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Abstract

Synthetic ion channels may have potential therapeutic applications, provided they possess appropriate biological activities.
The present study was designed to examine the ability of small molecule-based synthetic Cl– channels to modulate airway
smooth muscle responsiveness. Changes in isometric tension were measured in rat tracheal rings. Relaxations to the
synthetic chloride channel SCC-1 were obtained during sustained contractions to KCl. The anion dependency of the effect of
SCC-1 was evaluated by ion substitution experiments. The sensitivity to conventional Cl– transport inhibitors was also
tested. SCC-1 caused concentration-dependent relaxations during sustained contractions to potassium chloride. This
relaxing effect was dependent on the presence of extracellular Cl– and HCO3

2. It was insensitive to conventional Cl–

channels/transport inhibitors that blocked the cystic fibrosis transmembrane conductance regulator and calcium-activated
Cl– channels. SCC-1 did not inhibit contractions induced by carbachol, endothelin-1, 5-hydroxytryptamine or the calcium
ionophore A23187. SCC-1 relaxes airway smooth muscle during contractions evoked by depolarizing solutions. The Cl–

conductance conferred by this synthetic compound is distinct from the endogenous transport systems for chloride anions.
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Introduction

Synthetic ion channels are of interest because of their potential

therapeutic and research applications. Although several synthetic

ion channels have been synthesized and characterized [1–4], little

information is available concerning their biological effects. Indeed,

most of the characterization were carried out on abiotic systems.

Typically, ion transport activities were studied using liposome-

based fluorescence assays and channel activities were documented

in planar lipid bilayer experiments [2]. Whether ion transport

activity observed in these systems can be extrapolated to biological

systems is, however, uncertain. A few studies have demonstrated

the abilities of synthetic ion channels to kill bacteria [5–8] and to

induce epithelial chloride (Cl–) secretion [9–12]. The action of

synthetic ion channels on other biological systems, however,

remains elusive. Previous studies have demonstrated the abilities of

a small molecule-based synthetic Cl– channel assemblage [13] to

alter membrane potential, the intracellular calcium concentration

([Ca2+]i) and the contraction level in cultured vascular smooth

muscle cells [14].

Ligand-gated Cl– channels, c-aminobutyric acid type A

(GABAA) receptor, have been detected in both human and guinea

pig airway smooth muscles [15]. In both guinea pig and human

trachea, selective activation of these receptors in vitro reduces

agonist-induced contractions [15,16] and potentiates isoprotere-

nol-mediated relaxation [16]. In vivo, selective GABAA agonists

attenuate agonist-induced airway constriction when central para-

sympathetic, postganglionic sympathetic, and inhibitory nonadre-

nergic, noncholinergic (NANC) neural contributions to airway

tone are eliminated, suggesting a direct effect on the airway

smooth muscle GABAA receptor [17]. In addition, glycine-

activated Cl– channel (GlyR) are expressed in guinea pig and

human airway smooth muscle [18]. Like that of GABAA receptors,

activation of GlyR relaxes agonist-contracted isolated airway

smooth muscle and potentiates isoproterenol-mediated relaxation

[18]. These observations prompted the investigation of biological

activity of synthetic Cl– channels in airway smooth muscle. Thus,

the present study was designed to examine the effect of SCC-1 [a

synthetic molecule-derived ion channel, designed in the laboratory

[13], Fig. 1] on the responsiveness of the isolated trachea of the rat.

Results

SCC-1 Relaxed High-K+-induced Airway Smooth Muscles
Contraction
Addition of SCC-1 relaxed tracheal rings contracted with

60 mM KCl (Fig. 2A). This relaxation was concentration-

dependent and when the SCC-1 concentration in the bath

reached 361025 M, the tension returned to the baseline level.

Treating the tissues with muscarinic receptor antagonist atropine

(1026 M) did not affect the relaxing effects of SCC-1 (Fig. 2A).
The KCl-induced contraction was attenuated significantly by

atropine (see Fig. S1).

Since the addition of KCl raised the osmolarity of the bath

solution, whether this hyperosmolarity influenced the activity of
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SCC-1 was in question. The problem was addressed by

monitoring the effect of SCC-1 on preparations contracted with

iso-osmotic high-K+ solution and compared it to the hyperosmotic

situation. The relaxing effects of SCC-1 were not significantly

different in both cases (Fig. 2B). To investigate the Cl– dependence

of the action of SCC-1, high-K+-Cl–-free solution was used to

obtain the background contraction. In the absence of extracellular

Cl–, the effect of SCC-1 was attenuated significantly (Fig. 2B). In

addition, the relaxing effect of SCC-1 on tracheae contracted by

high-K+-Cl2/HCO3
2-free solution was abolished (Fig. 2B). How-

ever, without washing out SCC-1, the addition of 60 mM KCl to

the organ chamber in the presence of high-K+-Cl2/HCO3
2-free

solution caused relaxation (Fig. 2C).

Alternatively, the effect of SCC-1 was assessed by treating the

tissues prior to the cumulative addition of KCl. At 1026 M, SCC-1

did not significantly affect the EC50 (Fig. 3A; vehicle control:

32.5960.92 mM versus SCC-1:29.5461.415 mM; p=0.12) but

reduced the maximal contractile effect of KCl (vehicle control:

125.762.54% versus SCC-1:112.962.28%; p,0.01). In the

presence of SCC-1 (561026 M), the maximal contraction evoked

by KCl was reduced significantly (Fig. 3B; vehicle control:

11862.77% versus SCC-1:69.6363.04%; p,0.0001) whereas

the EC50 values were not altered significantly (vehicle control:

37.6862.05 mM versus SCC-1:36.1861.33 mM; p=0.55). The

inhibitory effects on KCl-evoked contraction were more pro-

nounced at 561026 M than at 1026 M.

Cl– Transport Inhibitors
The effects of three conventional Cl– transport inhibitors,

NPPB, DIDS and CFTRinh-172, on KCl-induced contraction were

tested. NPPB (561025 and 1024 M) abolished KCl-induced

contractions (see Fig. S2), preventing the use of that drug for

further experiments. CFTRinh-172 at 10
25 M caused a modest but

significant inhibition of the KCl-induced contraction, while DIDS

at 1024 M did not affect the response (see Fig. S2). At 1025 M,

CFTRinh-172 did not affect the relaxations to SCC-1, whereas

Figure 1. Chemical structure of SCC-1.
doi:10.1371/journal.pone.0045340.g001

Figure 2. Effect of SCC-1 on high-K+-induced airway smooth muscle contraction. A) Concentration-response curves for the relaxant effect
of SCC-1 on the rat tracheal rings contracted by 60 mM KCl in the absence (&) or presence (%) of atropine (1026 M). B) Concentration-response
curves for the relaxing effect of SCC-1 in the rat tracheal rings contracted by 60 mM KCl (&), high-K+ solution (N) and high-K+-Cl–-free solution (h),
high-K+-Cl2/HCO3

2-free solution (g). */#p,0.05, **/##p,0.01, ***/###/+++p,0.0001, two-way ANOVA followed by Bonferroni post hoc test. *, high-
K+ versus high-K+-Cl–-free solution. #, 60 mM KCl versus high-K+-Cl–-free solution, +, high-K+-Cl2/HCO3

2-free solution versus all groups. C) In the
presence of 361025 M of SCC-1 addition of 60 mM KCl to the organ chamber containing high-K+-Cl2/HCO3

2-free solution caused relaxation of
airway smooth muscles. ***p,0.0001, one-way ANOVA followed by Dunnett’s post hoc test. Data are presented as mean 6 SEM, n= 4.
doi:10.1371/journal.pone.0045340.g002
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DIDS (1024 M) slightly but significantly reduced its effect at

361025 M (Fig. 4A and 4B).

Carbachol-, Endothelin-1-, 5-hydroxytryptamine- and
A23187
Contractions to either carbachol (1026 M) or endothelin-1

(1027 M) were not significantly influenced by the cumulative

addition of SCC-1 (10262361025 M) to the bath solution (Fig. 5A

and 5B). Treating the tracheal rings with SCC-1 at 1025 M had

no effect on subsequent contractions evoked by 5-hydroxytrypta-

mine or A23187 (both at 1026 M) (Fig. 5C and 5D). The

preparations did not contract in response to bradykinin,

tachykinins or histamine (see Fig. S3) and therefore the effect of

SCC-1 on the response to these agonists could not be evaluated.

Discussion

The present study demonstrates that SCC-1 relaxes contrac-

tions of airway smooth muscle to high potassium in a Cl–-

dependent manner. By contrast, contractions elicited by carba-

chol, endothelin-1, 5-hydroxytryptamine and A23187 are not

affected by the synthetic Cl– channel.

The effects of SCC-1 on the contraction of the trachea to high

potassium are reminiscent of the observations in vascular smooth

muscle [14]. Presumably, the relaxant effects of SCC-1 are related

to their ability to form artificial Cl– channels in cell membranes,

which provide routes for transmembrane Cl– movement [13]. The

direction of Cl– movement is dictated by the relative magnitude of

membrane potential and the reversal potential for Cl–. Under the

depolarizing conditions conferred by high-K+ -solution, the

membrane potential is more positive than the reversal potential

for Cl– [19], and Cl– channel formation would lead to Cl– influx

and hence membrane hyperpolarization. This clamps the mem-

brane potential at a value more negative than the activation

threshold for L-type Ca2+ channels [20], thereby limiting voltage-

dependent Ca2+ influx and hence inhibition of KCl-induced

contraction. Consistent with this interpretation, SCC-1 failed to

relax contractions induced by the calcium ionophore A23187,

suggesting that increases in [Ca2+]i that is independent of

activation of L-type Ca2+ channels were not affected. This latter

finding also indicates that SCC-1 does not affect intracellular

signaling downstream of the increased [Ca2+]i leading to activation

of the contractile proteins. As such, it is likely that SCC-1 relaxed

the KCl-contracted airway smooth muscles by causing membrane

hyperpolarization and deactivating L-type Ca2+ channels.

The present study demonstrated that KCl-induced contractions

consisted in part of an atropine-sensitive cholinergic component

and an atropine-resistant component attributed to direct Ca2+

influx via L-type Ca2+ channels. The full relaxation caused by

SCC-1 implies that the synthetic compound may also antagonize

the cholinergic component, which involves the release of

acetylcholine by the presynaptic terminals, a process depending

on Ca2+ influx via voltage-gated Ca2+ channels [21], followed by

activation of postjunctional muscarinic M3 receptor [22]. As

Figure 3. Contractile responses of isolated rat trachea rings to 60 mM KCl in the absence (&) or presence (%) of SCC-1 (A an B, 1
and 561026 M respectively). Contractions are expressed as a percentage of the response to 60 mM KCl. Data are presented as mean6 SEM, n= 4.
*p,0.05, **p,0.01, Student’s t-test.
doi:10.1371/journal.pone.0045340.g003

Figure 4. Concentration-response curves for the relaxing effect of SCC-1 (A and B) on the rat tracheal rings contracted by 60 mM
KCl in the absence (&) or presence (%) of Cl–-transport inhibitors. Data are presented as mean 6 SEM, n= 4. **p,0.01, Student’s t-test.
doi:10.1371/journal.pone.0045340.g004
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acetylcholine-induced contractions of airway smooth muscle are

not blocked by L-type Ca2+ channels blocker [23], SCC-1 may

affect the cholinergic component by inhibiting acetylcholine

release from nerve terminals rather than by inhibiting the signaling

pathway downstream of acetylcholine release. This interpretation

was supported by the observation that SCC-1 did not affect

carbachol-induced M3 receptor-mediated contraction.

The present study demonstrated that the effects of SCC-1 were

independent of hyperosmolarity and the ‘‘high-Cl–-’’ condition

caused by the addition of KCl to the bath. The presence of

extracellular Cl– was important for the activities of SCC-1 as

indicated by the findings that: 1) eliminating Cl– in the bath

solution significantly attenuated the relaxing effects of SCC-1 and

2) while the latter failed to relax preparations contracted by high-

K+-Cl2/HCO3
2-free solution, the relaxing effect was restored

after addition of 60 mM KCl. Moreover, the residual relaxing

effects of SCC-1 during contractions to high-K+-Cl–-free solution

were eliminated when HCO3
2 was removed, suggesting that

HCO3
2 transport may also be involved in the actions of SCC-1.

Likewise, CFTR, a natural Cl– channel, has been suggested to

increase HCO3
2 permeability at low extracellular Cl– levels [24]

and to serve as HCO3
2 channel [25].

The Cl– conductance conferred by SCC-1 may be novel as its

effects were insensitive to both CFTRinh-172 and DIDS, the

conventional inhibitors of CFTR [26] and most non-CFTR Cl–

channels [27], respectively. In an earlier study, CFTRinh-172 and

another Cl– transport inhibitor DPC also did not affect the ability

of SCC-1 to alter the membrane potential in Madin-Darby canine

kidney (MDCK) cells [14]. Taken in conjunction, these findings

suggest that SCC-1 forms synthetic Cl– channels in the cell

membranes of airway smooth muscle.

SCC-1 also failed to inhibit contractions elicited by carbachol,

endothelin-1 and 5-hydroxytryptamine. These contractile agonists

activate Gq-coupled receptors, leading to the generation of

multiple secondary messengers, including IP3 (which releases

Ca2+ from intracellular stores), diacylglycerol, and activation of

multiple Ca2+ channel types [28]. Bronchoconstrictors depolarize

airway smooth muscle membrane [29–31], primarily by activation

of Cl– and non-selective cation currents as well as suppression of

K+ currents [30,31]. However, whether or not agonist-evoked

contraction depends on Ca2+ influx via L-type Ca2+ channels

remains controversial [32]. Indeed, some studies show that

agonist-induced contraction of airway smooth muscles are not

affected by L-type Ca2+ channels blockers [29,33]. When the

membrane potential was clamped at negative values below the

activation threshold (–40 to –30 mV) for L-type Ca2+ channels,

agonist-induced contractions are still observed [34]. Moreover, the

normal range of membrane potentials (–70 to –30 mV) observed

Figure 5. Effects of SCC-1 on contractions to carbachol (A), endothelin-1 (B), 5-HT (C) and A23187 (D). As both carbachol and
endothelin-1 produced sustained contraction, SCC-1 was added to the bath in cumulative fashion when the plateau was reached. On the other hand,
5-hydroxytryptamine and A23187 induced transient contraction. The effect of the compounds were studied by incubating the tissues with SCC-1
(1025 M) and the contraction evoked by 5- hydroxytryptamine and A23187 (both at 1026 M) was subsequently monitored. Contractions are
expressed as percentage of the response to 60 mM KCl. Data are presented as mean 6 SEM, n=4.
doi:10.1371/journal.pone.0045340.g005
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in airway smooth muscles [32,35–40] is presumably too negative

to activate L-type Ca2+ channels (220 to +30 mV) [32,41–44] and

even at agonist concentrations reaching maximal contractile

effects, the membrane potential is at a level that can only

marginally activate L-type Ca2+ channels [32]. These studies

prompt the suggestion that agonist stimulation is incapable of

depolarizing the membrane to an extent that is sufficient to trigger

significant voltage-dependent Ca2+ influx in airway smooth

muscles. This conclusion is supported by the clinical findings that

L-type Ca2+ channel blockers are relatively ineffective against

asthma [45,46]. If agonist-induced contractions of airway smooth

muscle do not rely on voltage-dependent Ca2+ influx, modulation

of voltage-dependent Ca2+ influx by synthetic Cl– channels should

not inhibit them.

In conclusion, the present study demonstrates the ability of

SCC-1 to relax contracted airway smooth muscle. This relaxing

effect partially depends on extracellular Cl–, consistent with the

postulated Cl– channel function conferred by SCC-1. The

synthetic molecule-derived Cl– conductance is novel because it is

not inhibited by conventional Cl– transport inhibitors. On the

other hand, SCC-1 does not prevent agonist-induced contractions,

which is explained by the voltage-independent nature of these

responses.

Materials and Methods

Ethics Statement, Tissue Preparation and Isometric
Tension Measurement
This investigation was approved by the Committee on the Use

of Laboratory Animals for Teaching and Research of the

University of Hong Kong. Adult male 12-weeks-old Sprague-

Dawley rats (300–400 g) were maintained under a 12-h light/dark

cycle at 2161uC and were fed with standard laboratory chow

(LabDiet 5053, USA) and tap water ad libitum. After being

euthanized with pentobarbital sodium (70 mg/ml/kg, i.p.), their

chest cavity was opened, and the lungs were removed en bloc and

placed immediately into cold oxygenated Krebs-Henseleit solution

of the following composition: 120 mM NaCl, 25 mM NaHCO3,

5.5 mM glucose, 4.76 mM KCl, 1.18 mM MgSO4?7H2O,

1.18 mM NaH2PO4?2H2O and 1.25 mM CaCl2?2H2O (control

solution). The trachea was dissected free of connective tissues and

fat and cut into rings (2–3 mm width). The rings were suspended

between two stainless steel hooks in organ chambers filled with

5 mL of control solution. One of the hooks was attached to the

organ chamber and the other was connected to a force transducer

(AD Instruments, model MLT0201/D, Bella Vista, Australia) for

isometric force recording. The bathing solution was maintained at

37uC and continuously aerated with a mixture of 95% O2 and 5%

CO2. The rings were allowed to equilibrate under 1 g of tension

for 60 min with bathing solution changes every 15 min. During

the equilibration, the tension was adjusted to 1 g, except for the

last 30 min.

High-K+ (64.76 mM K+) solution was prepared by iso-osmotic

replacement of NaCl with equimolar amounts of KCl. For the

high-K+-Cl–free solution, equimolar Na-gluconate replaced NaCl,

K-gluconate replaced KCl and 5 mM Ca-gluconate replaced

CaCl2. Calcium was increased to 5 mM to compensate for the

Ca2+- buffering capacity of gluconate. The high-K+-Cl2/HCO3
2-

free solution has the following composition: 60 mM Na-gluconate,

64.76 mM K-gluconate, 20 mM Ca-gluconate, 19.5 mM D-

mannitol, 5.5 mM glucose, 1.18 mM MgSO4?7H2O,

1.18 mM NaH2PO4?2H2O, 5.6 mM tris and 10 mM HEPES.

The solution was gassed with 100% O2.

Effect of SCC-1 on Contractions
Each tracheal ring was contracted with the agonist at the

indicated concentration and was allowed to achieve a steady-state

plateau. SCC-1 was then added to the bath in a cumulative

fashion (1026–361025 M). This protocol was used for contractile

agents that induced sustained contraction, namely, KCl, high-K+

solution, high-K+-Cl–-free solution, high-K+-Cl2/HCO3
2-free

solution, carbachol and endothelin-1. For the contraction induced

by high-K+-Cl2/HCO3
2-free solution, when the SCC-1 concen-

tration in the bath reached 361025 M and a steady-state response

was obtained, 60 mM KCl was added to the baths to test the Cl–-

dependency of the effects of SCC-1.

Alternatively, the effect of the synthetic ion channels was

determined by adding a single concentration of the compound to

the organ chamber 30 min before the addition of contractile

agonists and observing how the airway smooth muscle contractility

was altered. In this case, the concentration of the tested compound

was maintained throughout the experiment. This protocol was

primarily used for agonists that induced transient contraction,

namely 5-hydroxytryptamine and A23187.

Cl– Transport Inhibitors
The effect of Cl– transport inhibitors (1025 M CFTRinh-172,

1024 M DIDS, 561025 and 1024 M NPPB) on KCl-evoked

contraction was evaluated by adding the inhibitors at the indicated

concentrations to the bath 30 min before the addition of 60 mM

KCl and observing how the responsiveness of the airway smooth

muscle was altered. The inhibitor concentration was maintained

throughout the experiment. When steady-state contraction was

achieved, SCC-1 was added to the organ chamber in a cumulative

fashion (1026–361025 M).

Chemicals and Drugs
4,49-Diisothiocyanato-stilbene-2,29-disulphonic acid (DIDS), 5-

hydroxytryptamine (5-HT), the calcium ionophore A23187,

carbachol and endothelin-1 were purchased from Sigma Chemi-

cals Co. (St. Louis, MO, USA); CFTRinh-172 from Calbiochem

(San Diego, CA, USA) and atropine sulfate from Merck

(Darmstadt, Germany). Stock solutions of N1,N3-bis((R)-1-(iso-

butylamino)-4-methyl-1-oxopentan-2-yloxy)isophthalamide, or

SSC-1 (synthesized in the laboratory, Fig. 1), A23187, CFTRinh-

172 and DIDS stock were prepared in dimethylsulfoxide (DMSO)

while all stock solutions of the remaining drugs were dissolved in

de-ionized water.

Data and Statistical Analysis
Data are presented as means 6 standard error of the means

(SEM), and n indicates the number of rats used in the experiments.

Changes in tension were expressed as a percentage of the reference

contraction in response to the addition of KCl (60 mM).

Relaxation to SCC-1 was expressed as percent reduction of active

force (the difference between baseline tension and peak tension

generated by contractile agonists). For concentration-response

studies, the data were fit by non-linear regression analysis where

appropriate. Maximal contractions and EC50 (the concentration of

agonist required to produce 50% of the maximal response) were

determined. Statistical analysis was performed using two-tailed

unpaired Student’s t-tests or ANOVA followed by Bonferroni’s or

Dunnett’s post hoc comparison as appropriate. All statistical

procedures were computed using Prism version 5.01 (GraphPad

Software, San Diego, CA, USA). P-values less than 0.05 were

considered to indicate statistically significant differences.
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Supporting Information

Figure S1 Contractile responses of isolated rat trachea
rings to KCl (A) in the absence (&) or presence (%) of
atropine (1026 M). Incubating the tissues with atropine
(1026 M) attenuated the contractile effect of KCl (A, open
squares). Contractions are expressed as a percentage of the

response to 60 mM KCl. Data are presented as mean 6 SE, n=6.

*p,0.05, **p,0.01, ***p,0.0001, Student’s t-test.

(TIF)

Figure S2 The effects of conventional Cl–-transport
inhibitors on airway smooth muscles contraction evoked
by 60 mM KCl. Contractions are expressed as a percentage of

the response to 60 mM KCl. Data are presented as mean 6 SE,

n=4. *p,0.05, ***p,0.0001, Student’s t-test.

(TIF)

Figure S3 Contractile responses of isolated rat trachea
rings to bradykinin (A), endothelin-1 (B) and histamine
(C). Contractions are expressed as a percentage of the response to

60 mM KCl. Data are presented as mean 6 SE, n= 4.

(TIF)
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