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Vortex structures in model p-wave superconducting Sr2RuO4: Single two-dimensional band vs
quasi-one-dimensional bands
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There has been an interesting debate on the primary source of chiral p-wave superconductivity in Sr2RuO4. We
present a comparative study on the vortex structure between a single two-dimensional (2D) band and quasi-1D
band model by using the Bogoliubov-de Gennes theory. The pattern of the local density of states at zero bias
around a vortex core has a diamond shape in the quasi-1D model and is much more isotropic in the 2D model.
The spin-lattice relaxation rate well below the superconducting transition temperature is greatly enhanced in the
vortex state in the 2D model, but not in the quasi-1D model. These features can be tested by using a scanning
tunneling microscope and nuclear magnetic resonance or nuclear quadrupole resonance to distinguish the models
for the superconductivity in Sr2RuO4.
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I. INTRODUCTION

The layered perovskite material Sr2RuO4 has attracted a lot
of interest due to the experimental evidence for its spin-triplet
superconductivity with broken time-reversal symmetry.1

Shortly after the discovery of its superconductivity,2 Rice and
Sigrist3 and Baskaran4 pointed out that the superconducting
state might be an electronic analog of the 3 He-A phase. Within
this scenario, assuming the simplest nearest-neighbor pairing
interaction, the gap function in terms of the d-vector formalism
can be expressed compactly as5,6

�d(k) = �0ẑ(sin kx + i sin ky). (1)

Sr2RuO4 is a quasi-two-dimensional (2D) system. Its
normal state can be well described by a multiorbital band
structure with a 2D γ band derived from the Ru dxy

orbital and two weakly hybridized quasi-1D α and β bands
derived from Ru dxz and dyz orbitals (Fermi surfaces of this
material will be shown below). Due to the distinct orbital
character of different bands, a superconducting state with
equal gaps in all three bands is unlikely. The orbital nature
of superconductivity in Sr2RuO4 has been discussed on a
very general basis,7 which suggests that the superconducting
pairing is predominantly derived from either the γ or the α and
β bands, but superconductivity can be induced in the passive
Fermi surfaces via a weak proximity effect. This picture is
supported by the specific-heat measurement in a magnetic
field.8 In this experiment, the in-plane field dependence of
the specific heat shows a “shoulder” structure at low fields,
corresponding to about half of the total density of states in
the normal phase. Combining this result with the information
on the density of states of different bands from quantum
oscillations,9 the only consistent physical picture would be
either the 2D γ band or the quasi-1D α and β bands as the active
source of superconductivity below the transition temperature.
Nevertheless, due to the weak proximity effect, all of the
bands become gapped only at a temperature approaching
zero. Therefore, in a wide temperature range well below the
transition, it is still an unsolved issue as to which portion of
Fermi surfaces is the active source of superconductivity.

It is natural and has been generally assumed that supercon-
ductivity arises primarily on the 2D γ band,3 referred to as the
2D model hereafter. The directional variation of the specific-
heat experiment in a magnetic field is slightly in favor of this
scenario.8 However, basic questions concerning the primary
source of the pairing remain controversial due to important
discrepancies between theory and experiment, in spite of
intense research work in the past almost two decades.10,11

For example, the 2D model predicts an edge current in the
superconducting state due to robust Andreev bound states
in the surface,12,13 which has not been demonstrated,14,15

although this also has been controversial.11,16,17 Very recently,
Raghu et al. suggested an alternative interesting possibility
for the spin-triplet superconductivity in Sr2RuO4,16,18 where
the dominant superconducting instability in the triplet channel
occurs on the quasi-1D α and β bands, hybridized from the Ru
dxz and dyz orbitals. This model (quasi-1D model hereafter)
predicts the absence of topologically protected edge modes,
contrary to the single 2D band model. One also expects an
intrinsic anomalous Hall effect due to the multiband nature
of this model,19,20 different from the single-band scenario,21

which may explain the observation of the nonzero Kerr
effect.22 On the other hand, the quasi-1D model would
predict a suppression of spin-density wave fluctuation at the
superconducting transition point,23 which has not been seen
in neutron experiments thus far.24 Therefore, it is important to
explore the possibilities for more experimental consequences
within the 2D band or quasi-1D band models and to test the
model against experiments.

In the single 2D band picture, a Cooper pair in the chiral
p-wave state is illustrated schematically in Fig. 1(a), while
its counterpart in the two quasi-1D band picture is shown
in Fig. 1(b). It is highly demanding to distinguish the two
possibilities by using available experimental probes. However,
the fragile superconducting state of Sr2RuO4 does pose a
challenge and restriction to experimental probes. For example,
the low transition temperature with Tc ≈ 1.5 K is beyond the
present technical limit using state-of-the-art angle-resolved
photoemission spectroscopy.25 In order to pin down this
controversial issue with currently available experiments,
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FIG. 1. (Color online) Schematic illustrations of a Cooper pair
with spin �S and orbital angular momentum �L for a spin-triplet
superconductor in the chiral state with �d(k) formed in (a) the single
band and (b) quasi-1D bands. In the former case, superconductivity
is mainly from the dxy orbital, whereas the hybridization of dxz and
dyz orbitals play a key role in the latter case. It is strongly desirable to
distinguish these two scenarios in order to identify the orbital origin
of superconductivity.

in this work we study the vortex phase of a chiral p-wave
superconductor for both the 2D band and quasi-1D band
scenarios. It is found that different models give rise to
qualitatively distinguishable vortex states, which is a promis-
ing characteristic to identify the underlying superconducting
nature of Sr2RuO4.

The rest of this paper is organized as follows. In Sec. II,
some basic properties of the Fermi surface in the normal state
are studied. In Sec. III, we construct the effective Hamiltonians
based on the Bogoliubov-de Gennes theory for two different
models as a pedagogical procedure. In Sec. IV, the results with
a focus on experimental observables are presented. We note
that the vortex state for the single-band chiral p-wave model
has been studied in previous literature.26 In the present work,
we use more realistic parameters for the purpose of direct
comparison of two different models. Finally, a concluding
remark is given in Sec. V.

II. PROPERTY OF NORMAL STATE: FERMI SURFACE

Before proceeding to the discussion of a different supercon-
ducting model, we briefly discuss the topology of the Fermi
surface in the normal state. As we will see later, the Fermi
surfaces of different bands give rise to different signatures

corresponding to the superconducting states. We begin with
the Hamiltonian in the 4d − t2g orbital basis of the Ru ions,

Ĥk =

⎛
⎜⎝

ξ1(k) g(k) 0

g(k) ξ2(k) 0

0 0 ξ3(k)

⎞
⎟⎠ , (2)

where ξ1(k) = −2t cos kx − μ, ξ2(k) = −2t cos ky − μ,
g(k) = −4t ′ sin kx sin ky , and ξ3(k) = −2t3(cos kx +
cos ky) − 4t ′3 cos kx cos ky − μ3. Here, 1, 2, and 3 denote
orbitals xz, yz, and xy, respectively. Hereafter we take
(t,t ′,t3,t ′3) = (1,0.1,0.8,0.35) for the hopping parameters,
and (μ,μ3) are fine tuned such that the electron density for
each band is equal to 4/3.27 Note that this set of parameters
can reproduce a Fermi surface, whose shape agrees with that
obtained in the angle-resolved photoemission spectroscopy
measurement above Tc.28

After diagonalizing the Hamiltonian in Eq. (2), the Fermi
surface can be obtained, as shown in Fig. 2(a). It is noted that
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FIG. 2. (Color online) (a) Two-dimensional Fermi surface for
Sr2RuO4 in the normal state. (b) Amplitude of Fermi velocity vF (k)
along the Fermi-surface line. Here, θF is the angle between the point
k on the Fermi surface and x axis, as indicated in the figure.
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the γ band is almost isotropic in the two-dimensional plane,
whereas the quasi-1D α,β bands show significant anisotropy.
To further illustrate this point, we show the amplitude of Fermi
velocity �vF (k) in different bands in Fig. 2(b). We can see that
|�vF (k)| is maximized along the in-plane square lattice axis a

or b for the α and β bands, while it is almost isotropic for the
γ band.

In the subsequent sections related to the superconducting
state, we will concentrate the discussion on the vortex state
in order to provide a good test and to answer the question of
which band superconductivity takes place in. As we will see
later, the topology of the Fermi surface is actually inherited in
the superconducting state for which the band is predominant.

III. BOGOLIUBOV-DE GENNES THEORY OF THE
SUPERCONDUCTING STATE

A. Single 2D band model

First, we consider a single 2D band model based on the dxy

orbital. In terms of the eigenenergy Eε and the quasiparticle
amplitudes uε

i , vε
i at the ith site, the Bogoliubov-de Gennes

equations are given by26

∑
j

[
Hij �ij

�
†
ij −H ∗

ij

] [
uε

j

vε
j

]
= Eε

[
uε

i

vε
i

]
, (3)

where Hij =−tij e
iϕij − μ3δi,j , and ε is an index of the

eigenstate. The magnetic field is introduced through the Peierls
phase factor eiϕij with ϕij = π

�0

∫ ri

rj
A(r) · dr, where A(r) =

H
2 (−y,x,0) stands for the vector potential with magnetic

field H in the symmetric gauge and �0 = hc/2e is the
superconducting flux quantum. Within this choice of gauge,
the next-nearest vortices of the square-vortex lattice are located
at the 45◦ directions from the (100) direction. This vortex
lattice configuration is suggested from the neutron-scattering
experiment.26,29,30 We have tij = t3 and tij = t ′3 for the nearest-
neighbor and next-nearest-neighbor hopping, respectively.
The self-consistent equation for the pairing potential is
reduced to

�ij = V

2
δi,j±ê

∑
ε

(
uε

jv
ε∗
i − vε∗

j uε
i

)
tanh

Eε

2T
, (4)

with T being the temperature. Here, ê = x̂,ŷ, denoting the unit
vector along the x and y direction, respectively. In this paper,
we set V = 1.0.

The pair potential at each site i can be decomposed into px

and py components as

�px
(r i) = �x̂,i − �−x̂,i

2
, (5)

�py
(r i) = �ŷ,i − �−ŷ,i

2
. (6)

Here we have denoted

�ê,i = �i,i+ê exp

[
i

π

�0

∫ ri+ri+ê
2

r i

A(r) · dr

]
. (7)

For sin px ± i sin py-wave superconductivity, we can define
the pairing potential as �±(r i) ≡ �px

(r i) ± i�py
(r i).

B. Quasi-1D model

We start with an effective two-orbital Hamiltonian that
takes into account only the Ru dxz and dyz orbitals.16,17,19

By assuming an effective attraction that causes the p-wave su-
perconducting pairing, one can construct an effective model to
study the vortex physics of the chiral p-wave superconductors
in the mixed state. Here we ignore the on-site repulsion, which
is not expected to change our conclusions qualitatively in the
present problem.

After the mean-field decomposition, one arrives at the
Bogoliubov-de Gennes equations

∑
j

⎛
⎜⎜⎜⎝

Hij,mm �ij,mm Hij,mn 0

�
†
ij,mm −H ∗

ij,mm 0 −H ∗
ij,mn

Hij,mn 0 Hij,nn �ij,nn

0 −H ∗
ij,mn �

†
ij,nn −H ∗

ij,nn

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎝

uε
j,m

vε
j,m

uε
j,n

vε
j,n

⎞
⎟⎟⎟⎠

= Eε

⎛
⎜⎜⎜⎝

uε
i,m

vε
i,m

uε
i,n

vε
i,n

⎞
⎟⎟⎟⎠ , (8)

where Hij,αβ = −eiϕij tij,αβ − δij δαβμ, and uε
j,m, uε

j,n, vε
j,m and

vε
j,n are the Bogoliubov quasiparticle amplitudes on the j th

site with corresponding eigenvalues Eε . Here, m and n denote
the dxz and dyz orbitals, respectively. The hopping integrals
are chosen as

tij,αβ =

⎧⎪⎪⎨
⎪⎪⎩

t, α = β = m(n), i = j ± x̂(ŷ)
−t ′, α �= β, i = j ± (x̂ + ŷ)
t ′, α �= β, i = j ± (x̂ − ŷ)
0 otherwise.

(9)

The matrix elements in the off-diagonal terms of Eq. (8)
are obtained through the following self-consistent equations:

�ij,mm = V

2
δi,j±x̂

∑
ε

(
uε

j,mvε∗
i,m − vε∗

j,muε
i,m

)
tanh

Eε

2T
,

(10)

�ij,nn = V

2
δi,j±ŷ

∑
ε

(
uε

j,nv
ε∗
i,n − vε∗

j,nu
ε
i,n

)
tanh

Eε

2T
.

The orbital part of the order parameter can be decomposed
as

�px
(r i) = �x̂,i − �−x̂,i

2
, (11)

�py
(r i) = �ŷ,i − �−ŷ,i

2
, (12)

where we denote

�x̂,i = �i,i+x̂,mm exp

[
i

π

�0

∫ ri+ri+x̂
2

r i

A(r) · dr

]
,

(13)

�ŷ,i = �i,i+ŷ,nn exp

[
i

π

�0

∫ ri+ri+ŷ

2

r i

A(r) · dr

]
.
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For sin px ± i sin py-wave superconductivity,31 we can
define the pairing potential as

�±(r i) ≡ �px
(r i) ± i�py

(r i). (14)

Without loss of generality, we restrict the calculations with
�+ and �− as the major and minor components of the order
parameters. Two types of vortices arise, depending on the
direction of the magnetic field insofar as the chirality is fixed.32

In numerical computations, the unit cell with size Nx ×Ny =
33×33 and the number of such magnetic unit cells Mx ×My =
5×5 are used.33

C. Calculation of experimental observables

In this section, we discuss the formalism for the local
density of states (LDOS) and the nuclear spin-lattice re-
laxation rate in both models for Sr2RuO4. In the scanning
tunneling microscope (STM) experiment, the tunneling con-
ductance is proportional to the LDOS N (E,ri), which can be
calculated as

N (E,ri) = −
∑

ε

[∣∣U ε
i

∣∣2
f ′(Eε − E) + ∣∣Vε

i

∣∣2
f ′(Eε + E)

]
,

(15)

where f ′(E) is the derivative of the Fermi-Dirac distribution
function with respect to energy. Hereafter we denote

U ε
i = uε

i , Vε
i = vε

i (16)

for the single-band model, and

U ε
i = uε

i,m + uε
i,n, Vε

i = vε
i,m + vε

i,n (17)

for the quasi-1D model.
In addition to the STM measurement, nuclear magnetic

resonance (NMR) or nuclear quadrupole resonance (NQR) is
another related powerful method to identify distinct signatures
predicted by different models. Generally speaking, this method
is able to simultaneously shed light on the spatial profile of the
zero-energy quasiparticles through the relaxation time T1. The
nuclear spin-lattice relaxation rate we consider is given by34,35

R(ri,ri ′) = Imχ+,−(ri,ri ′ ,i�n → � + iη)/(�/T )|�→0

= −
∑
ε,ε′

U ε
i U ε′∗

i

[
U ε

i ′U ε′∗
i ′ + Vε

i ′Vε′∗
i ′

]
×πTf ′(Eε)δ(Eε − Eε′). (18)

We choose ri = ri ′ by considering that the nuclear spin-
lattice relaxation at a local site is dominant. Then the
site-dependent relaxation time is given by T1(r)=1/R(r,r).
Roughly speaking, T1 is proportional to the integral of the
LDOS within the energy range 0�E�T . Therefore, the
NMR/NQR experiment is also expected to provide important
fingerprints for the two models.

IV. RESULTS

In this section, we will present results for the vortex states
based on the two different models and basic methods discussed
in the previous section.

A. Vortex structure

To begin with, a general picture of the vortex structure for
the superconducting order parameters for both models will be
shown below. We will also show the spatial dependence of
the pairing order parameter and LDOS at zero bias. While
the former cannot be measured directly, the LDOS is an
experimentally observable quantity in the STM measurement.

First, we study the single-band model and plot the order
parameters as a function of position in a vortex lattice in
Fig. 3. Due to the broken time-reversal symmetry of the chiral
p-wave state, there are two types of vortices depending on the
direction of the magnetic field. However, the negative vortex
with winding number opposite to the chirality is the stable
state.36 And as shown in Fig. 3, the orientation of the square
shape is different depending on the winding. In the negative
or positive vortex case, the shape of |�+| around the vortex
core is nearly isotropic with minor anisotropy. However, the
induced component |�−| in both negative and positive vortex
shows similar shapes, which extends along the a axis. Finally,
as shown in Figs. 3(e) and 3(f), we also calculate the LDOS
N (E = 0,r), which is related to the tunneling conductance
at zero bias in the STM experiment. We can see that the
LDOS comes to a peak around the vortex core, with slightly
anisotropic extension along the (110) direction. This is because
the amplitude of Fermi velocity vF for the γ band is almost
isotropic with slight enhancement near the (110) direction, as
shown in Fig. 2(b). Such features are qualitatively similar to
previous results.26

Now we turn to the results for the quasi-1D model. Similar
calculations to the single-band case are performed, with
the corresponding results shown in Fig. 4. We find several
qualitative differences resulting from the different models after
careful comparison. First, in this model, the amplitude of the
major component �+(r) is not substantially suppressed at the
vortex core, compared with the previous model. This can be
seen from the density scale of Figs. 4(a) and 4(b), showing a
variation from about 0.3 to 0.6, whereas the counterpart for
the single-band model in Figs. 3(a) and 3(b) is from 0.1 to
0.5. Second, for the induced component �−(r), its amplitude
reaches a maximum at the vortex core. On the contrary, |�−(r)|
maximizes near the core along the a or b axis and shows a
fourfold symmetry.

More importantly, one should pay attention to the LDOS
at zero bias for this model. At a first glance, the shape
of the LDOS around the vortex resembles a rhombus (
),
with its vertices pointing along the a or b axis. Such a
highly anisotropic structure is actually an indication of strong
anisotropy for the angle-resolved Fermi velocity. This intuitive
understanding is supported by our calculations showing that
|�vF | in the normal state is maximized along the a or b axis for
both α and β bands in Fig. 2(b). As a result, the shape of the
LDOS at zero bias, acting as a fingerprint of the active band
where the superconductivity arises, can be used to distinguish
the two different models in the STM measurement.

Moreover, we find that the peak feature at the vortex core is
substantially smeared for the quasi-1D model [pay attention to
the density scale of Figs. 4(e) and 4(f) in comparison with the
single-band counterpart in Figs. 3(e) and 3(f)]. This property is
unique for a quasi-1D model,37 and the underlying physics is
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FIG. 3. (Color online) Vortex lattice structure in a single-band model. Left panels are for a negative vortex lattice and right panels are for
a positive vortex lattice. (a), (b): spatial distribution of the major component |�+(r)|; (c), (d): spatial distribution of the admixed component
|�−(r)|; (e), (f): LDOS at zero bias N (E = 0,r). The size of a magnetic unit cell is 33 × 33.
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FIG. 4. (Color online) Vortex lattice structure in a two-band model. Left panels are for a negative vortex lattice and right panels are for
a positive vortex lattice. (a), (b): spatial distribution of the major component |�+(r)|; (c), (d): spatial distribution of the admixed component
|�−(r)|; (e), (f): LDOS at zero bias N (E = 0,r). The size of a magnetic unit cell is 33 × 33.
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the strong suppression of low-energy resonance in the vortex
state of a quasi-1D model, which will be discussed in detail
with more experimental signatures below.

B. Signatures in STM and NMR/NQR measurements

After giving a general perspective of the vortex structure
for the two different models, below we would like to study and
analyze the LDOS in detail. The energy dependence of LDOS
can be directly probed by measuring the tunneling conductance
with an appropriate voltage bias in the STM experiment. In
Fig. 5, we show a comparison of the energy-resolved LDOS at
various positions for the two models. In the single-band model,
we can see that the LDOS at the core of the negative vortex has
a peak at E=0, while the peak for the positive vortex is slightly
higher than zero. This feature, qualitatively consistent with
previous calculations, is due to different winding structures of
the negative and positive vortices.26

However, the situation is totally different in the quasi-1D
model. Similar study on organic superconductors in a magnetic
field37 indicates that vortices are strongly modified due to the
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FIG. 5. (Color online) LDOS N (E,r) as a function of energy E

at various positions for (a) the single-band model and (b) quasi-1D
model. The bulk value is obtained in the absence of a magnetic field,
whereas “N core” (“P core”) indicates the position at the negative
(positive) vortex core. The temperature is about 0.3Tc.

quasi-1D nature of superconductivity. Specifically, it has been
demonstrated that vortices in a quasi-1D superconductor do
not possess low-energy midgap excitations. This extraordinary
property leads to the missing of midgap resonance peak in
the energy dependence of LDOS at the vortex site. To see
whether or not this conclusion can be applied to our quasi-1D
model for Sr2RuO4, we also calculate the energy dependence
of the LDOS at different positions in Fig. 5(b). It can be
seen that the midgap resonance is also absent in the quasi-1D
model we consider here. Nevertheless, we want to stress that
this conclusion is valid only when the interorbital hopping
amplitude t ′ is small enough. On the contrary, if t ′ is large
enough, say t ′ >0.4t , we find that the midgap resonance will
be present again, similar to the single-band model.

Not only does the STM technique enable direct detection of
the midgap excitations at the vortex core, but these excitations
are also expected to be indicated in the NMR/NQR experiment.
Now, we proceed to the discussion of the nuclear spin-lattice
relaxation rate T −1

1 , which can be calculated via Eq. (18).
For the single-band model, from Fig. 6(a) we can see that
a residual relaxation rate shows up at the vortex core as the
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FIG. 6. (Color online) The nuclear spin-lattice relaxation rate T −1
1

as a function of temperature T at various positions for (a) a single-
band model and (b) a quasi-1D model. The bulk value is obtained in
the absence of a magnetic field, whereas “N core” (“P core”) indicates
the position at the negative (positive) vortex core.
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temperature approaches zero, making T −1
1 deviate from the

bulk value by several orders of magnitude especially at low
temperatures, consistent with previous calculations.38 This
huge deviation stems from the fact that the midgap states of
the vortex core contribute substantially to the relaxation rate,
compared to the zero-field case. Next, we turn to the quasi-1D
scenario in Fig. 6(b). Note that the temperature dependence of
the relaxation rate at different positions is almost identical in
the logarithmic scale. The only subtle difference between the
bulk and the vortex core is that T −1

1 is slightly enhanced at
low temperatures in the vortex core, but the previous residual
behavior is totally absent. This result is consistent with the
previous discussions on the energy dependence of LDOS,
which also show similar behaviors between the bulk and the
vortex core.

Although the measurement of the nuclear spin-lattice
relaxation rate turns out to be a promising experiment to
identify the active source of superconductivity in Sr2RuO4,
several minor comments are unavoidable. First, contributions
to the relaxation rate from various positions of vortex cores
usually cannot be separated clearly in experiments. Therefore,
comparison experiments in the presence and absence of
vortices need to be carried out carefully. Second, as mentioned
previously, all of the bands participate in pairing at very low T

due to interband proximity effects.7 Therefore, measurements
should be performed at T well above zero, say 0.1Tc < T <

Tc. In the temperature range, a salient distinction is still
expected, as illustrated in Fig. 6.

For Sr2RuO4, the spin-lattice relaxation rate has been
measured by the NQR technique in the absence of a magnetic
field down to 0.1 K.39 And we suggest that further experiments
in an external field should be performed as a crucial test of
the two candidate models, in spite of some minor difficulties
discussed above.

V. SUMMARY AND CONCLUSION

We have studied the vortex state for a chiral p-wave
superconductor based on a single 2D band and two quasi-1D
band models, respectively. By comparing the two sets of
results, we have found several distinctive characteristics in
the vortex state derived from different models. Generally
speaking, for the band structure of Sr2RuO4 at the Fermi
surface, the γ band is more or less isotropic in the x-y
plane, whereas the quasi-1D α and β bands are highly
anisotropic. Assuming that superconductivity originates from
either the γ band or α and β bands, the vortex state
does inherit distinguishable features from the active band(s).
First, the shape of the LDOS at zero bias in the quasi-1D
model shows anisotropy in accordance with the analysis of
the angle-resolved Fermi velocity for the α and β bands.
Second, the missing of the midgap resonance at the vortex
core for this model leads to corresponding consequences
in the energy dependence of LDOS and the temperature
dependence of nuclear spin-lattice relaxation rate T −1

1 . All
of these specialities show a sharp distinction compared with
the counterparts in the single-band scenario. Consequently,
the STM and NMR/NQR measurements in the vortex state
of Sr2RuO4 are expected to be unambiguous experiments
to answer the question of which band the superconductivity
resides in. Before concluding, we would like to mention that it
has been recently proposed that this disputatious issue related
to the orbital origin of superconductivity can be settled by
detecting the Leggett-like collective modes.40
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