected birds.

Detection of outbreaks relied on the collection of samples from

dead or ill birds located along shoreline transects; while collection

of samples from live birds showing no clinical signs of illness and

environmental fecal deposits were used to detect the subclinical

presence of virus. The approaches used each year are summarized

in Table 1. Surveys were conducted in four main regions, the ‘east’

(referring to Ulaanbaatar and the aimags (provinces) of Dornod,

Khentii and Sukhbaatar), the ‘west’ (Uuvs and Khovd), the ‘south-

central’ (Bayankhongor, Zavkhan and Gov-Altai), and the ‘north-

central’ (Khovsgol, Bulgan and Arkhangai).

Live Bird Sampling
Live, apparently healthy birds were captured using a number of

methods; none were killed for the purposes of this study. Live bird

sampling focused on waterbirds particularly Anseriformes (includ-

ing Anas ducks, shelducks, geese and swans), and Ciconiiformes

(including gulls, cormorants and shorebirds). Molting Anseri-

formes were captured in groups, by driving birds into temporary

holding pens, or individually at night with use of spotlights and

nets or swan hooks. Shorebirds were caught at night using mist

nets, and hand nets were used to catch cormorants and gulls.

Tracheal and cloacal swabs were collected from each bird and

stored individually in cryovials containing viral transport media

(VTM). Oropharangeal swabs were collected instead of tracheal

swabs from smaller bird species. Samples were held at 4uC up to

four hours and then immersed in liquid nitrogen. Cold chain was

maintained throughout delivery of samples to the laboratory. In

2006, 2007 and 2008, a duplicate set of respiratory and cloacal

samples were collected and stored in cryovials containing 10%

guanidine isothiocyanate solution (2007), or a solution of 1%

Environ One-Stroke (2006 and 2008), for molecular analysis.

Dead/sick Bird Sampling
Shoreline transects were delineated at each site and systemat-

ically searched for sick and dead birds. Where possible they

completely circumnavigated the water body, or at least exceeded

5 km on larger lakes. Birds were identified when possible to

species, sex, age and general approximate time since death.

Obvious signs of predation or scavenging were recorded and a

photo record made of each bird. Where species could not be

determined due to carcass condition, identity was recorded to the

highest taxonomic level possible or simply listed as ‘‘unknown’’.

Swab samples were collected in the same manner described for live

birds. Where possible, tissues from brain, lung, spleen and

pancreas were also snap frozen in VTM for virus isolation.

Fecal Sampling
Fresh fecal samples were collected where waterbirds were

observed congregating or roosting. Samples were collected and

preserved in the same manner as those collected from live birds. In

2005 and 2006 sampling focused on single-species flocks to enable

the identification of the species being sampled. This led to a bias

toward certain species that were less likely to form mixed-species

groups, particularly shelducks, geese, swans, gulls and cormorants.

From 2009 onward, our collection strategy changed to include

species that habitually congregate in mixed-species groups

(particularly focusing on ducks in the genera Anas and Aythya,
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which are prominent carriers of LPAIVs), sacrificing specific

identity of the birds being sampled.

Passive Surveillance
Reports of sick and dead birds from herders, local veterinary, or

environmental officials were relayed via the district and province

veterinary offices to the State Central Veterinary Laboratory

(SCVL) in Ulaanbaatar, with samples or whole birds collected by

national or provincial investigation teams submitted for laboratory

testing at SCVL. Samples collected from suspect cases were

forwarded to the OIE Reference Laboratory at Hokkaido

University for confirmation.

Outbreak Investigation
Reports of suspected outbreaks were relayed to the study team

to enable follow-up outbreak investigations to take place.

Standardized counts were performed at each outbreak site using

recognized guidelines [30]. Point counts were supplemented with

active searching to provide a more comprehensive list of species

present at each site. Where feasible, attempts were made to

capture and sample live birds at outbreak sites, and to collect fecal

samples from areas where birds were congregating.

Diagnostics
All samples were submitted for virus isolation, except in 2006,

and 2007 when inactivated duplicate samples were screened using

real-time RT-PCR (rRT-PCR) [31]. Corresponding samples in

VTM to those positive by rRT-PCR were then submitted for virus

isolation. In 2008 all samples were screened using virus isolation of

VTM samples and rRT-PCR of inactivated duplicates. Virus

isolation was accomplished in 10-day old specific-pathogen-free

embryonated chicken eggs using described procedures [32].

Hemagglutinating agents from virus isolation attempts were

confirmed as type A influenza by antigen capture and rRT-PCR

[33]. Viruses were pathotyped using chicken pathogenicity tests

and sequencing of the H5 hemagglutinin proteolytic cleavage site

[32,34].

Processing of samples using RT-PCR took place in several

laboratories, therefore the procedures were not identical. In 2006

total RNA was extracted with a procedure optimized for cloacal

swab samples. The RNA was screened for AIV by rRT-PCR using

a standard protocol [33]. The rRT-PCR test was run with an

internal positive control [35] to ensure that inhibitors were not

causing false negative results. All rRT-PCR positive samples were

processed for virus isolation in embryonated chicken eggs and

were screened for H5 subtype virus with subtype specific primers

and probes [36,37]. Samples from 2007 and 2008 were processed

at the University of California, Davis as follows: RNA was

extracted from swab samples using the MagMAX- 96 Viral

Isolation Kit (Ambion Inc. Austin, TX) in accordance with the

manufacturer’s instructions. An rRT-PCR which targets the M

gene was conducted as described by Runstadler, et al. [38,39]

which was the standard test in this laboratory and run on an AB

7500 Real-Time PCR System (Applied Biosystems, Foster City,

CA).

Amnio-allantoic fluid from eggs inoculated for virus isolation,

testing positive for hemagglutination, an indicator virus presence,

were processed for RNA and run on the AIV type A rRT-PCR to

confirm virus presence. Regardless of the initial rRT-PCR result

the subtypes of all isolates were confirmed by sequencing [27]. We

assumed an individual was negative for HPAIV H5N1 if all tests

conducted on samples from that individual were negative.

Ethics Statement
Bird capture and handling permits covering all four regions of

Mongolia (east, west, north-central and south-central) were issued

by the Mongolian Ministry of Nature, the Environment and

Tourism following approval of handling and sampling protocols by

the Institute of Biology at the Mongolian Academy of Sciences,

with additional approval from the University of Minnesota,

Institutional Animal Care and Use Committee (Protocol

1006A84613).

Results

In total, eight outbreaks of HPAIV were recorded in Mongolia

during the study period (Table S5), with three more occurring

within Russian territory along the shores of Uuvs Nuur, a lake that

bisects the international boundary (Table S7). These eleven

outbreaks occurred at just five sites (with three outbreaks each

recorded at Erhel Nuur and Uuvs Nuur). An additional report of

three dead whooper swans found at Zegst Nuur in Sukhbaatar

province on 5 April 2011 (Ref OIE: 10500) was not considered to

constitute a confirmed outbreak, as the diagnosis was based on

RT-PCR and rRT-PCR for H5 only, and no virus could be

isolated.

Active Surveillance
Active surveillance was conducted in all seven years at 61

locations (Figure 1, Table 1). Overall, 10,761 individual birds

were sampled using active surveillance (Table 2, and Tables S1

and S3), but only one outbreak of HPAIV H5N1 was identified

using the methods employed by this study, at Erhel Nuur in the

north-central region on 28 July 2009, when isolates of HPAIV

H5N1 were recovered from three dead juvenile Mongolian gulls

Larus mongolicus. Although the outbreak at Erhel Nuur in 2009

was detected during active surveillance, further details are

Table 1. Summary of active HPAIV surveillance approaches employed in Mongolia, from 2005–2011.

Activity 2005 2006 2007 2008 2009 2010 2011

Live bird sampling Limited Yes Yes Yes Yes Yes No

Faecal sampling? Yes Yes No No Yes Yes Yes

Mortality transects? Yes Yes Yes Yes Yes Yes No

Number of survey sites 9 42 12 10 11 23 17

Geographic regions NC, SC E, W, NC, SC NC NC W, NC E, NC E

Timing Jul-Aug Jul-Oct Apr-Oct May-Sep Jun-Sep May-Sep May- Oct

Geographic regions are East (E), West (W), North-central (NC), and South-central (SC).
doi:10.1371/journal.pone.0044097.t001

Highly Pathogenic Avian Influenza Virus, Mongolia
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provided in the section reporting the results of outbreak

investigations for comparative purposes. A further three

outbreaks were detected by active surveillance undertaken by

Mongolian government agencies at Khunt Nuur (May 2006),

Erhel Nuur (May 2006) and Doroo Tsagaan Nuur (July 2009).

A total of 56 LPAIVs were isolated from environmental fecal

samples (n = 7,855), one from live clinically healthy birds

(n = 2,765) and two from dead or ill birds (n = 141) sampled

during active surveillance. In 2006 6.9% of samples tested positive

for the matrix gene (n = 2,678), compared to 9.4% in 2007

(n = 508) and 9.4% (n = 1,377) (Table S3). Of 363 samples testing

Figure 1. Map of study sites. Boundaries of study regions illustrated (white = West; light grey, white border = East; dark grey = North-central; light
grey, dark border = South-central).
doi:10.1371/journal.pone.0044097.g001

Table 2. Summary of the number of individual birds sampled during active surveillance in Mongolia 2005–2011.

Surveillance type Order 2005 2006 2007 2008 2009 2010 2011 Grand Total

Live bird ANSERIFORMES 0 8 315 794 731a 48 0 1,896

CICONIIFORMES 0 9 148 475 160a 0 0 792

PICIFORMES 0 0 0 0 0 2 0 2

PASSERIFORMES 0 8 0 0 0 67 0 75

Faecal ANSERIFORMES 413 1,265 0 0 720 1,521 2,400 6,319

GRUIFORMES 15 0 0 0 0 0 15

CICONIIFORMES 35 1,345 0 0 140 0 0 1,520

PASSERIFORMES 0 1 0 0 0 0 0 1

Sick/dead ANSERIFORMES 1 10 4 1 3b [1] 0 0 19

CICONIIFORMES 0 15 40 52 8b (3) 1 0 116

FALCONIFORME 0 1 0 0 0 0 0 1

UPUPIFORMES 0 0 1 0 0 0 0 1

PASSERIFORMES 0 1 0 0 3 0 0 4

Total 449 2,678 508 1,322 1,765 1,639 2,400 10,761

In 2008 samples were submitted for culture in embryonated eggs, and RT-PCR, the results obtained for culture are represented here.
HPAIV H5N1 viruses identified by virus isolation (VI) are indicated in parentheses, and those identified by real time reverse transcription polymerase chain reaction (PCR)
are indicated in square brackets.
aFigures include 197 live, clinically healthy Anseriformes, and 83 Ciconiiformes sampled on Erhel Nuur between 28 July and 1 August 2009, a period that coincided with
an outbreak of HPAIV H5N1 that was subsequently confirmed through laboratory analysis.
bFigures include one sick ruddy shelduck, and three dead juvenile Mongolian gulls at Erhel Nuur in July-August 2009 that subsequently tested positive for HPAIV H5 by
rRT-PCR, and HPAIV H5N1 by virus isolation respectively.
doi:10.1371/journal.pone.0044097.t002

Highly Pathogenic Avian Influenza Virus, Mongolia
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positive for matrix sequences only two tested positive for H5 (a

fecal sample from a red crested pochard, Rhodonessa rufina, and a

cloacal sample from a red-necked stint Calidris ruficollis), but no

virus was isolated from the duplicates of these samples. In 2008

when all samples were tested by both RT-PCR and virus isolation,

only one LPAIV was isolated, from a sample testing negative by

RT-PCR for the matrix gene (from a live ruddy shelduck Tadorna

ferruginea).

Passive Surveillance
Of the eight Mongolian outbreaks, four were detected through

passive surveillance at Khunt Nuur (July 2005), Erhel Nuur (July

2005), Doitiin Tsagaan Nuur (May 2009) and Ganga Nuur (May

2010) (Table S5).

Outbreak Investigation
Five outbreak investigations were completed during this study,

including Erhel Nuur (June 2005), Uuvs Nuur (June 2009), Doroo

Tsagaan Nuur (August 2009), and Ganga Nuur Nature Reserve

(May 2010). Although the outbreak at Erhel Nuur in 2009 was

identified during active surveillance, activities performed were

consistent with those at outbreak investigations and are reported

here.

Population numbers, densities and species identification of live

birds were obtained during each of the five outbreak investigations

(Table S4). Due to the size of Uuvs Nuur, we were unable to

survey birds across the entire surface area of the lake. We

estimated the area surveyed at Uuvs Nuur, by assuming that all

birds could be reliably identified and counted up to 2 km from the

shoreline (estimated on-site using maps), and multiplying this

against the length of shoreline surveyed. Counts made at all other

sites represent the entire surface area of the lakes. Ganga Nuur

Nature Reserve data combines surveys of its main water bodies

(Ganga Nuur, Kholbo Nuur, Erdene Nuur and Huuvur Nuur).

Fifteen sick or dead birds suitable for sample collection were

identified during outbreak investigations, with a further four

located at Erhel Nuur in July 2009 (Table 3 and Table S2).

HPAIV H5N1 virus was isolated from eight of these birds, with an

additional three testing positive for HPAIV subtype H5 virus by

rRT-PCR. Among birds testing positive by rRT-PCR was a dead

great crested grebe Podiceps cristatus at Uuvs Nuur in June 2009.

This bird, found 19.2 km from the border with the Russian

Federation, remains the only case of HPAIV H5 on the

Mongolian shores of Uuvs Nuur.

Capture of live, clinically healthy birds was only possible during

the outbreak investigations at Erhel in 2005 (2 birds) and Doroo

Tsagaan Nuur in 2009 (91 birds) (Table 3 and Table S2). A further

279 live birds were captured during active surveillance at Erhel

Nuur in July 2009 (Table 2 and Table S1) which was later

identified as an outbreak. No HPAIV H5N1 virus was isolated

from any of these birds.

A total of 723 fecal samples were collected during outbreak

investigations, from which no isolates of HPAIV H5N1 virus were

recovered.

Discussion

Although confirmed outbreaks of HPAIV, subtype H5N1 in

Mongolia occurred during four of the seven study years, our active

surveillance was only successful in identifying one outbreak (Erhel

Nuur, July 2009). In six of the seven years of surveillance sampling

of live birds (either through capture or collection of fecal samples)

concentrated on ruddy shelducks, bar-headed geese Anser indicus

and whooper swans Cygnus cygnus as these species were over-

represented among dead birds found at outbreaks (Tables S1, S2,

S3 and S5). A total of 2,504 of these birds were sampled during

active surveillance, and 503 during outbreak investigations, but no

HPAIV was isolated. Duck species within the genera Anas and

Aythya that may be more likely to harbor subclinical HPAIV

infections [15,17] were under-represented during captures, which

led to the decision to increase collections of fecal samples from

these species in 2009, 2010 and 2011. A total of 4,401 samples

were collected from these species during active surveillance and

292 during outbreak investigations, but also failed to yield HPAIV

isolates. Taken together these findings suggest that sampling of live

birds (through capture and fecal sampling) are either insensitive at

detecting outbreaks, or that the species targeted were inappropri-

ate.

Although considerably fewer samples were collected from ill and

dead birds, these yielded HPAIV isolates both during active

surveillance (three juvenile Mongolian gulls at Erhel Nuur in July

2009) and outbreak investigations (one whooper swan at Erhel

Nuur in 2005, two ruddy shelducks and a bar-headed goose at

Doroo Tsagaan Nuur in 2009, and one tundra swan Cygnus

columbianus at Ganga Nuur in 2010). Since at least half of the

confirmed Mongolian outbreaks were identified by means of

passive surveillance, and sick and dead bird sampling accounted

for all HPAIV isolates, passive surveillance and investigation of

mortality incidents may be the most cost-effective method of

identifying outbreaks of HPAIV in wild birds in Mongolia and

possibly other countries. However, with 59 LPAIVs isolated

during active surveillance, the wider value of this approach to

understanding influenza ecology should not be discounted.

Table 3. Summary of the number of individual birds sampled during outbreak investigations in Mongolia 2005–2011.

Surveillance type Order 2005 2006 2007 2008 2009 2010 2011 Grand Total

Live bird ANSERIFORMES 1 0 0 0 91 0 0 92

CICONIIFORMES 1 0 0 0 0 0 0 1

Faecal ANSERIFORMES 412 0 0 0 141 151 0 704

CICONIIFORMES 19 0 0 0 0 0 0 19

Sick/dead ANSERIFORMES 4 (1) 0 0 0 4 (3) 1 (1) 0 9

CICONIIFORMES 2 0 0 0 4 [1] 0 0 6

Total 439 0 0 0 240 152 0 831

HPAIV H5N1 viruses identified by virus isolation (VI) are indicated in parentheses, and those identified by real time reverse transcription polymerase chain reaction (PCR)
are indicated in square brackets.
doi:10.1371/journal.pone.0044097.t003

Highly Pathogenic Avian Influenza Virus, Mongolia
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Due to the variation in strategies of laboratory analysis used

during the study, it is conceivable that our ability to detect HPAIV

may have been lower in some years compared to others. In

particular, the pre-screening of duplicate samples using RT-PCR

in 2006 and 2007 may have resulted in missing viruses among

samples that were negative by RT-PCR and therefore not

submitted for virus culture. Indeed, in 2008 an LPAIV was

isolated from a ruddy shelduck that tested negative using RT-PCR

exemplifying this possibility. However, overall RT-PCR was found

to be more sensitive than virus culture in detecting viruses, with

363/4,563 (7.96%) found positive by RT-PCR compared to 79/

8,406 (0.94%) by virus isolation. This is not unexpected, as unlike

virus isolation, RT-PCR will detect both viable and non-viable

virus.

The low density of poultry in Mongolia, coupled with the lack of

any recorded outbreaks among Mongolian poultry strongly

supports the hypothesis that wild birds are responsible for carrying

HPAIV H5N1 to Mongolia. Furthermore, Mongolian cases only

occurred in years when wild bird outbreaks were also reported in

either Qinghai or Tibet during April or May (Figure 2; Table S7).

The species that predominated in the Qinghai and Tibet

outbreaks were similar to those that died in Mongolia (with the

exception of brown-headed gull Chroicocephalus brunnicephalus which

is uncommon in Mongolia). All isolates obtained from Mongolia in

2005 and 2006 fell within the same subclade as those obtained

from Qinghai and Tibet during the same period (clade 2.2), while

those obtained in 2009 and 2010 also clustered with viruses

obtained from the Qinghai and Tibetan outbreaks within these

years (clade 2.3.2.1). This trajectory of outbreaks is consistent with

wild birds migrating northwards along the Central Asian

migratory flyway during the spring, a route that is followed by

birds wintering in southwestern China and the Indian subconti-

nent. Notably, these clades have also been isolated among

domestic poultry in India (clade 2.2), Nepal (clade 2.3.2.1) and

Bangladesh (both clades) [40–42]. Further isolates of clade 2.3.2.1

viruses among wild birds in Hong Kong in the winter of 2007/8

[43], in Japan during spring 2008, and again in Japan and the

Korean Peninsula during the winter 2010/11 [44] suggest that this

clade has also been moving along the East Asian Australasian

flyway, at least to the latitude of southern China. HPAIV appears

to have persisted in wild birds in the Central Asian migratory

flyway for a minimum of 15 months in the case of both clade 2.2

and clade 2.3.2.1 (Tables S5, S6, S7), although the possibility of

multiple reintroductions from infected domestic poultry elsewhere

in the flyway cannot be discounted. However, based on the lack of

any isolates of clade 2.2 from wild birds in the Central Asian

flyway after June 2006, or clade 2.3.2.1 after June 2010 we

hypothesize that while wild bird populations can support HPAIV

infections for a limited period, they have not represented a

competent reservoir in the long term. Testing this hypothesis

would require that surveillance effort be increased across the

flyway, with an emphasis on the reporting and investigation of

dead birds.

The timing and location of HPAIV outbreaks on Mongolian

waterways have shown a generally similar temporal and spatial

distribution (Figure 2), with all outbreaks starting between early

May and the end of July, and restricted to six locations. While the

narrow spatial and temporal distribution of Mongolian outbreaks

could be related to biases in surveillance locations, we do not

believe this is the case. Combined with passive surveillance, which

exhibits less temporal bias, Mongolian authorities have also

implemented an extensive active surveillance program since

2006, targeting 97 wetland areas across 12 provinces, taking place

at least twice a year.

Ecological factors are likely to play an important part in the

seasonal distribution of outbreaks. Outbreaks in early May

coincide with the arrival of spring migrants from southern

wintering areas, including China and South Asia (mostly

Anseriformes), and further south for many other species. Counts

of birds obtained from April through October at Erhel Nuur in

2007 (Figure 3) illustrate how bird numbers vary during the period

from spring thaw to autumn freeze. Although absolute numbers of

birds are relatively small in early May, the continuation of ice

coverage forces waterbirds into small areas of open water, which

increases their density more than at other times of year. For

instance, a total of 2,062 birds counted on Erhel Nuur on 5 May

2007 (a date equivalent to the outbreak the previous year) equates

to a density of 2,222 birds km22 based on a visual estimate that

95% of the lake surface was frozen. This is higher than the bird

densities recorded at any other time at this site. Furthermore, in

early May melting ice reduces the salinity of surface water to near

zero (even on lakes that are markedly brackish for the remainder of

the summer) (pers. obs.). However this effect is temporary and

once all ice has melted (by mid to late May) the salinity rapidly

increases and remains at a near constant until the autumn freeze.

This dilution effect, coupled with low water temperatures may

enhance the environmental survival of virus at this time of year

[45].

The temporal delay in spring outbreaks in Uuvs Nuur (which

have all occurred in early June) from those in north-central

Mongolia are hard to explain. By early June spring migration is

essentially over, and birds are focused on nest building and raising

young. It may be that differences in the species assemblage (Table

S4), or peculiarities in breeding or feeding ecology at Uuvs Nuur

account for this difference (e.g. Uuvs Nuur supports large colonies

of several species such as great cormorant Phalacrocorax carbo,

Pallas’s gulls Larus ichthyaetus and Eurasian spoonbills Platalea

leucorodia, that are rarely found on outbreak lakes elsewhere in

Mongolia), but without further information this is difficult to

surmise. Although there were large numbers of birds recorded

during the surveys at Uuvs Nuur in June 2009, the estimated total

density (187 birds km22) was lower than recorded at all other

outbreak investigations (Table S4). Outbreaks initiated in late July

coincide with the highest numbers of birds on Mongolian lakes

(Figure 3). For instance, counts on Erhel Nuur during the outbreak

in July 2009 reached 12,278 birds, equating to a density of

662 birds km22. At this time many species, particularly ruddy

shelducks, congregate in large numbers to molt, at which time they

are completely flightless.

The observation that no Mongolian outbreaks have arisen in

the months of August, September or October is interesting, as

these months are traditionally when LPAIV subtypes reach their

peak prevalence in waterfowl populations in Europe and North

America [46,47]. These peaks of LPAIV subtypes are attributed to

greater densities of susceptible hosts as populations are swollen by

numbers of immunologically naı̈ve juvenile birds, which congre-

gate prior to the southward migration period. The lack of

Mongolian HPAIV outbreaks detected during the late summer

period suggests that the epidemiology of the virus may be quite

different from natural circulation of LPAIV subtypes, which are

typically less pathogenic for wild birds, although the possibility that

outbreaks have been missed cannot be excluded entirely.

In many cases the numbers of sick or dead birds observed

during outbreaks was unremarkable, exceeding 100 birds in only

four outbreaks, with as few as a single bird involved in others.

These numbers contrast with figures reported in China (Table S7),

where mortalities numbering in the hundreds is more usual, with

over 6,000 dead birds reported during the 2005 outbreak at
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Qinghai. This disparity could be related to smaller numbers of

birds on Mongolian lakes, and although total population estimates

are not available in many of the Chinese outbreaks, we feel that

this is unlikely. For instance, over 12,000 live birds were observed

during the outbreak on Erhel Nuur in 2009, yet only three dead

Mongolian gulls and a single ruddy shelduck were found despite

extensive searching over several days. These birds were all

flightless at the time of death, indicating that they had contracted

Figure 2. The spatiotemporal distribution of HPAIV outbreak onset from 2005–2011. All reported outbreaks are illustrated for the People’s
Republic of China during April and May (left column), and Mongolia, in two week intervals from May – July. Cells corresponding to periods during
which outbreaks were first reported are indicated in grey, and locations of outbreaks are indicated in black.
doi:10.1371/journal.pone.0044097.g002

Figure 3. Monthly bird counts at Erhel Nuur from April to October 2007. Total number of birds present are indicated (solid squares),
together with counts of the predominant genera Tadorna (open diamond), Anas (open triangle), Aythya (open square), and Bucephala (open circle).
doi:10.1371/journal.pone.0044097.g003
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the virus locally. A review of surveillance data from Sweden and

Denmark in 2006 also found that many outbreaks were associated

with unspectacular levels of mortality, with 75% detected through

singleton dead birds [48]. Although it is acknowledged that passive

surveillance systems that investigate individual bird deaths are

economically demanding, Mongolian findings indicate that not

doing so will negatively influence detection sensitivity.

Although presence or abundance of a species at an outbreak site

does not directly implicate it in the transmission of HPAIV, it may

be instructive to look for commonalities across outbreak locations.

Bird counts and species densities were assessed during five of the

eleven outbreaks (Table S4) and covered all of the lakes at which

outbreaks took place except Khunt Nuur. For this site, a census

was made on 3 May 2007 and was considered indicative of birds

present during the 4 May 2006 outbreak at that location. Only

eight species were found on all of the outbreak lakes (demoiselle

crane, whooper swan, ruddy shelduck, common goldeneye,

common pochard, northern pintail, Mongolian gull and pied

avocet). Ruddy shelduck was by far the most numerous species

observed, with almost twice as many present as the next most

abundant species on outbreak lakes. It has been postulated that

bar-headed geese may play a role in the transmission of HPAIV

across large distances in Asia [49–51], but this would not appear to

be the case in all of the Mongolian outbreaks. Although bar-

headed geese are common in the north-central region, they are

much less common in western Mongolia, and none were observed

in the vicinity of the 2009 outbreak on Uuvs Nuur, or the 2010

outbreak in Ganga Nuur Nature Reserve.

In conclusion, the occurrence of outbreaks in areas deficient in

domestic poultry is strong evidence that wild birds can carry

HPAIV over at least moderate distances. However, failure to

detect further outbreaks of clade 2.2 after June 2006, and clade

2.3.2.1 after June 2010 suggests that wild birds migrating to and

from Mongolia either are not competent as indefinite reservoirs of

infection or did not reach susceptible populations during our

study. For wild birds it appears that passive surveillance provides a

more cost effective approach to HPAIV detection than surveil-

lance of apparently healthy individuals.
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