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Speckle reduction of retinal optical coherence
tomography based on contourlet shrinkage
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Speckle reduction of retinal optical coherence tomography (OCT) images helps the diagnosis of ocular diseases. In
this Letter, we present a speckle reduction method based on shrinkage in the contourlet domain for retinal OCT
images. The algorithm overcomes the disadvantages of the wavelet shrinkage method, which lacks directionality
and anisotropy. The trade-off between speckle reduction and edge preservation is controlled by a single adjustable
parameter, which determines the threshold in the contourlet domain. Results show substantial reduction of speckle
noise and enhanced visualization of layer structures as demonstrated in the image of the central fovea region of the

human retina. It is expected to be utilized in a wide range of biomedical imaging applications.
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Optical coherence tomography (OCT) [1], as an emerging
noninvasive optical imaging modality allowing for
high-resolution imaging of the retina microstructure
and morphology, has been well demonstrated [2-5].
Further quantitative image analysis such as retinal layer
segmentation [3,4] facilitates the quantification of retinal
layers from the nerve fiber layer to the pigment epi-
thelium layer. Retinal layer thickness derived from such
image analysis methods may improve the clinical
diagnosis during glaucoma progression and age-related
macular degeneration [4,5]. However, retinal OCT images
are severely degraded due to the presence of speckle
noise [6], which causes difficulty in the precise identifi-
cation of the layer boundaries. The accuracy of seg-
mentation algorithms, which can be used to assess
macular edema and nerve fiber atrophy, is reduced by
speckle noise.

Wavelet shrinkage techniques have been employed
successfully in speckle noise reduction for OCT images
[7-11]. By transforming the OCT image into the wavelet
domain, speckle noise is usually coded by small wavelet
coefficients while signals are coded by large ones. By
keeping large coefficients and suppressing small ones,
speckle noise can be effectively attenuated. Whereas
wavelet transform has been widely applied to despeckle
OCT images, it only recognizes one-dimensional (1D)
image singularities effectively and does not capture
the geometrical smoothness of the image contours
[12,13], which are of significant importance for retinal
OCT images as a way for clinical measure of retinal dis-
ease progression. Wavelet representation is therefore not
optimal and only shows limited performance in despeck-
ling the retinal OCT images.

Recently, a new multiscale and multidirectional image
representation method named contourlet transform
has been proposed [14]. It is regarded as a “true” two-
dimensional (2D) image representation as it can more
effectively capture image edges and contours. The ration-
ale is that it can represent the image contours and edges
with a few number of large transformed coefficients, and
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noise is more spread out and coded by smaller ones.
Moreover, the high degree of directionality and
anisotropy offered by contourlet transform makes it
superior to wavelet transform, which decomposes data
into only three directions. The directional selectivity is
improved by using dual-tree complex wavelet transform
compared with discrete wavelet transform; it, however,
is still limited to six distinct directions [10]. Therefore, we
believe that it is more suited to use contourlet transform
for retinal OCT image despeckling.

In this Letter, we present for the first time a speckle
reduction technique based on contourlet transform for
ophthalmic OCT images despeckling. Our results justify
that the contourlet transform can be an effective tool in
denoising ophthalmic OCT images.

There are different versions of contourlet transform.
We use the nonredundant and orthogonal version, which
has been described in detail elsewhere [14], for both
the forward and inverse transformations. In brief, the
forward contourlet transform consists of two major
stages: the subband decomposition and the directional
transform. It is first constructed by a Laplacian pyramid
(LP) subband decomposition followed by directional
filter banks (DFBs) applied on each subband. The LP
decomposes the image into different octave frequency
subbands, while the DFB decomposes each LP subband
into many directions. The LP subbands and DFB provide
scale and direction information of image signals, respec-
tively. The contourlet transform allows for different and
flexible number of directions at each scale.

The proposed contourlet shrinkage procedure closely
emulates the despeckling method of wavelet shrinkage,
which is denoising by thresholding the wavelet coeffi-
cients in the wavelet domain [7,10]. It is achieved in
the contourlet domain and consists of four steps: forward
contourlet transform, threshold estimation, threshold
shrinkage, and inverse contourlet transform. A logarith-
mic transformation has to be performed prior to this
procedure to convert the multiplicative speckle noise
into additive noise. On a logarithmic scale, the observed
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image Y is modeled as uncorrupted image S and additive
speckle noise E:

Y=S+E. @Y)

Then a forward contourlet transform is performed on the
noisy image Y. The transformed coefficient is a function
of the scale 7, the direction j, and the spatial coordinate x
and y. The contourlet coefficients are represented as

Yijoy = Sijay T Eijay )

where Y ; .., are contourlet coefficients for the noisy im-
age, S; ., are uncorrupted coefficients, and E;; ., are
the noise contributions. Following that, an estimated
hard threshold 7', ; is performed to each contourlet coef-
ficient Y;; ., such that

5 Yy Yyl 2Ty
Yijay = { 0 otherwise, @

where ¥; jay denotes the denoised coefficients. Then,
the inverse contourlet transform is performed on the
new contourlet coefficients to reconstruct the
denoised image.

The estimation of the threshold value is based upon the
noise variance of the corrupted image. The contourlet
coefficients in each subband are assumed to form a
zero-mean generalized Gaussian distribution [15]. To ob-
tain a threshold, we leverage the Monte Carlo method
[16,17]: T; ; = Ko,0,, Where o, is the standard deviation
of speckle noise in the image, and oy is standard
deviation of speckle noise in the contourlet domain at
a specific scale 7 and direction 7 by Monte Carlo analysis.
In order to account for the slight noise estimation
deviation from the actual speckle noise distribution, an
adjustable parameter K is introduced [17] to further re-
duce noise with a minimal effect on the edge sharpness.
The value of K is usually obtained by trial and error, and
it controls the degree of speckle reduction. The trade-off
between speckle reduction and edge preservation, there-
fore, is achieved by tuning a single parameter.

The proposed method was applied to a spectral do-
main (SD) ophthalmic OCT image. The SD-OCT system
(Vivolight LTD, China) uses a superluminescent diode
of 840 nm and allows the capture of 30,000 A-scans/s,
with an axial and lateral resolution of 8 and 15 pm, re-
spectively. The sensitivity is 102 dB with 800 pW light in-
cident on the sample. Figure 1(a) shows the original
noisy image (512 x 256), which was centered on the fo-
vea in order to image the macular region of human retina.

Here, we used three—scale decompositions of contour-
let transform, where the image was decomposed into a
low passband and 8, 16, and 16 directional bands, respec-
tively. It should be noted that the number of directions
doubles every other scale [14]. To remove Gibbs artifacts
in the contourlet coefficients, cycle spinning [18] was
also applied. A universal threshold is used for all scales
and directions and the value of K is 0.6.

The unprocessed OCT image, shown in Fig. 1(a), has a
grainy appearance because of the presence of speckle
noise. As shown in Fig. 1(c), much of the speckle noise

1Jxy

August 1, 2013 / Vol. 38, No. 15 / OPTICS LETTERS

2901

Fig. 1. Cross-sectional images of the central fovea region of
the human retina. (a) Original noisy image, (b) image after
wavelet-based speckle reduction, and (c) image after contour-
let-based speckle reduction. For direct comparison, images are
shown on the same color scale. ILM/NFL, inner limiting mem-
brane/nerve fiber layer; IPL, inner plexiform layer; INL, inner
nuclear layer; OPL, outer plexiform layer; ELM, external limit-
ing membrane; IS/OS, junction between the inner and outer seg-
ment of the photoreceptors; RPE, retinal pigment epithelium;
CH/SC junction between the choroid and sclera. The scale
bar represents 200 pm.

in the original image has been suppressed by using con-
tourlet shrinkage, improving the visualization of small
morphological features. The reduction of the surround-
ing noise allows the features in the image to be more
clearly delineated, such as the inner limiting mem-
brane/nerve fiber layer and inner plexiform layer. The
outer plexiform layer is also more discernible. For com-
parison, we also performed undecimated wavelet-based
thresholding [12], as shown in Fig. 1(b). The threshold
is chosen to be 3.1 times the noise variance, which is
obtained from the robust median estimator of the highest
subband of the transform [12,17]. The number 3.1 is
chosen so that the edge preservation of the wavelet-
based despeckled image is the same as that of the
contourlet-based despeckled image.

In addition to the noise reduction, the despeckled im-
age appears with enhanced visibility of retinal layers. To
better appreciate how the contourlet shrinkage method
improves the discernibility of the image contours and
edges, Fig. 2 shows a zoom-in view of the pink region
of interest (ROI) in Fig. 1(a). As indicated in Fig. 2(a),
The inner and outer segment of the photoreceptors
(IS/OS) and retinal pigment epithelium (RPE) did not
show nicely continuous layers, and RPE1 and RPE2 can-
not be easily resolved from each other owing to the pres-
ence of speckle noise. After contourlet shrinkage speckle
reduction, the layered structure in the image can be
more clearly delineated. The IS/OS contours are nicely
depicted and the RPE1 and RPE2 can be easily
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Fig. 2. (a) Enlarged view of the pink ROI in the original noisy
image, (b) enlarged view of the pink ROI processed by wavelet
shrinkage, and (c) enlarged view of the pink ROI processed by
contourlet shrinkage.

discerned. For the wavelet shrinkage method, as shown
in Fig. 2(b), the IS/OS edges are distorted and the RPE1-
RPE2 cannot be resolved easily. Moreover, the external
limiting membrane (ELM), where the white arrow re-
sides, is too weak and can hardly be observed in the origi-
nal noisy image, whereas it, though not distinct, becomes
observable after despeckling using contourlet shrinkage.
For the despeckled image by wavelet shrinkage, on the
contrary, the weak ELM signals are attenuated. The rea-
son for this performance difference is that wavelet trans-
form is only optimal in representing 1D singularities, but
not optimal for 2D image contours or layers as it lacks
directionality and anisotropy. On the other hand, con-
tourlet transform is optimal in representing 2D image
contours or layers. As a result, the contourlet transform
would generate relatively larger transformed coefficients
for such continuous features as ELM, while the wavelet
coefficients for the weak ELM signals are small and are
easily attenuated along with speckle noise. Retinal layers
and edges play an important role in accurately measuring
cellular disruption for retinal pathology. The proposed
contourlet shrinkage method, therefore, is a highly prom-
ising preprocessing approach which yields enhanced
retinal OCT image quality for further quantitative analy-
sis, such as retina layer segmentation. Less ambiguity of
the retinal layer structures after despeckling will enable
more accurate segmentation results.

Image quality metrics were used to assess the quanti-
tative performance of the despeckling technique by
measuring the SNR, contrast-to-noise ratio (CNR), the
equivalent number of looks (ENL), and edge preservation
over ROIs. These metrics have been described in detail
elsewhere [7,8]. Briefly, CNR measures the contrast be-
tween image features and noise. ENL measures the
smoothness of areas that should have a homogeneous
appearance but are corrupted by speckle noise. Edge
preservation parameter f measures how much the
edge sharpness has degraded as a result of the denoising
process. The larger the parameter f, the more edges are
preserved.

Seven ROIs were manually selected and overlaid in the
original image, as shown in Fig. 1(a). The ROIs, which
include three homogeneous ones (three red boxes la-
beled 2, 3, and 4), three inhomogeneous ones (three
white boxes labeled 5, 6, and 7), and a background region
(one yellow box labeled 1, for the retinal image it is the
vitreous-humor area), were chosen to cover different
retinal layers and edges, and were used for different mea-
surements. The metrics were calculated as the average
over the ROIs. The CNR values were averaged over

Table 1. Image Quality Metrics
SNR (dB) CNR (dB) ENL Beta
Original 29.39 1.30 25.05 N/A
Contourlet, K = 0.4 43.50 2.43 58.95 0.959
Contourlet, K = 0.6 45.92 2.82 108.67 0.932
Contourlet, K = 1 50.68 3.27 129.55 0.895
Wavelet 44.39 2.60 45.39  0.932

six ROIs (2-7). The ENL values were averaged over
the three homogeneous ROIs (2-4). The first ROI was
used to calculate the background noise level. Table 1 lists
the respective results of the quality metrics when
K =04, 0.6, and 1. As expected, in all cases, the SNR,
CNR, and ENL all show improvement compared with
the original image. The application of the contourlet
shrinkage (K = 0.6) results in an improvement of ENL
by a factor of 4 times. CNR and SNR improvement are
also observed. The CNR improves by 1.52 dB and the
SNR improves by 16.53 dB. Most importantly, all of these
are achieved with a degradation of edge preservation
parameter f by only 6.8% (0.932). The results demon-
strate the effectiveness of the proposed approach for
speckle noise reduction with signals well preserved
simultaneously. Comparing contourlet-based and wave-
let-based methods, for a similar edge preservation value
(K = 0.6), our contourlet-based method further im-
proves the SNR, CNR, and ENL by 1.53 dB, 0.22 dB,
and 2.39 times, respectively.

To further illustrate how the parameter K controls the
degree of speckle reduction, Fig. 3 shows the CNR and
edge preservation parameter g for various choices of K,
illustrating the trade-off between edge sharpness preser-
vation and speckle reduction, by simply tuning the
parameter K.

The rationale for the superior performance of contour-
let shrinkage in speckle reduction over wavelet shrink-
age lies in the directionality and anisotropy property
of the contourlet transform, which allows for different
and flexible number of directions at each scale. There-
fore, one can take advantage of the direction selectivity
of the contourlets and adjust the threshold in any direc-
tion to optimize the image quality between speckle reduc-
tion and edge preservation. For example, when signals
are mainly concentrated along certain directions, one
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Fig. 3. CNR and edge preservation parameter § as a function
of different threshold K.



can choose to set a small threshold for those directions to
preserve more signals while a large threshold can be
used for other directions to suppress more noise. Fur-
thermore, the algorithm was computationally efficient.
The total time for the despeckling process was 11.4 s
by implementing on an Intel Core i5 computer using
MATLAB. Further acceleration may require implementa-
tion in C + + and/or GPU parallel processing.

In conclusion, we presented, to our knowledge, for the
first time how speckle reduction based on contourlet
shrinkage can potentially benefit retinal OCT image
quality by enhancing visibility of retinal morphological
structures. It is demonstrated that by tuning a single
parameter, trade-off between speckle reduction and edge
preservation can be achieved. Furthermore, the pro-
posed contourlet shrinkage method shows optimal pres-
ervation of image edges and contours, which is useful for
quantitative image analysis, such as image layer segmen-
tation for clinical ocular diseases diagnosis. Hence, it is
expected to be utilized in a wide range of biomedical
imaging applications.
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