
International Journal of Smart Grid and Clean Energy

A GPU-Based Transient Stability Simulation Using
Runge-Kutta Integration Algorithm

Zhijun Qin* and Yunhe Hou ∗
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China

Abstract

Graphics processing units (GPU) have been investigated to release the computational capability in various scientific
applications. Recent research shows that prudential consideration needs to be given to take the advantages of GPUs
while avoiding the deficiency. In this paper, the impact of GPU acceleration to implicit integrators and explicit
integrators in transient stability is investigated. It is illustrated that implicit integrators, although more numerical
stable than explicit ones, are not suitable for GPU acceleration. As a tradeoff between numerical stability and
efficiency, an explicit 4th order Runge-Kutta integration algorithm is implemented for transient stability simulation
based on hybrid CPU-GPU architecture. The differential equations of dynamic components are evaluated in GPU,
while the linear network equations are solved in CPU using sparse direct solver. Simulation on IEEE 22-bus power
system with 6 generators is reported to validate the feasibility of the proposed method.

Keywords: Transient stability simulation, Runge-Kutta algorithm, graphics processing units (GPU), parallel computing

1. Introduction

The transient stability simulation is a basic tool for security assessment for power grids. It involves the
solution of a large number of differential and algebra equations (DAEs), which is one of the most
computation-intensive tasks in power system analysis. Much research has been conducted to improve the
efficiency of simulation to meet with the requirement of on-line security analysis. The integrated design
of algorithms with specific hardware infrastructure is one of the important considerations in this area. The
latest accomplishment in hardware accelerators provides new options to the implementation issue of
transient stability simulation.

Programmable graphics processing units (GPUs) have evolved into a highly parallel, multithreaded
and many-core processor to meet with the huge market demand for real-time, high-definition 3D graphics
processing. As the programmability and performance of modern GPU increase, many application
developers are looking to GPU to solve computationally intensive problems previously performed on
general-purpose CPU.

The GPU-based framework for scientific computation consists of 3 levels: the basic linear algebra
level, the basic algorithm framework level, and the application level.

For the basic linear algebra level, many high-efficient implemented libraries in CPU architecture as
available, such as LAPACK [1], ATLAS [2], gotoBLAS [3], etc. Since solving dense linear systems of
equations is a fundamental problem in scientific computing, it is critical to accelerate the solution of
large-scale linear equations as fast as possible. The current efforts in GPU acceleration for dense linear
algebra (DLA) is proposed in [4]. The method is based on hybridization techniques in the context of
Cholesky, LU, and QR factorizations. In [5], an improved implementation of a triangular matrix inversion
algorithm in multi-core CPU / dual-GPU systems is proposed.

∗ Manuscript received June 14, 2012; revised August 10, 2012.
Corresponding author. Tel.: +852-28578422; E-mail address: zjqin@eee.hku.hk.

 Zhijun Qin et al.: A GPU-Based Transient Stability Simulation Using Runge-Kutta Integration Algorithm 33

As for the basic algorithm framework level, GPU is employed to accelerate the solution of linear
optimization [6], nonlinear optimization [7], numerical integration [8], Monte Carlo simulation [9], etc. In
[7], a parallelized implementation of generic algorithm to solve complex mix-integer nonlinear
programming problems (MINLP) is proposed. It is shown that an acceleration of up to 20 times with
double precision is achieved by GPU over CPU implementation.

In application level, applications of GPU in power system analysis and control are quite rare. It is
natural to employ GPU in the visualization of power system data. A GPU-based contouring algorithm is
proposed in [10] to implement efficient display of power system voltage levels. For GPU-based high
performance computing in power system analysis, the research work has been starting. In [11], the
authors use GPU with an calling interface provided by Microsoft C sharp (C#) to implement Jacobi
algorithm for electromagnetic simulation, which has up to 10 times speedup compared with CPU-base
implementation. In [12], an iterative biconjugate gradient method is employed for the solution of linear
system in GPU, which accelerates the Newton method power flow calculation. Case study on IEEE 118
buses system shows that the proposed method is 2 times faster than CPU-based solution. A hybrid GPU-
CPU simulator is designed in [13] to implement time-domain simulation using implicit trapezoidal rule.
The maximum scale test case with 320 generators and 1248 buses has over 300X speedup over CPU
solution.

However, it is not natural to transport CPU-based computation to GPU-based computation. On one
hand, general-purpose applications, although have little to do with graphics, have to be programmed using
graphics Application Programming Interfaces (APIs). Despite that various programming interfaces are
developed for easy-development of GPU-based scientific applications, the legacy codes have to be
rewritten conforming to GPU APIs. On the other hand, GPU is design for data-parallel computation and
performs poor in dynamic memory allocation, complex flow control, etc. In other words, not all
applications can be transported to GPU with efficiency improvement.

This paper addresses the challenges of transient stability simulation using GPU accelerations. To
utilize the prominent data-parallel computational capability of GPU, explicit 4th order Runge-Kutta
integration is implemented and tested under hybrid CPU-GPU architecture. The proposed method uses
the GPU computational capability in parallel evaluation of differential equations and the state-of-art
sparse direct solvers to solve network equations in CPU architecture.

The remaining parts are organized as follows. Firstly, this paper investigates the impact of GPU in
designing a transient stability simulation algorithm based on a hierarchical decision structure proposed in
[14], which categories various numerical methods for time-domain simulation. The authors illustrate that
GPU is suitable for explicit integration method. Secondly, a hybrid CPU-GPU platform is constructed.
The hardware and software configuration of this platform is introduced. Thirdly, 4th order Runge-Kutta
integration algorithm is implemented and tested.

2. Impact of GPU in Transient Stability Simulation

The transient stability simulation involves solving the differential-algebra equations (DAEs), which
has the general form as:

(,)
(,)

=⎧
⎨ =⎩

x f x y
g x y0

 (1)

where x is the array of all state variables of dynamic components (generators, motors, excitation control,
etc), y is the array of all algebra variables, mainly the buses voltages. The DAEs is converted into algebra
equations by discretizing the differential equations.

The hierarchical decision structure on time-domain simulation algorithm design is proposed in [14],
which consists of four layers as DAE construction strategy, integration method, nonlinear solver, and
linear solver. The DAE construction strategy decides whether the differential equations and algebra

34 International Journal of Smart Grid and Clean Energy, vol. 2, no. 1, January 2013

equations are solved alternately or simultaneously. Integration method determines how to discretize the
differential equations. Nonlinear solver provides a framework to solve the algebra equations and
discretized differential equations. Linear solver is responsible for solving the correction equations when
seeking a solution for nonlinear equations.

In [15], two types of solutions for the overall system equations are summarized. One is partitioned
solution with explicit integration, which converts (1) into the following form as:

()
()

⎧
⎨
⎩

n+1 n n

n+1 n+1

x = F x , y
= g x , y0

 (2)

Where nx is the state variable at the end of time interval n, ny is the algebra variable at the end of time
interval n. The discretized differential equations and algebra equations are solved independently. Since
the solution of differential equations for 1n+x only needs the value (,)n nx y from previous time interval, it
is substantially parallel for efficiency improvement. However, this solution may confront numerical
instability, hence small time step is required.

The other solution is to convert (1) into (3), where the solution of differential equations for 1n+x needs
to solve implicit equations related to 1 1(, , ,)n n n n+ +x y x y .

1 1 1

1 1

(, , ,)
(,)

n n n n n

n n

+ + +

+ +

=⎧
⎨ =⎩

x F x y x y
g x y0

 (3)

The two parts of (3) can be solved simultaneously or alternately, depending on the property of the
problems. The implementation is more complex and time-consuming than explicit solution, since it may
have to solve large-scale nonlinear equations.

When considering acceleration of transient stability simulation based on GPU platform, we may
consider: 1) whether a solution is suitable for GPU implementation; 2) how to implement parts of the
solution with GPU; 3) whether there exists (or may exist in future) related products that could be utilized.

As illustrated by Fig. 1, the micro structure of GPU is design for data-parallel acceleration [16]. GPU
instruction is executed by blocks of threads, each thread doing the same computation independently on
different data elements. As a result, GPU performs poor in such areas as dynamic memory allocation, data
cache, communication and collaboration among threads.

For example, in sparse-sparse matrix multiplication, if the result is also a sparse matrix, the amount of
non-zero in each column of the result needs to be figured out during run-time. If sparse-sparse matrix
multiplication is implemented in GPU, threads have to communicate to decide the sparse pattern of the
result. Even worse, there is potential writing conflict among threads. In other words, the data-parallel
mechanism fails, which deteriorates the efficiency of GPU implementation. Another example is sparse
direct solver, which needs to figure out fill-in elements during factorization, where concurrent threads in
GPU will not gain performance improvement unless the coefficient is a full matrix. Fortunately, sparse
iterative solver, which utilizes the high-efficient implemented sparse matrix-vector multiplication, is
applicable in solving large-scale network equations, as in [12]. In one word, sparse techniques are not
fully compatible for the data-parallel mechanism of GPU, which affects the algorithm design for transient
stability simulation.

Fig. 1. Micro structure of CPU and GPU

 Zhijun Qin et al.: A GPU-Based Transient Stability Simulation Using Runge-Kutta Integration Algorithm 35

The impact of GPU in the algorithm design of transient stability simulation is listed in Table 1. There
exists many excellent sparse direct solvers under CPU architecture, such SuperLU [17], Umfpack [18],
etc, which take the advantages of sparse techniques. As a comparison, iterative solvers, such as in [19], is
implemented in GPU with data-parallel sparse matrix-vector multiplication. As for nonlinear solver,
Newton-Raphson method is suitable for CPU, since it needs to factorize Jacobian matrix, which is highly
sparse in transient stability simulation. When simultaneous implicit solution is implemented under GPU,
the overall efficiency will not be improved due to the inadequate support for sparse techniques.

Table 1. Impact of GPU in algorithm design
 CPU compatible GPU compatible
DAE construction Simultaneous solution Alternating solution
Integration method Implicit integrator Explicit integrator
Nonlinear solver Newton-Raphson Gauss-Seidel
Linear solver LU factorization Iterative solver

3. Transient Stability Simulation under Hybrid CPU-GPU Architecture

As mentioned in section II, the implicit integration solution is more numerical stable and time-
consuming than explicit solution. High order integration algorithm or small integration step can be
adopted to improve the numerical stability of explicit integration method. In this section, 4th order
Runge-Kutta algorithm is adopted in transient stability simulation, which utilizes the parallel property of
explicit integration algorithm and improves the numerical stability. What is more, the evaluation of
differential equations is implemented under GPU, making full use of the intensive computational
capability of GPU. Nevertheless, the algebra equations are solved using Newton-Raphson method with
efficient sparse direct solver.

The general flow of transient stability can be described as follows. First, power flow analysis is
performed to get the initial state of the power gird. Second, an iterative process is executed to determine
all components’ states and network’ state at the end of each time interval of the interested time-horizon.
At the beginning of each time interval, if a fault, or a switch event, or a control action happens, the linear
complex network equation is solved to reflect the jump of bus voltages. During the time interval, the
differential-algebra equations are solved to determine all variables’ value at the end of the time interval,
which are also the initial values of the next time interval. This process is repeated until the end of
interested time-horizon. The flow chart is shown in Fig. 2.

Fig. 2. General flow chart of transient stability simulation

36 International Journal of Smart Grid and Clean Energy, vol. 2, no. 1, January 2013

To solve differential-algebra equations, 4th order Runge-Kutta algorithm is adopted using (4)~(12),
where () t⋅ Δf is the discretized form of (,)=x f x y , and ()⋅g represents the network equations,

1 2 3 4, , ,K K K K are the estimated change of state variable, 1 1,n n+ +x y are the state variable and algebra
variable at the end of time interval n+1, respectively. When all loads are modeled as constant impedance
branches, ()⋅g becomes a linear complex equation with a sparse coefficient nY , where nY is the
admittance matrix during time interval n.

1 (,)n n t= ΔK f x y (4)

1
1(,)

2n k= +
K

g x y0 (5)

1
2 1(,)

2n k t= + Δ
K

K f x y (6)

2
2(,)

2n k= +
K

g x y0 (7)

2
3 2(,)

2n k t= + Δ
K

K f x y (8)

3 3(,)n k= +g x K y0 (9)

4 3 3(,)n k t= + ΔK f x K y (10)

31 2 4
1 ()

6 3 3 6n n+ = + + + +
KK K K

x x (11)

1 1(,)n n+ += g x y0 (12)

Under a hybrid CPU-GPU architecture, (4), (6), (8), (10), and (11) are evaluated in GPU, while (5), (7),
(9), and (12) are solved in CPU with sparse direct solver, as shown in Fig. 3.

Fig. 3.Hybrid CPU-GPU architecture for transient stability simulation

We assume that all generators share the same dynamic model, and all controllers share the same model.
In the implementation of GPU, thread blocks are issued to evaluate the differential equation, each thread
evaluating one component of the same type. For example, one thread block is issued to simulate all
generators, another thread block is issued to simulate all excitation controllers, etc.

When using NVIDIA’s Compute unified device architecture (CUDA) programming model, various
kernel functions are developed to simulate various types of dynamic components. A kernel function in
CUDA is a subroutine executed in GPU by blocks of threads, each thread doing the same work on
different data elements independently. The CUDA model provides simplicity in coding and transparent
runtime scalability.

 Zhijun Qin et al.: A GPU-Based Transient Stability Simulation Using Runge-Kutta Integration Algorithm 37

4. Case study

In this section, IEEE 22-bus system with 6 generators is used to demonstrate the feasibility of the
proposed method. The size of the case is shown in Table 2. 4th order generator model is adopted in the
simulation. The block diagrams of excitation controller and prime mover controller are shown in Fig. 4
and Fig. 5, respectively. All loads are modelled as constant impedance branches. As a result, the network
equation becomes a linear complex one, which can be solved by LU factorization.

Table 2. Model size of case Study

Type Number
Buses 22
Generators 6
Generators’ variables 78
Excitation controllers’ variables 66
Prime mover controllers’ variables 66
Size of network equation 44

∑ ∑
1

ST S
−

−

+
+

0ω

maxσ

minσ

4μ2μ1μ 5μω
Kδ

ε 3μ

∑
+

0μ

+

maxμ

minμ

6μ 7μ
N

B

P
S

μ

iK

1
i

i

K T S
T S

β

+

9μ

8μ

Fig. 4. Block diagram of prime mover controller

∑ ∑ 1
A

A

K
ST+ 1

1
1 AST+

1
F

F

K
ST+

TV −

−

+ +

REFV

qeE
RMAXV

RMINV

1U2E1E 3E

2U

Fig. 5. Block diagram of excitation controller

Table 3. Fault setting and fault clearance setting

Fault/Clearance Time
3-phase short circuit on head of line form bus 11 to bus 12 0.2 s
Trip breaks of line on both ends 0.4 s
3-phase short circuit cleared 0.5 s
Reclose breaks of line on both ends 0.9 s

The program is coded under Matlab v.2011b and Matlab GPU-addon Jacket v.2.0. The program runs

on a personal computer with Intel i7 3.4GHz processor, one MSI N580GTX GPU card and 4 GB RAM.
The fault setting and fault clearance setting is shown in Table 3. The simulation duration is 0~6

seconds, 0.01 second as a step. The swing curves of all generators are shown in Fig. 6.
To test the scalability of the proposed method, the model is scaled by 10~100 times. The execution time
of the program is shown in Fig. 7. It shows the execution time is scaled by 12 times when the system is
scaled by 100 times.

38 International Journal of Smart Grid and Clean Energy, vol. 2, no. 1, January 2013

0 1 2 3 4 5 6
-50

-40

-30

-20

-10

0

10

20

30

40

50

Time (sec)

R
el

at
iv

e
m

ac
hi

ne
 a

ng
le

 (
de

gr
ee

)

Fig. 6. Swing curves of all generators

Fig. 7.Execution time of program

5. Conclusion

This paper reviews the algorithms for transient stability simulation. Although the implicit integration
method for transient stability simulation has better numerical stability, it is more time-consuming than
explicit ones due to the computational burden introduced by large-scale nonlinear equations. Moreover,
implicit integrators depend on the sparse technology for efficiency improvement, which is not fully
supported by GPU architecture.

As a trade-off between efficiency and numerical stability, this paper proposed a 4th order Runge-Kutta
algorithm implemented under CPU-GPU architecture for transient stability simulation. The high order
explicit integration algorithm mitigates the numerical instability problems. Further, the proposed method
utilizes the data-parallel computational capability of GPU and the efficiency of the state-of-art sparse
direct solvers under CPU. IEEE 22-bus system is used to validate the feasibility of the proposed method.
It also shows the method is scalable for real size power grid simulations.

Acknowledgements

This work is partly supported by the Research Funding of EPRI (EP-P35571/C16133 ， EP-
P35424/C16059) , Research Grant Council, Hong Kong SAR（RGC-HKU 7124/10E, RGC-HKU
7124/11E）, National Basic Research Program(2012CB215102).

References

[1] LAPACK-Linear Algebra Package. [Online]. Available: http://www.netlib.org/lapack/.
[2] Demmel J, Dongarra J, Eijkhout V, Fuentes E, Petitet A, Vuduc R, Whaley RC, Yelick K. Self-adapting linear algebra

 Zhijun Qin et al.: A GPU-Based Transient Stability Simulation Using Runge-Kutta Integration Algorithm 39

algorithms and software. Proceedings of the IEEE, 2005; 93(2):293-312.
[3] gotoBLAS, [Online]. Available: http://www.tacc.utexas.edu/tacc-projects/gotoblas2.
[4] Tomov S, Nath R, Ltaief H, Dongarra J. Dense linear algebra solvers for multicore with GPU accelerators. In: Proc. of 2010

IEEE International Symposium on Parallel & Distributed Processing, 2010:1-8.
[5] Ries F, De Marco T, Guerrieri R. Triangular matrix inversion on heterogeneous multicore systems. IEEE Trans. on Parallel

and Distribution Systems, 2012; 23(1):177-184.
[6] Spampinato DG, Elster AC. Linear optimization on modern GPUs. In: Proc. of IEEE International Symposium on Parallel &

Distributed Processing, 2009:1-8.
[7] Munawar A, Wahib M, Munetomo M, Akama K. Advanced generic algorithm to solve MINLP problems over GPU. In:

Proceedings of 2011 IEEE Congress on Evolutionary Computation, 2011:318-325.
[8] Murray L. GPU acceleration of Runge-Kutta integrators. IEEE Trans. on Parallel and Distribution Systems, 2012; 23(1):94-

101.
[9] Weber R, Gothandaraman A, Hinde RJ, Peterson GD. Comparing hardware accelerators in scientific applications: a case study.

IEEE Trans. on Parallel and Distribution Systems, 2011; 22(1):58-68.
[10] Euzebe TJ, Overbye TJ. Contouring for power system using graphical processing units. In: Proc. of the 41st Annual

International Conference on System Science, 2008:168.
[11] Woolsey M., Hutchcraft WE, Gordon RK, High-level programming of graphics hardware to increase performance of

electromagnetic simulation. In: Proc. of 2007 IEEE Antennas and Propagation Society International Symposium, 2007:5925-
5928.

[12] Garcia N. Parallel power flow solutions using a biconjugate gradient algorithm and a Newton method: a GPU-based approach.
In: Proc. of 2010 IEEE Power and Energy Society General Meeting, 2010:1-4.

[13] Jalili-Marandi V, Dinavahi V. SIMD-based large-scale transient stability simulation on the graphics processing unit. IEEE
Trans. on Power Systems, 2010; 25(3):1589-1599.

[14] Fu C, McCalley JD, Tong JZ. A numerical solver design for extended-term time-domain simulation. IEEE Trans. on Power
Systems, 2012

[15] P. Kundur, Power System Stability and Control, New York: McGraw-Hill; 1994.
[16] http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_ Guide.pdf
[17] http://www.cs.berkeley.edu/~demmel/SuperLU.html.
[18] http://www.cise.ufl.edu/research/sparse/umfpack.
[19] Wang M, Klie H, Parashar M, Sudan H. Solving sparse linear systems on NVIDIA Tesla GPUs. In: Proc. of Computational

Science—ICCS 2009, 2009:864–873.

