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First-principles investigation of transient dynamics of molecular devices
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Based on the nonequilibrium Green’s function (NEGF) and time-dependent density-functional theory
(TDDFT), we propose a formalism to study the time-dependent transport behavior of molecular devices from first
principles. While this approach is equivalent to the time-dependent wave-function approach within TDDFT, it has
the advantage that the scattering states and bound states are treated on equal footing. Furthermore, it is much easier
to implement our approach numerically. Different from the time-dependent wave-function [ψ(t,E)] approach, our
formalism is in the time space [Gr (t,t ′)], making this method superior in the time-dependent transport problem
with many subbands in the transverse direction. For the purpose of numerical implementation on molecular
devices, a computational tractable numerical scheme is discussed in detail. We have applied our formalism to
calculate the transient current of two molecular devices Al-1,4-dimethylbenzene-Al and Al-benzene-Al from
first principles. In the calculation, we have gone beyond the wideband limit and used the adiabatic local density
approximation that was used within TDDFT. It is known that when the wideband limit is abandoned, the boundary
condition of the transport problem is non-Markovian, resulting in a memory term in the effective Hamiltonian
of the scattering region. To overcome the computational complexity due to the memory term, we have employed
a fast algorithm to speed up the calculation and reduced the CPU time from the scaling N3 to N 2 log2

2(N ) for
the steplike pulse, where N is the number of time steps in the time evolution of the Green’s function. To ensure
the accuracy of our method, we have done a benchmark transient calculation on an atomic junction using a
time-dependent wave-function approach within TDDFT in momentum space, which agrees very well with the
result from our method.

DOI: 10.1103/PhysRevB.86.155438 PACS number(s): 73.63.−b, 72.30.+q, 71.15.Mb

I. INTRODUCTION

Advanced by the recent experimental progress in the
fabrication and characterization of nanostructures, quantum
transport in coherent nanoelectronic devices both in ex-
perimental and theoretical sides attracts a lot of research
efforts.1–10 Because these ultrasmall nanoelectronic devices
are essentially different from the traditional microelectronic
devices due to the quantum effect, people have to carry out
density-functional theory (DFT) calculations combined within
the nonequilibrium Green’s functions (NEGF) from first
principles to predict their transport properties.9–13 Currently,
NEGF-DFT formalism is widely used in calculating physical
quantities when the system reaches the steady-state regime
and quantitative comparisons to experimental data have been
presented.14–18 However, the transient dynamical response of
nanoelectronic devices is still a serious challenge. Strictly
speaking, one has to combine quantum transport theory such
as the scattering approach or NEGF approach with time-
dependent density-functional theory (TDDFT) to predict the
dynamical transport properties.19–22 However, it is extremely
difficult to implement it exactly from first principles from the
numerical point of view. In practice, people usually take the
wideband limit (WBL) to accelerate numerical calculation.23

For a pulselike bias voltage, an exact solution exists for
transient current from NEGF theory24 which in principle can
be coupled to DFT or TDDFT for first-principles calculation.
Due to the computational complexity of the exact solution, a
practical scheme has been proposed and applied to calculate
the transient current of atomic junctions.25 While many first-
principles calculations for the transient current of nanodevices
have been done with various approximations used, it will be

highly desirable to carry out a numerical exact first-principles
calculation for the transient current of molecular devices. It is
the purpose of this paper to provide such a kind of numerical
exact first-principles calculation.

Before proceeding further, we wish to discuss some basic
issues concerning the quantum transport formalism of nanode-
vices. For an open system, the Hamiltonian can be divided into
three different parts: (1) the isolated central region (molecular
device region) and external leads, (2) the coupling between the
central region and leads, (3) the time-dependent external bias
applied on the leads. Historically, there exist two different
approaches depending on the choice of the unperturbed
Hamiltonian of the system. One is called the “partitioned
approach,” which was first proposed by Caroli et al.26–29 In
this approach, the central and lead regions are separated in
the remote past, and each region is in its thermodynamic
equilibrium, respectively. In this approach, one assumes that
the time-dependent external bias is already applied on the lead
in the remote past. The perturbation, the coupling between
the central region and leads, is adiabatically switched on. This
approach has been widely used to predict transport properties
for mesoscopic systems.30 In addition, many first-principles
calculations based on NEGF-DFT formalism are also in the
framework of the “partitioned approach.”9–13,23

Several years after the birth of the partitioned approach, Cini
proposed another scheme31 to study the quantum transport
problem, which is called the “partition-free approach.” He
assumed that the central region is connected to the external
leads and they are in the thermodynamic equilibrium in
the remote past. The time-dependent perturbation such as
time-dependent external bias is turned on in the leads at a
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particular time t = t0. Different from the partitioned approach,
the time-independent coupling Hamiltonian is treated as the
unperturbed one. It was argued by Cini that the transient
response due to the time-dependent external bias is more
realistic in this approach compared with the real experimental
setup. In other words, the partition-free approach is well suited
to study the transient response or time-dependent behavior of
molecular devices due to the external bias perturbation. Most
of the studies on transient dynamics used the partition-free
approach.21,24,25,32,33

In this paper, we propose a general NEGF-TDDFT formal-
ism to calculate transient current based on the partition-free
approach. Our formalism is equivalent to the time-dependent
wave-function approach within TDDFT proposed by Kurth
et al.21 One of the advantages of our approach is that
the scattering states and the bound states are treated on
equal footing so that it is very convenient to determine
the nonequilibrium Coulomb interaction self-consistently.
Importantly, our method is in the time domain which is
particularly useful for the problem with many subbands in the
transverse direction. We have implemented this approach in the
first-principles calculation for transient transport in molecular
devices. In particular, we have calculated the transient current
for the steplike bias in molecular devices such as Al-1,4
dimethylbenzene (para-xylene)-Al and Al-benzene-Al without
making wideband-limit approximation or other kinds of
approximations in the transport part of the calculation.34 A fast
algorithm has been employed to speed up the calculation so that
the CPU time needed for transient current versus the number
of time steps N is reduced from the scaling N3 to N2 log2

2(N ),

a huge gain in speed for large N .35 To test the accuracy of
this method, we have also calculated the transient current
by solving the Schrödinger equation coupled with TDDFT
in the momentum space for a one-dimensional carbon chain.
Excellent agreement is obtained between results obtained by
the two methods.

The paper is organized as follows. In Sec. II, we describe
the NEGF-TDDFT formalism for studying the time-dependent
quantum transport of molecular devices. We have also shown
that it is equivalent to the time-dependent wave-function
approach within TDDFT. In Sec. III, computational details
to transient current of open molecular devices are given. Nu-
merical results of molecular devices Al-1,4 dimethylbenzene
(para-xylene)-Al and Al-benzene-Al under a upward pulse are
presented in Sec. IV. We have also discussed the algorithm to
speed up the calculation. Section V serves as a discussion and
conclusion part.

II. THEORETICAL FORMALISM

We begin with a typical two-terminal device shown in Fig. 1,
which consists of the central scattering region connected by
two external leads. We assume that H(t) is the time-dependent
Kohn-Sham (KS) Hamiltonian of the entire two-terminal
device. In the framework of the partition-free approach, the
time-dependent bias Vα(t) is turned on in both leads at
t = 0 when the open device is in equilibrium, i.e., Hαα(t) =
Hαα(0) − Vα(t),α = L,R [atomic units (a.u.) e = h̄ = 1 are
used]. Therefore, the equation of motion for the retarded
Green’s function is given by

⎡⎣ i ∂
∂t

− HLL(t) −HLC 0
−HCL i ∂

∂t
− HCC(t) −HCR

0 −HRC i ∂
∂t

− HRR(t)

⎤⎦⎡⎣Gr
LL(t,t ′) Gr

LC(t,t ′) Gr
LR(t,t ′)

Gr
CL(t,t ′) Gr

CC(t,t ′) Gr
CR(t,t ′)

Gr
RL(t,t ′) Gr

RC(t,t ′) Gr
RR(t,t ′)

⎤⎦ = δ(t − t ′)I, (1)

where Gr
αβ(t,t ′) is the retarded Green’s function projected on

three different regions α,β = L,C,R and I is the unit matrix.
Since the time-dependent bias Vα(t) is applied on the lead, the
central scattering region’s Hamiltonian HCC(t) also depends
on time and the couplings between Hamiltonian in the central
region and leads are assumed to be time independent. To make
this open boundary problem tractable, we focus on the central
scattering region, which provides us enough information for
transport properties. From Eq. (1), an effective equation only
involving the central scattering region is obtained:[
i

∂

∂t
− HCC(t)

]
Gr

CC(t,t ′) −
∑

α=L,R

HCαGr
αC(t,t ′) = δ(t − t ′)

(2)

and [
i

∂

∂t
− Hαα(t)

]
Gr

αC(t,t ′) − HαCGr
CC(t,t ′) = 0. (3)

Note that Eq. (3) is an inhomogeneous differential equation,
the solution gr

αα(t,t ′) of which can be expressed in terms of

the general solution of corresponding homogeneous equation
G̃r

αC(t,t ′) as follows:

Gr
αC(t,t ′) = G̃r

αC(t,t ′) +
∫ t

0
gr

αα(t,t1)HαCGr
CC(t1,t

′)dt1, (4)

Central sca�ering region 
Le� lead Right lead 

Z 

FIG. 1. (Color online) A sketch illustrating the typical two-
terminal molecular device which is sandwiched between two semi-
infinite external leads. The central scattering region contains a
molecular device and several buffer layers of leads. Left and right
leads are assumed to be periodic in the transport z direction. Hα0 is
the unit-cell matrix and Hα1 describes the interaction between the
nearest unit cell.
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where the retarded Green’s function gr
αα(t,t ′) of the α lead is

defined as [
i

∂

∂t
− Hαα(t)

]
gr

αα(t,t ′) = δ(t − t ′), (5)

subjected to the boundary condition gr
αα(t+,t) = −i and

gr
αα(t,t+) = 0. The Green’s function G̃r

αC(t,t ′) in Eq. (4) can
be written as

G̃r
αC(t,t ′) = igr

αα(t,0)G̃r
αC(0,t ′) = igr

αα(t,0)Gr
αC(0,t ′). (6)

Since Gr
αC(0,t ′) = 0 for t ′ > 0 and Gr

αC(0+,0) = 0, from
Eq. (6) we see that the first term in Eq. (4) is zero. Finally,
plugging Eq. (4) into Eq. (2), we have[

i
∂

∂t
− HCC(t)

]
Gr

CC(t,t ′)

= δ(t − t ′) +
∫ t

0
�r (t,t1)Gr

CC(t1,t
′)dt1, (7)

where the self-energy �r (t,t ′) ≡∑α=L,R HCαgr
αα(t,t ′)HαC is

introduced. Note that the self-energy �r (t,t ′) is a function of
double-time indices in the presence of time-dependent bias.
Equation (7) is obtained in the partition-free approach. The
same equation has been obtained in the partitioned approach,36

the only difference is the lower limit of integration (from −∞)
in the second term.

Now, we find the equation for the time-dependent charge
density in the scattering region since it determines both the
self-consistent induced Coulomb potential and the transient
current. To do that, one has to know the equation of motion
of the lesser Green’s function. It can be easily obtained
by multiplying [�<Ga

CC](t,t ′) from the right-hand side of
Eq. (7):

i
∂

∂t
G<

CC(t,t ′) = HCC(t)G<
CC(t,t ′) +

∫ t

0
[�<(t,t1)Ga

CC(t1,t
′)

+�r (t,t1)G<(t1,t
′)]dt1. (8)

Practically, it is enough for us to know the dynamics of charge
density through calculating lesser Green’s function G<

CC(t,t).
On the other hand, we can calculate it using the Keldysh
equation instead of solving Eq. (8):

G<
CC(t,t) = Gr

CC(t,0)g<
CC(0,0)Ga

CC(0,t)

+
∫ t

0
dt1dt2Gr

CC(t,t1)�<(t1,t2)Ga
CC(t2,t), (9)

where g<
CC(0,0) is the initial lesser Green’s function for the

discrete bound states of the system. Bound states are essential
to obtain correct time-dependent charge density ρ, which
in turn affects the time-dependent potential landscape if a
self-consistent Hartree potential is included. However, they do
not contribute directly to the time-dependent terminal current
Iα(t). This is because in a real experiment the terminal current
is measured in two external leads which are far away from the
central region, while bound states are localized in the central
scattering region. From the computational point of view, the
first term in Eq. (9) is much easier to handle and can be treated
separately from the time evolution of the retarded Green’s
function. To calculate the second term in Eq. (9) at t > t ′, it is
more efficient to iterate the retarded Green’s function, Eq. (7).

In view of Eq. (9), it is enough to calculate part of the retarded
Green’s function defined as Ḡr

CCα(t,t ′) = Gr
CC(t,t ′)�̄α , where

we also have introduced two auxiliary projection matrices

�̄L =
⎡⎣ IL 0 0

0 0 0
0 0 0

⎤⎦ , �̄R =
⎡⎣0 0 0

0 0 0
0 0 IR

⎤⎦ , (10)

where IL/R is the unit matrix with dimension equal to the size
of the unit cell of the left and right leads, respectively.

From Eq. (7) we have the equation for Ḡr
CCα(t,t ′),

i
∂

∂t
Ḡr

CCα(t,t ′)

= HCC(t)Ḡr
CCα(t,t ′) +

∫ t

0
�r (t,t1)Ḡr

CCα(t1,t
′)dt1, (11)

which can be calculated iteratively for fixed time t and t ′. To
calculate the second term of G<

CC(t,t) at time t = N	τ (N is
the number of time steps), one has to know the information
of Ḡr

CCα(N	τ,n	τ ) where n varies from 0 to N . We fix the
time t ′ = n	τ and iterate Eq. (11) where the time t goes
from n	τ to N	τ . This enables us to find the series of
Ḡr

CCα(N	τ,n	τ ) where n = 0, . . . ,N . After it is done, the
time-dependent charge density at each time t is obtained from
Eq. (9) and the time-dependent Hartree potential UH (t) can be
calculated from

∇2UH (t) = −4πρ(r,t) = 4πiG<
CC(t,t). (12)

Once Eq. (12) is solved, the time-dependent Hamiltonian can
be updated:

HCC(t) = H0
CC + UH (t) + UXC(t), (13)

where H0
CC is the time-independent Hamiltonian excluding

exchange correlation and Hartree potential. Here, UXC(t)
is the time-dependent exchange-correlation potential and
can be chosen as an adiabatic local density approximation
(LDA) form. It has been confirmed numerically that TDDFT
within the adiabatic LDA gives the same steady-state current
as that from the Landauer-Büttiker formula.37 Finally, we
can calculate the time-dependent current by using the time
evolution of the lesser Green’s function G<

CC(t,t) (Ref. 33):

Iα(t) = 2 Re Tr[�̄αHCC(t)G<
CC(t,t)�̄α]. (14)

To summarize, the above formalism is exact based on NEGF
coupled with TDDFT formalism to calculate time-dependent
current of the two-terminal device with the Poisson equation
(12) solved self-consistently.

It is extremely time consuming to calculate the transient cur-
rent using the above formalism. However, it is less computa-
tionally demanding if the self-consistent Coulomb interaction
due to the time-dependent bias is not calculated. To avoid this
self-consistent calculation, we assume that UH (t) = θ (t)U1(x)
where U1(x) is the self-consistent Coulomb potential of the
system under the bias VL − VR , i.e., the potential landscape
when t goes to infinity. Under this approximation, we do
not have to worry about the bound states in the system and
hence the scattering states are enough to characterize the
transport properties. Therefore, one may use the scattering
wave function instead of the Green’s function. In the following,
we will derive an effective Schrödinger equation for the
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wave function in the central scattering region from Green’s
functions. According to the definition of Green’s function
[ψ(t) = iGr (t,t ′)ψ(t ′)], the time-dependent wave function in
the central scattering region ψC(t) can be expressed as

ψC(t) = iGr
CC(t,0)ψC(0) +

∑
α=L,R

iGr
Cα(t,0)ψα(0), (15)

where ψβ(0),β = L,C,R is the initial wave function projected
on each region of the whole system. From Eq. (1), we have the
equation for Gr

Cα(t,0):[
i

∂

∂t
− HCC(t)

]
Gr

Cα(t,0)

= HCα(t)gr
αα(t,0) +

∫ t

0
�r (t,t1)Gr

Cα(t1,0). (16)

Combining Eqs. (7) and (16) with the help of Eq. (15), we
arrive at[

i
∂

∂t
− HCC(t)

]
ψC(t)

= i
∑

α=L,R

HCα(t)gr
αα(t,0)ψα(0) +

∫ t

0
dt1�

r (t,t1)ψC(t1),

(17)

which was first obtained in Ref. 38 and then discussed in detail
in Ref. 21.

As mentioned above, only scattering states are needed
to calculate the time-dependent current if the self-consistent
Coulomb interaction is neglected. In terms of scattering wave
function, the time-dependent terminal current Iα(t) can be
written as21

Iα(t) = −2
∑
Ekn

f (Ekn)Im Tr
[
�̄αHCC(t)

∣∣ψkn

C (t)
〉〈
ψkn

C (t)
∣∣�̄α

]
,

(18)

where |ψkn

C 〉 is the scattering state of open device with k and
n denoting the wave vector and band number of the incident
wave function; Ekn is the corresponding eigenenergy of the
state |ψkn

C 〉 and f (Ekn) is the Fermi distribution function.

III. COMPUTATION TECHNIQUES

In this section, we discuss how to numerically evolve the
time-dependent retarded Green’s function in Eq. (12) and
hence calculate the time-dependent current in detail. Since
the direct discretization of time in Eq. (12) can result in a
norm-conserving problem, we start from the discrete form
of Green’s function by using the Crank-Nicholson scheme to
obtain an iterative equation that satisfies the unitary condition21

⎡⎢⎣ IL + iτH(0)
LL iτHLC 0

iτHCL IC + iτH(m)
CC iτHCR

0 iτHRC IR + iτH(0)
RR

⎤⎥⎦
⎡⎢⎢⎢⎣

IL−i τ
2 V(m)

L

IL+i τ
2 V(m)

L

0 0

0 IC 0

0 0
IR−i τ

2 V(m)
R

IR+i τ
2 V(m)

R

⎤⎥⎥⎥⎦
⎡⎢⎣G(m+1,n)

LL G(m+1,n)
LC G(m+1,n)

LR

G(m+1,n)
CL G(m+1,n)

CC G(m+1,n)
CR

G(m+1,n)
RL G(m+1,n)

RC G(m+1,n)
RR

⎤⎥⎦

=

⎡⎢⎣ IL − iτH(0)
LL −iτHLC 0

−iτHCL IC − iτH(m)
CC −iτHCR

0 −iτHRC IR − iτH(0)
RR

⎤⎥⎦
⎡⎢⎢⎢⎣

IL+i τ
2 V(m)

L

IL−i τ
2 V(m)

L

0 0

0 IC 0

0 0
IR+i τ

2 V(m)
R

IR−i τ
2 V(m)

R

⎤⎥⎥⎥⎦
⎡⎢⎣G(m,n)

LL G(m,n)
LC G(m,n)

LR

G(m,n)
CL G(m,n)

CC G(m,n)
CR

G(m,n)
RL G(m,n)

RC G(m,n)
RR

⎤⎥⎦ , (19)

where G(m,n)
αβ denotes the retarded Green’s function Gr

αβ(t =
m	t,t ′ = n	t) with m > n. For m = n, we have the initial
condition G(n,n)

αβ = −iδαβ . In the above equation, we adopt the

following notation: H(m) = [H(tm+1) + H(tm)]/2 and V(m)
β =

[Vβ(tm+1) + Vβ(tm)]/2; tm = m	tτ = 	t/2. Therefore, we
can obtain two discretized versions of Eqs. (2) and (16):(

IC + iτH(m)
CC

)
G(m+1,n)

Cα + iτ
∑

β=L,R

HCβ

(
u

(m)
β

)−1
G(m+1,n)

βα

= (
IC − iτH(m)

CC

)
G(m,n)

Cα − iτ
∑

β=L,R

HCβu
(m)
β G(m,n)

βα (20)

and (
Iβ + iτH(0)

ββ

)(
u

(m)
β

)−1
G(m+1,n)

βα + iτHβCG(m+1,n)
Cα

= (Iβ − iτH(0)
ββ

)
u

(m)
β G(m,n)

βα − iτHβCG(m,n)
Cα , (21)

where we have introduced

u
(m)
β = 1 + i τ

2 V
(m)
β

1 − i τ
2 V

(m)
β

, (22)

where we have used the fact that V(m)
β is a diagonal matrix. In

Eqs. (20) and (21), α can be L,C,R and β can only take L,R.
Plugging G(m+1,n)

βα from Eq. (21) into Eq. (20), we obtain an
effective equation

(
IC + iτH(m)

eff

)
G(m+1,n)

Cα

= (
IC − iτH(m)

eff

)
G(m,n)

Cα

− iτ
∑

β=L,R

HCβ

2

Iβ + iτH(0)
ββ

u
(m)
β G(m,n)

βα (23)
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with an effective Hamiltonian

H(m)
eff = H(m)

CC − iτ
∑

β=L,R

HCβ

(
Iβ + iτH(0)

ββ

)−1
HβC. (24)

However, Eq. (23) is still not convenient to do iteration due
to the unknown term G(m,n)

βα . By using the recursive method,21

we can express G(m,n)
βα in terms of the initial Green’s function

G(n,n)
βα and G(m,n)

Cα . Finally, we arrive at an effective equation

for G(m,n)
Cα :(

IC + iτH(m)
eff

)
G(m+1,n)

Cα

= (
IC − iτH(m)

eff

)
G(m,n)

Cα + F(m,n)
1α + F(m,n)

2α , (25)

where two auxiliary terms are defined as

F(m,n)
1α = −2iτ

∑
β=L,R


(m,0)
β

u
(m)
β

HCβ

g(m)
β

Iβ + iτH(0)
ββ

G(n,n)
βα (26)

and

F(m,n)
2α = −τ 2

∑
β=L,R

m−1∑
j=0


(m,j )
β

u
(m)
β u

(j )
β

(
Q(m−j )

β

+ Q(m−j−1)
β

)(
G(j+1,n)

Cα + G(j,n)
Cα

)
, (27)

where the propagators of the lead g(m)
β and 

(m,j )
β are defined

as

g(m)
β =

[
1 − iτH(0)

ββ

1 + iτH(0)
ββ

]m

, 
(m,j )
β =

m∏
l=j

(
u

(l)
β

)2
, (28)

and

Q(m)
β = HCβ

g(m)
β

Iβ + iτH(0)
ββ

HβC. (29)

By multiplying Eq. (25) by the auxiliary projection matrix �̄β

from the right and setting α to be C, we immediately obtain
the discretized version of Eq. (7) that conserves the charge
density in the whole iteration process. Therefore, one can
calculate G(m,n)

CCβ by iterating Eq. (25), which in turn gives the
lesser Green’s function and self-consistent Hartree potential.
As mentioned in Sec. II, due to the huge computational cost of
this exact NEGF-TDDFT approach, we would like to use the
self-consistent Hartree potential to avoid the self-consistent
loop.

We now show that this iteration procedure for the Green’s
function is very similar to that of the time-dependent wave-
function approach proposed in Ref. 21. According to Eq. (15),
the wave function ψ

(m)
C is given by

ψ
(m)
C = i

∑
α=L,C,R

G(m,0)
Cα ψ (0)

α . (30)

We wish to emphasize here that ψ
(m)
C and ψ (0)

α are the wave
functions for a fixed energy. Combining Eqs. (25) and (30), it
is straightforward to obtain an effective iterative equation of
wave function in the central region,(
IC + iτH(m)

eff

)
ψ

(m+1)
C = (IC − iτH(m)

eff

)
ψ

(m)
C + S(m) + M (m),

(31)

where S(m) and M (m) are defined as

S(m) = −2iτ
∑

β=L,R


(m,0)
β

u
(m)
β

HCβ

g(m)
β

Iβ + iτH(0)
ββ

ψ
(0)
β (32)

and

M (m) = −τ 2
∑

β=L,R

m−1∑
j=0


(m,j )
β

u
(m)
β u

(j )
β

× (Q(m−j )
β + Q(m−j−1)

β

)(
ψ

(j+1)
C + ψ

(j )
C

)
. (33)

Equations (31)–(33) are first obtained in Ref. 21. In Eq. (31),
two extra terms called the source term S(m) and memory term
M (m) correspond to the first and second terms in Eq. (17).
Here, the memory term accounts for electron hopping in and
out of the central scattering region, while the source term is
responsible for the injection of electron from the lead region
α to the central scattering region.

Note that when we iterate Eq. (25) by setting α = C, the
“source term” F(m,n)

1C vanishes automatically since β can only
be L,R. Hence, Eq. (25) can be written as(

IC + iτH(m)
eff

)
G(m+1,n)

CC = (IC − iτH(m)
eff

)
G(m,n)

CC + F(m,n)
2C (34)

with the initial conditions for the “memory term” F(0,0)
2C = 0

and F(n,n)
2C for nonzero n:

F(n,n)
2C = iτ 2

∑
β=L,R


(n,n−1)
β

u
(n)
β u

(n−1)
β

(
Q(1)

β + Q(0)
β

)
, (35)

where we have used the fact that G(n,n)
CC = −i. Using F(n,n)

2C

in Eq. (35), we can solve Eq. (34) for G(n+1,n)
CC , which is

needed for F(n+1,n)
2C in Eq. (27). This procedure can be repeated

until we obtain the whole solution. Since Eq. (27) involves
the convolution with the Green’s function of the previous
time step, the computational complexity for calculating all
the Green’s functions Gr

CC(m	t,n	t) and hence the transient
current is O(N3).

Now, we discuss how to iterate Eq. (31), which is more
complicated than that of the Green’s function discussed
above. We first have to prepare the initial eigenstates of
the equilibrium open device, i.e., in the absence of the
time-dependent bias. In Ref. 21, the initial states of the central
region are obtained from the diagonalization of the Green’s
function in the central region, which has to be rescaled by
matching it with the known form of the wave function in the
leads. However, one usually can not obtain an analytical form
of wave function in the lead when dealing with atomic leads.
Therefore, the method used in Ref. 21 is not very efficient in the
first-principles calculation. Physically, it is natural to choose
the scattering wave functions injected from leads as initial
states, which are perfectly matched already. In the following,
we will discuss in detail how to prepare these wave functions.

To begin with, we note that the eigenstates of the open
device are composed of scattering wave states incidenting from
left and right leads {ψkn

L,ψkn
R } and a set of discrete bound states

{ψcn}. According to our previous discussion, we only consider
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scattering states

ψkn
L ≡

⎧⎪⎪⎨⎪⎪⎩
ψ

kn
L

L = ϕkn
L +∑l ϕ

kl
Lrkl

Lkn
L ,

ψ
kn
L

C ,

ψ
kn
L

R =∑l ϕ
kl
R tk

l
Rkn

L ,

(36)

ψkn
R ≡

⎧⎪⎪⎨⎪⎪⎩
ψ

kn
R

L =∑l ϕ
kl
L tk

l
Lkn

R ,

ψ
kn
R

C ,

ψ
kn
R

R = ϕkn
R +∑l ϕ

kl
R rkl

Rkn
R ,

where ϕkn
α is the corresponding eigenchannel n of the α lead,

n denotes the subband, and kα is the Bloch wave vector of
the α lead; t k

l
βkn

α and rkl
βkn

α are transmission and reflection
amplitudes from channel n in the α lead to channel l in the β

lead, respectively. In Eq. (36), the scattering state of the whole
device is separated into three parts, and the scattering wave
function in the central scattering region is labeled according to
the eigenchannel injected from the α lead. In order to calculate
the whole wave function, we first calculate the eigenchannel
of the lead and that of the central region. After that, we
match the boundary condition to find out the transmission
and reflection amplitudes in Eq. (36).

We now calculate the eigenchannel wave function of each
lead. Since the lead is semi-infinite periodic structure, the wave
function in the j th unit cell can be written as ϕkn

α (j ) = φkn
α eikn

αj

due to the Bloch theorem. The unit-cell wave function φkn
α can

be obtained by solving[
H0α + Hα1e

ikn
α + H1αe−ikn

α

]
φkn

α = Eφkn
α , (37)

which is equivalent to a quadratic eigenvalue problem39,40(−HE
α0 −H1α

INα
0Nα

)(
φkn

α

e−ikn
αφkn

α

)
= eikn

α

(
Hα1 0Nα

0Nα
INα

)(
φkn

α

e−ikn
αφkn

α

)
, (38)

where we introduce HE
α0 = Hα0 − EINα

and H1α = H†
α1 and

Nα is the dimension of the unit cell. In general, there are
2Nα solutions for Eq. (28), which can be classified into Nα

right-moving modes and Nα left-moving modes39 and can
be labeled as φkn

α,± , respectively. Total Nα modes include
propagating modes and evanescent modes (|eikn

α | < 1 for
the right-moving evanescent modes and |eikn

α | > 1 for the
left-moving evanescent modes). When |eikn

α,±| is equal to 1
both for the left propagating modes and the right propagating
modes, one has to use the sign of Bloch velocity to know
whether it is left or right moving, which can be calculated
from the following expression:

vn
α,± = −2 Im

[
eikn

α,± (φkn
α,±)†Hα1φ

kn
α,±
]
. (39)

Note that eigenvectors are nonorthogonal in general; the dual
vector φ̃kn

α is defined as(
φ̃kn

α,±
)†

φkm
α,± = δmn,

(
φkn

α,±
)†

φ̃km
α,± = δmn. (40)

Physically, only right propagating channels injected from the
left lead and left propagating channels from the right lead need
to be considered as initial scattering states for the two-terminal
device. Now, we are ready to calculate the wave function of
the central scattering region. As shown in Refs. 41–43, it can
be solved through following the linear equation(

Ekn − HCC −
∑

α

�r
α(Ekn)

)
ψ

kn
α

C = Wkn
α , (41)

where Wkn
α is the source term corresponding with propagating

mode n from the α lead. By introducing the auxiliary j th
power of Bloch matrices Bj

α,± =∑N
m=1 eikm

α,±jφkm
α,± φ̃km

α,± , the
source can be expressed as44

Wkn
L =

⎛⎜⎜⎜⎝
H1L

[
B−1

L,+ − B−1
L,−
]
φkn

L,+

.

.

.

0

⎞⎟⎟⎟⎠ ,

Wkn
R =

⎛⎜⎜⎜⎝
0
.

.

.

HR1
[
B−1

R,− − B−1
R,+
]
φkn

R,−

⎞⎟⎟⎟⎠ .

(42)

Once Eq. (41) is solved, one can calculate the transmis-
sion and reflection amplitudes tk

l
βkn

α ,rkl
αkn

α . For example, the
transmission amplitude t k

l
Rkn

L is given by

t k
l
Rkn

L = (φ̃kl
R,+)†ψ

kn
L

CR, (43)

where ψ
kn
L

CR is a column vector denoting the part of the
scattering wave function of the central region in contact with
the right lead, while φ̃kl

R,+ is the column vector describing
the wave function of the right lead. Similarly, the reflection
amplitude rkl

Lkn
L can be determined as

rkl
Lkn

L = (φ̃kl
L,− )†

(
ψ

kn
L

CL − φkl
L,+
)
, (44)

where ψ
kn
L

CL denotes the wave function of the central region
near the left lead. Note that the transmission and reflection
amplitudes have to be normalized with velocities to form a
unitary scattering matrix.

Once the initial wave function of the open device is
known, we can calculate its time evolution and hence the
time-dependent transient current according to Eq. (18). To
do this, one has to know how to calculate M (m) and S(m). First,
the calculation of memory term M (m) is straightforward when
the quantity Q(m)

α in Eq. (29) is known. Due to the screening
effect of the buffer layer in the central region, the scattering
potential of the outermost buffer layers can be made very close
to that of the periodic leads if the buffer layer is long enough.
When this happens, the coupling matrix between the lead and
the outermost buffer layer is HCα . As a result, Q(m)

α should
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have the following structure:

Q(m)
L =

⎡⎣q(m)
L 0 0
0 0 0
0 0 0

⎤⎦ , Q(m)
R =

⎡⎣0 0 0
0 0 0
0 0 q(m)

R

⎤⎦ , (45)

where q(m)
α are Nα × Nα square matrices21

q(m)
L = H1L

(
g(m)

L

IL + iτH(0)
LL

)
1,1

HL1,

q(m)
R = HR1

(
g(m)

R

IR + iτH(0)
RR

)
1,1

H1R.

(46)

They can be obtained through an iterative equation (for detail,
please refer to Ref. 21). From Eq. (46), we see that q(m)

α only
depends on the lead structure and is independent of initial wave
function. Therefore, q(m)

α can be calculated once for all at the
beginning of the numerical calculation.

Since S(m) involves multiplication of matrix of infinite size,
it is important for us to simplify Eq. (32) first. As an example,
we consider S

(m)
R , defined as

S
(m)
R = HCR

g(m)
R

IR + iτH(0)
RR

ψ
kn
L

R , (47)

to illustrate how to calculate Eq. (32). Due to the relation21

g(m)
R

IR + iτH(0)
RR

= 1

m!

(
− ∂

∂x
+ ∂

∂y

)m
(

1

xIR + iyτH(0)
RR

) ∣∣∣∣
x=y=1

, (48)

we have

S
(m)
R = 1

m!

(
− ∂

∂x
+ ∂

∂y

)m

SR(x,y)|x=y=1, (49)

with the generating function

SR(x,y) = HCR

1

xIR + iyτH(0)
RR

ψ
kn
L

R . (50)

To calculate S
(m)
R , we can first calculate SR(x,y):

SR(x,y) = HCR

[
1

x
− 1

x

iyτH(0)
RR

xIR + iyτH(0)
RR

]
ψ

kn
L

R . (51)

Note that ψ
kn
L

R is not the eigenfunction of Hamiltonian H(0)
RR .

With the help of Eqs. (36) and (37), we can figure out how to
calculate H(0)

RRψ
kn
L

R :

H(0)
RRψ

kn
L

R =

⎡⎢⎣H0R HR1 0 . . .

H1R H0R HR1 . . .

0 H1R H0R . . .

. . . . . . . . . . . .

⎤⎥⎦
⎡⎢⎢⎣
∑

l t
kl
Rkn

Lφkl
R eikl

R∑
l t

kl
Rkn

Lφkl
R e2ikl

R∑
l t

kl
Rkn

Lφkl
R e3ikl

R

. . .

⎤⎥⎥⎦

= Ekn
L
ψ

kn
L

R −

⎡⎢⎢⎣
H1R

∑
l t

kl
Rkn

Lφkl
R

0
0
. . .

⎤⎥⎥⎦ , (52)

where Ekn
L

is the eigenenergy of incoming channel n from the
left lead. Therefore, Eq. (51) becomes

SR(x,y) = HCR

[
1

x
− 1

x

iyτEkn
L

xIR + iyτH(0)
RR

]
ψ

kn
L

R

+ iyτ
1

x
HCR

H1R

xIR + iyτH(0)
RR

∑
l

t k
l
Rkn

Lφkl
R . (53)

Due to the coupling matrix HCR , SR(x,y) and S
(m)
R have the

structure

SR(x,y) =
⎡⎣ 0

0
B(x,y)

⎤⎦ , S
(m)
R =

⎡⎣ 0
0

B (m)

⎤⎦ , (54)

where B(x,y) and B(m) are NR × 1 vectors. By moving the
second term on the right-hand side to the left side of Eq. (53),
one can obtain

B(x,y) = HR1
∑

l t
kl
Rkn

Leikl
Rφkl

R + iyτqR(x,y)
∑

l t
kl
Rkn

Lφkl
R

x + iyτEkn
L

,

(55)

where qR(x,y) is defined as

qR(x,y) = HR1

(
1

xIR + iτyH(0)
RR

)
1,1

H1R, (56)

and q(m)
R = 1

m! (− ∂
∂x

+ ∂
∂y

)mqR(x,y)|x=y=1. Consequently,

B(m) can be calculated using Eq. (49):

B(m) = HR1

(
1 − iτEkn

L

)m(
1 + iτEkn

L

)m+1

∑
l

t k
l
Rkn

Leikl
Rφkl

R

+ iτ
∑

j

(
1 − iτEkn

L

)m−j(
1 + iτEkn

L

)m+1−j

(
q(j )

R

+ q(j−1)
R

)∑
l

t k
l
Rkn

Lφkl
R . (57)

Another term S
(m)
L = [(A(m))T 0 0]T can be derived in a

similar way:

A(m) = H1L

(
1 − iτEkn

L

)m(
1 + iτEkn

L

)m+1

(∑
l

rkl
Lkn

Le−ikl
Lφkl

L + e−ikn
Lφkn

L

)

+ iτ
∑

j

(
1 − iτEkn

L

)m−j(
1 + iτEkn

L

)m+1−j

(
q(j )

L + q(j−1)
L

)
×
(∑

l

t k
l
Lkn

Lφkl
L + φkn

L

)
. (58)

Therefore, the source term for the wave function in-
jected from the left lead can be calculated as S(m) =
−2iτ

∑
α=L,R

(m,0)
α

u
(m)
α

S(m)
α .

It is worth mentioning that, in the above discussion, the
orthogonal basis set is assumed to expand the Hamiltonian.
So, one has to orthogonalize the basis set if the nonorthogonal
basis such as the atomic orbital basis set (LCAO) is used.45

To summarize the key steps, we first need to calculate
q(m)

α , which is needed in F(m)
2C or M (m) and S(m) for the

155438-7



LEI ZHANG, YANXIA XING, AND JIAN WANG PHYSICAL REVIEW B 86, 155438 (2012)

FIG. 2. (Color online) Schematic diagram of two molecular
devices Al-1,4-dimethylbenzene-Al in panel (a) and Al-benzene-Al
in panel (b). The device consists of 1,4-dimethylbenzene and benzene
molecules coupled to perfect aluminium atomic electrodes along the
(100) direction which extend to the reservoirs at ±∞.

iteration of Eqs. (34) or (31). For the NEGF-TDDFT approach,
we simply iterate Eq. (34) for different t ′ < m	t . Once
all the Green’s functions are obtained, the lesser Green’s
function and the transient current are calculated from Eqs. (9)
and (14), respectively. For the time-dependent wave-function
approach, the following steps have to be done: (1) the initial
scattering states coming from the left and right leads should
be prepared; (2) the incoming states whose energy ranging
from the band bottom to Fermi level should be included;
(3) each scattering state is evolved using Eq. (31), and finally
the time-dependent current can be calculated according to
Eq. (18). Clearly, the NEGF-TDDFT approach is much simpler
than the time-dependent wave function within the TDDFT
approach.

IV. NUMERICAL RESULTS

In this section, we implement our scheme and present
numerical results of transient current for two molecular
devices: 1,4-dimethylbenzene and benzene molecule coupled
to two aluminum leads shown in Fig. 2. For these systems,
there are 9 atoms in a unit cell with a finite cross section
along the (100) direction in the semi-infinite aluminum lead.
For the Al-1,4-dimethylbenzene-Al device, there are 66 atoms
in the central scattering region and the distance between the
Al atom and the nearest carbon atom is equal to 2.66 a.u. In
the Al-benzene-Al device, there are 64 atoms in the central
scattering region and the distance between the Al atom and the
nearest carbon atom is equal to 3.0 a.u. The time step in the
iteration is fixed as 	t = 0.01 fs.

Our numerical analysis is based on the state-of-the-art
first-principles quantum transport package MATDCAL.46,47 Es-
pecially, a linear combination of atomic orbitals (LCAO) is
employed to solve KS equations. The exchange-correlation
is treated at the LDA level and the nonlocal norm-conserving
pseudopotential48 is used to define the atomic core. The density
matrix is constructed in orbital space and the effective potential
is obtained in real space by solving the Poisson equation.
The accuracy in the self-consistent iteration is numerically
converged to 10−4 eV.

In the following, we will consider the upward steplike pulse
that applies on both leads VL(t) = −VR(t) = θ (t)V . In this
case, u(m)

α in Eq. (22) becomes a constant u(m)
α |m�0 = uα =

(1 + i τ
2 V )/(1 − i τ

2 V ). A recursive relation can be established

m

j

m
0

2m
0

3m
0

4m
0

5m
0

6m
0

7m
0

8m
0

m
0

2m
0

3m
0

4m
0

5m
0

6m
0

7m
0

8m
0
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5 6
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11

10
12

13 14

15

7

FIG. 3. (Color online) The schematic plot of computation proce-
dures (from 1 to 15). Here, blue triangle represents direct calculation
and green square represents FFT calculation.

for the source term S(m) and can be easily calculated, while the
memory term F(m,n)

2C in Eq. (27) or M (m) in Eq. (33) becomes a
discrete convolution summation

F(m,n)
2C = −τ 2

∑
β=L,R

m−1∑
j=0

(
u2

β

)m−j

× (Q(m−j )
β + Q(m−j−1)

β

)(
G(j+1,n)

CC + G(j,n)
CC

)
. (59)

Similarly, M (m) in Eq. (33) is

M (m) = −τ 2
∑

β=L,R

m−1∑
j=0

(
u2

β

)m−j

× (Q(m−j )
β + Q(m−j−1)

β

)(
ψ

(j+1)
C + ψ

(j )
C

)
. (60)

The method of fast Fourier transform (FFT) can be employed
to reduce the computational cost. In particular, the compu-
tational complexity from O(m3) to O[m2 log2

2(m)] can be
achieved.49,50 In the following, we discuss how to use the
FFT method in Eq. (60) to illustrate our approach. Note that
the convolution in Eq. (60) is different from the traditional
definition owing to the undetermined quantity ψ

(j )
C in the

kernel. Since the calculation M (m) in Eq. (60) has to be
solved along with Eq. (31) for m = 1, . . . ,N , we can choose
N = m02n where m0 is a fixed number. Then, the whole
calculation can be represented by the large triangle in Fig. 3.
The strategy is that some of the calculation in Eq. (60) will be
done by direct summation over j and the other will be done
using FFT. The numerical scheme consists of several steps:
(1) We start with a direct calculation of M (m) and ψ

(m)
C using

Eqs. (60) and (31) when 0 < m � m0, which corresponds with
the small triangle labeled as number 1 in Fig. 3. Usually, m0

is chosen as certain power of 2 and can be optimized in the
calculation. (2) To calculate M (m) for m0 < m � 2m0, we note
that ψ

(j )
C is known in the range 0 < j � m0, the summation of

j in Eqs. (60) can be divided into two parts 0 < m � m0 and
m0 < m � 2m0. The first part corresponds to a square labeled
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FIG. 4. (Color online) The scaling behavior of our numerical
scheme with m0 = 16. The inset shows CPU time versus log2(m0).
Blue upper triangle represents CPU time of FFT calculation. Red
lower triangle represents CPU time of direction calculation. Black
sphere is the total CPU time.

as 2 in Fig. 3 and can be calculated using the FFT technique.
The direct summation has to be done for the second part (the
triangular labeled as 3 in Fig. 3). (3) The remaining steps are
repeated FFT and direct calculations shown in Fig. 3 as squares
and triangles, respectively.

To illustrate our numerical scheme, we take Al-1,4-
dimethylbenzene-Al device as an example. The optimized m0

is determined through time evolution of one scattering state.
Results are shown in the inset figure in Fig. 4. As we can
see that the CPU time for FFT time decreases slowly as m0

increases, while the direction calculation increases drastically
with m0. In practice, there is a minimum value for total CPU
time consumed and m0 = 16 in this case. After obtaining an
optimized m0, we then calculate the computational time of
iterating a scattering wave with m0 = 16 versus total number of
time steps. The scaling behavior is exactly the O[m2 log2

2(m)]
shown in Fig. 4. According to our test, a speed-up factor
of 300 when m = 16 384 has been gained by using the FFT
technique.

As a check of our numerical implementation, we have
calculated the transient current using two different methods.
One is our present scheme named as the orbital-space method,
while the other one is based on the time evolution of
scattering wave function in K space combined with DFT.
The key idea of the K-space method is to transform the
scattering state (extended in the whole space) of the open
device from real space to K space (localized in K space).
Then, the equation to solve the time-dependent K-space
wave function becomes an integrodifferential equation.51 This
scheme is also implemented into first-principles calculation
by us.52 Here, we take the one-dimensional carbon atomic
chain as a toy molecular device to test our implementa-
tion. In Fig. 5, the transient current calculated from two
different methods agrees with with each other. In addition,
in the long-time limit the transient current approaches the
dc steady value obtained by using the Landauer-Büttiker
formula.

Now, let us first study the Al-1,4-dimethylbenzene-Al
device. The transient current I (t) is shown in Fig. 6(a).53 We
see that the system is turned on at approximately 10 fs. As
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FIG. 5. (Color online) Time-dependent current I (t) versus time
with V = 0.0001 a.u. for one-dimensional atomic carbon chain. Blue
solid line and red dashed line are time-dependent current calculated
by using the orbital-space method and the K-space method; green
dashed line is the dc current at steady-state limit.

the device switches on, the transient current overshoots the dc
limit and undergoes damped oscillation around it. We estimate
that the relaxation time is roughly 150 fs. Physically, the
damped oscillation is due to the presence of quasi-bound-state
in the system that the incoming electron dwells for a long
time.25,45 In Fig. 6(c), we show the largest contribution from
one scattering state with E = −0.034 59 a.u. is almost 40% of
oscillatory transient current. To understand this behavior, we
plot the transmission coefficient of equilibrium system shown
in Fig. 6(d). Indeed, we see that at E = −0.034 59 a.u., there
is a sharp peak which is the signature of the quasi-bound-state.
Finally, the transient current reaches the steady-state limit at
around 300 fs.

In the second example, the transient current of the Al-
benzene-Al device is plotted in Fig. 7. For comparison,
we calculate the transient current under two different bias
voltages. We have several observations: (1) switch-on time
is roughly 5 fs; (2) relaxation time is roughly 120 fs for
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FIG. 6. (Color online) In panels (a) and (b), time-dependent
current I (t) versus time with V = 0.0025 a.u. for Al-1,4-
dimethylbenzene-Al device are plotted [panel (b) is for a short-time
scale]. Panel (c) shows the largest contribution to the oscillation
from a particular scattering state with E = −0.034 59, k = 1.81.
(d) Transmission coefficient when the system is in equilibrium state.
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FIG. 7. (Color online) Time-dependent current I (t) versus time
with different bias voltages for Al-benzene-Al device. In panel (a),
the dotted and solid lines correspond to V = 0.0025 a.u. and V =
0.005 a.u., respectively. Panels (b) and (C) show the early behavior
of time-dependent current. Blue solid line and red dashed line are
time-dependent current and black straight solid and dashed line are
current at steady-state limit.

V = 0.0025 a.u. and 180 fs for V = 0.005 a.u.; (3) transient
current is much larger than the dc limit at early time. As the
bias voltage increases, the more oscillation occurs. In this
device, the transient current overshoots the dc limit and then
approaches the dc limit with less oscillation than that of the
first device we studied.

As we see from the above results, the quasi-bound-state
plays a dominant role in the transient current calculation of
molecular devices. To resolve the quasi-bound-state spectral,
one must go beyond the wideband-limit approximation so that
essential physics of transient dynamics can be captured.

V. SUMMARY

In conclusion, we proposed a NEGF-TDDFT formalism
to calculate the dynamical response of molecular devices
due to the presence of external time-dependent bias on the
lead. Detailed computational procedures for the first-principles
transient current calculation were discussed. As an illustration,
we have calculated the transient current for two molecular
devices from first principles when the bias is a steplike
pulse. By using the FFT technique, computational cost was
drastically reduced from N3 to N2 log2

2(N ). Comparing with
the time-dependent wave function within TDDFT approach,
our method is much easier to implement in the first-principles
calculation in molecular devices.
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