Biomechanical comparative study of the JuggerKnot™ soft anchor technique with other common mallet finger fracture fixation techniques

Jason Pui Yin Cheung, Boris Fung, Wing Yuk Ip

Department of Orthopaedics and Traumatology

The University of Hong Kong

Study Disclosures

I have no financial disclosures to report

Mallet Finger Deformity

Splinting

- Cumbersome
- Compliance issue

Operative

- Open injury
- Cannot tolerate splinting
- Large avulsion fracture
 - >30% of articulation

Fixation Metads

Kirst
 extens

All Methods Require Immobilization!

- 110
- P
- Tension 🛭
- Umbrella handle

Study Aims

- A biomechanically sound device
 - Early mobilization without protection
 - DIPJ mobilization has force of 5.6N (Husain JHSA 2008)
- Less soft tissue complications

- Biomechanical study
 - Peak load resistance to flexion of DIPJ
 - How do suture anchors compare?

Methods

- 32 specimens (8 fresh frozen cadaveric human
 - hands)
 - 8 of each finger
 - No thumbs

24 specimens for analysis

Preparation

- Thawed to room temperature (24°C)
- Amputated at PIPJ
- Sparing of extensor tendon to wrist level
- Nails intact
- None had OA joints and bone defects

Preparation

- H-shaped skin incision at dorsal of DIPJ
 - Osteotomy
 - Fixation
- Fluoroscopic guidance

Fragment Sizing

Fixation Methods

- Kirschner wire
- Pull-out wire
- Tension-band wiring
- Suture Anchor
 - JuggerKnot™

 Randomized block pattern distribution

Biomechanical Testing

 MTS 858 Mini Bionix servo-hydraulic load frame

Mounting Device

4N torque screws

 10N preloaded extensor tendon

 Testing apparatus with clamping device

Biomechanical Testing

- Peak load resistance
- Load testing at DIPJ flexion
 - 30 degrees
 - 45 degrees
 - 60 degrees

- Speed: 10cm/s
- Load distance: Tan Θ of mount

to nail fold

Biomechanical Testing

- Complications
 - Implant failure
 - Loosening of knot, pull-out of implant, implant fracture
 - Fixation failure
 - >1mm widening of fracture site

Comparability between Digits

Average Peak Load

No differences between Digits

		Mean (N)	Range (N)	Standard	p-value
				Deviation	
Before osteotomy	30°	16.45	8.45-31.25	1.14	0.370
	45°	31.32	16.39-52.50	8.79	0.342
	60°	57.01	24.26-88.47	19.52	0.450
After	30°	18.88	7.10-50.18	11.03	0.549
fixation	45°	30.48	11.70-80.80	17.66	0.505
	60°	44.27	17.50-98.80	21.25	0.515

Comparison between Fixation Methods

Peak Load Analysis

TBW Strongest Fixation Suture Anchor Strong Enough to Resist Normal DIPJ forces

Fixation	Before osteot	omy: N (±SD)		After fixation: N (±SD)		
method	30°	45°	60°	30°	45°	60°
Kirschner	12.37	23.73	45.75	11.86	21.13	39.42
wire	(±2.67)	(±6.67)	(±22.14)	(±3.07)	(±5.41)	(±16.60)
Pull-out wire	19.01	34.80	58.41	18.40	25.60	36.92
	(±6.27)	(±9.20)	(±19.29)	(±7.91)	(±7.73)	(±9.07)
Tension-band	17.51	33.75	62.71	31.91	52.69	67.80
wire	(±4.41)	(±6.71)	(±19.23)	(±12.81)	(±21.52)	(±25.00)
Suture	16.93	32.99	61.17	13.35	22.51	32.96
Anchor	(±6.11)	(±9.35)	(±17.52)	(±4.91)	(±4.91)	(±13.55)
p-value	0.161	0.099	0.446	0.001	0.001	0.008

Complications

Dorsal skin impingement with TBW in 3 digits

No implant failure

No fixation failure

Discussion

Only biomechanical study using suture anchors for mallet injuries

Randomization

Standardized biomechanical testing

 All fixation methods can withstand normal DIPJ movement in terms of peak load resistance

Future Studies

Information on fatigue failure?

Animal studies for healing potential

Clinical trials for applicability in clinical setting

Thank You

