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Positive Definite Solutions of the Nonlinear Matrix Equation

X + AHX
−1
A = I

Bin Zhou∗† Guang-Bin Cai‡ James Lam§

Abstract

This paper is concerned with the positive definite solutions to the matrix equation X+A
H
X

−1

A = I

where X is the unknown and A is a given complex matrix. By introducing and studying a matrix

operator on complex matrices, it is shown that the existence of positive definite solutions of this class of

nonlinear matrix equations is equivalent to the existence of positive definite solutions of the nonlinear

matrix equation W + B
T
W

−1
B = I which has been extensively studied in the literature, where B is a

real matrix and is uniquely determined by A. It is also shown that if the considered nonlinear matrix

equation has a positive definite solution, then it has the maximal and minimal solutions. Bounds of the

positive definite solutions are also established in terms of matrix A. Finally some sufficient conditions

and necessary conditions for the existence of positive definite solutions of the equations are also proposed.

Keywords: Bound of solutions; Complex matrix; Nonlinear matrix equation; Positive definite solutions.

1 Introduction

Various kinds of matrix equations have received much attention in the literature (see, for example, [4], [7], [8],
[11], [12], [13], [15], [14], [16], [19], [27], [28], [29], [34], [38], [39], [40], and the references therein). Especially,
the problem of finding fixed points of the nonlinear matrix equation X +A∗X−1A = Q where A and Q > 0
are given and X is unknown, has been extensively studied in the last two decades. The interest of studying
such problem mainly relies on its applications in many fields such as the analysis of ladder networks [2],
dynamic programming [33], control theory [22], stochastic filtering [1] and statistics [32] (see [3], [18] and
[19] for detailed introduction). Some generalized forms of the nonlinear matrix equation X +A∗X−1A = Q

have received much attention in recent years (see, for example, [6], [17], [24], and [30]).

Among the existing publications in the literature, two kinds of results can be found. The first kind of
results concentrate on providing analytical conditions on the existence of positive definite solutions and their
corresponding properties. For example, the shorted operator theory was applied in [3] to study the existence
of a positive definite solution; necessary and sufficient conditions in terms of symmetric factorizations of
some rational matrix-valued function were derived in [18] for the existence of positive definite solutions;
and some necessary and sufficient conditions were also derived [35] for the same problem in terms of some
factorizations of the coefficient matrices. The other kind of results are mainly concerned with the numerical
solutions of this class of nonlinear matrix equations. Basically, this can be accomplished via iterations
including inversion-involved iterations [19], [21] and inversion-free iterations [20], [23], [31], [36].

In the present paper, we consider a variation of this well-studied nonlinear equation. We study the nonlinear

matrix equation X + A∗X
−1

A = Q, which, as we will show in this paper, has totally different solutions
from the solutions of X +A∗X−1A = Q. In particular, we are interested in the existence of positive definite
solutions of such kind of nonlinear matrix equations. Via some specific representations of complex matrices,
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we are able to transform the equation X+A∗X
−1

A = Q into the equation W +B∗W−1B = P , where B and
P are determined by A and Q, respectively. This allows us to study the original nonlinear matrix equations
with the help of the existing results on the equation X +A∗X−1A = Q. Other topics of this paper include
the estimate of the bounds on the solutions, sufficient conditions, and necessary conditions on guaranteeing
a positive definite solution.

The rest of this paper is organized as follows. The problem formulation and some preliminary results to be
used are given in Section 2. In Section 3, we present necessary and sufficient conditions for the existence of a
positive definite solution of the considered nonlinear matrix equations. Both upper bounds and lower bounds
of the solutions will be established in Section 4, while the necessary conditions and sufficient conditions
guaranteeing a positive definite solution are given in Section 5. We will draw the conclusions of this paper
in Section 6.

Notation: In this paper, for a matrix A, we use AT, A∗, A, λ (A) , det (A) , ‖A‖ and ρ (A) to denote respec-
tively the transpose, the conjugated transpose, the conjugate, the spectrum, the determinant, the 2-norm,
and the spectral radius of A. Moreover, ω (A) = max {|z| : z = x∗Ax, ‖x‖ = 1} is the numerical radius of A.
Finally, the symbol P > 0 means that P is positive definite, In denotes an n× n identity matrix, 0 denotes
a zero matrix with appropriate dimensions, and j =

√
−1.

2 Problem Formulation and Preliminary Results

We consider the following nonlinear matrix equation

X +A∗X
−1

A = Q (1)

where Q ∈ Cn×n is a given positive definite matrix, A ∈ Cn×n is a given complex matrix, and X ∈ Cn×n is
the unknown. In this paper, we are interested in the existence of positive definite solutions of this class of
nonlinear matrix equations.

Remark 1 Similar to [37], we can also consider positive definite solutions of matrix equation

X +A∗X−TA = Q. (2)

However, the positive definite solutions of (2) coincide with the positive definite solutions of equation (1)

since X−T = X
−∗

= X
−1

.

Via a simple manipulation we can show the following result.

Lemma 1 Let Q be a positive definite matrix. Then X is a solution of (1) if and only if Y = Q− 1

2XQ− 1

2

is a solution of the following nonlinear matrix equation

In = Y +A∗
QY

−1
AQ, AQ = Q

− 1

2AQ− 1

2 .

Therefore, without loss of generality, we assume hereafter that Q = In in (1). We point out that matrix
equation (1) has solutions that are totally different from solutions of the following nonlinear matrix equation

X +A∗X−1A = In. (3)

See the following example for illustration.

Example 1 Consider a nonlinear matrix equation in the form of (1) with Q = I2 and

A =

[

1
4 + 1

4 j
1
4 j

− 1
4 j

1
4 − 1

4 j

]

.
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Then according to the results we will give later, we find the maximal positive definite solution of this equation
as

X+ =

[

1
2 + 1

8

√
6 − 1

8 − 1
8 j

− 1
8 + 1

8 j
1
2 + 1

8

√
6

]

.

However, according to the results in [18], the maximal positive definite solution of equation (3) can be
computed as

X ′
+ =

[

1
8

√
2 + 1

2 − 1
4 − 1

8

√
2j

− 1
4 + 1

8

√
2j 1

8

√
2 + 1

2

]

.

It is clearly that X+ 6= X ′
+.

For a complex matrix A = A1 +A2j ∈ Cn×m where A1, A2 ∈ Rn×m, we denote the operators (·)♥ and (·)♦
as

A♥ =

[

A1 −A2

A2 A1

]

, A♦ =

[

A2 A1

A1 −A2

]

.

It follows that both A♥ and A♦ are real matrices. For further use, we define two unitary matrices En and
Pn as

En =

[

0 In
In 0

]

, Pn =

√
2

2

[

jIn In
In jIn

]

. (4)

Some basic properties of these matrices are collected as the following lemma whose proof is provided in
Appendix B.

Lemma 2 Let A ∈ Cn×m and B ∈ Cm×p be two given complex matrices.

1. The following equalities are true.

(AB)
♥
= A♥B♥,

(

A−1
)♥

=
(

A♥
)−1

,
(

AT
)♥

= Em

(

A♥
)T

En,

(A∗)
♥
=
(

A♥
)T

,
(

A
)♥

= EnA
♥Em, A♦ = EnA

♥.

2. Let Pn be defined in (4). Then

A♥ = Pn

[

A 0

0 A

]

P ∗
m. (5)

Consequently, A ≥ (>) 0 if and only if A♥ ≥ (>) 0.

3. A ∈ Cn×n is a normal (unitary) matrix if and only if A♥ is a real normal (unitary) matrix.

4. For any A ∈ Cn×n, there holds ρ (A) = ρ
(

A♥
)

and ρ
(

A♦
)

= ρ
1

2

(

AA
)

.

5. The real matrix A♦ is normal if and only if A is con-normal, namely, A∗A = AA∗.

6. For any A ∈ Cn×m, there holds
∥

∥A♦
∥

∥ =
∥

∥A♥
∥

∥ = ‖A‖

7. If A ≥ 0, then
(

A♥
)

1

2 =
(

A
1

2

)♥

.

Two matrices A,B ∈ Cn×n are said to be con-similar if there exists a nonsingular matrix S ∈ Cn×n such
that S−1BS = A. The following lemma is borrowed from [4].

Lemma 3 Let Jk (λ) denote a k × k Jordan matrix whose diagonal elements are λ. Then any matrix A ∈
Cn×n is con-similar to a direct sum of blocks of the form Jk (λ) where λ ≥ 0 or

[

0 Ik
Jk (λ) 0

]

where λ < 0 or
mathrmIm (λ) 6= 0.

3



The set of complex numbers λ appearing in the Jk (λ) in the blocks of the the canonical form defined in
Lemma 3 of a matrix A will be called the con-spectrum of A and denoted by coλ (A) [4]. Moreover, the
con-spectrum-radius of A will be denoted by

coρ (A) = max{|λ| : λ ∈ coλ (A)}.

A property of the con-spectrum-radius is given in the following lemma whose proof will be presented in
Appendix C.

Lemma 4 Let A ∈ Cn×n be a given matrix. Then coρ (A) ≤ (≥) 1 ⇔ ρ
(

AA
)

≤ (≥) 1.

At the end of this section, we recall the well-known Schur complement.

Lemma 5 Let matrix Φ be defined as

Φ =

[

Φ11 Φ12

Φ∗
12 Φ22

]

.

Then the following three statements are equivalent:

1. Φ > 0.

2. Φ11 > 0 and Φ22 − Φ∗
12Φ

−1
11 Φ12 > 0.

3. Φ22 > 0 and Φ11 − Φ12Φ
−1
22 Φ∗

12 > 0.

3 Necessary and Sufficient Conditions

In this section, we study necessary and sufficient conditions for the existence of a positive definite solution
of the nonlinear matrix equation (1). Firstly we introduce an useful lemma.

Lemma 6 Assume that A is nonsingular. Then X solves the nonlinear matrix equation (1) if and only if
Y = In −X solves the following nonlinear matrix equation

In = Y +AY
−1

A∗. (6)

Proof. Let X be a solution of equation (1), then A∗X
−1

A = In − X from which we get X
−1

=

A−∗ (In −X)A−1. Taking inverses on both sides gives X = A (In −X)
−1

A∗ which is equivalent to equation
(6) by setting In −X = Y. The converse can be shown similarly.

Our main result regarding the existence of positive definite solution of equation (1) is presented as follows.

Theorem 1 The nonlinear matrix equation in (1) has a solution X > 0 if and only if the following nonlinear
matrix equation

I2n = W +
(

A♦
)T

W−1A♦, (7)

has a solution W > 0. Moreover, the following two statements hold true:

1. If the nonlinear matrix equation in (1) has a solution X > 0, then it must have a maximal positive
definite solution X+. Particularly, if W+ denotes the maximal solution of the nonlinear matrix equation
in (7), then W+ = X♥

+ , or

X+ =
1

2

[

jIn
In

]∗

W+

[

jIn
In

]

. (8)

4



2. If A is nonsingular and the nonlinear matrix equation (1) has positive definite solution X > 0, then it
must have a minimal positive definite solution X−. Particularly, if W− denotes the minimal solution
of the nonlinear matrix equation in (7), then W− = X♥

− , or

X− =
1

2

[

jIn
In

]∗

W−

[

jIn
In

]

. (9)

Proof. “=⇒” Let X > 0 be a solution of equation (1). Taking (·)♥ on both sides of equation (1) and using
Lemma 2 gives

I♥n = X♥ +
(

A∗X
−1

A
)♥

= X♥ +
(

A♥
)T
(

(

X
)♥
)−1

A♥

= X♥ +
(

A♥
)T (

EnX
♥ET

n

)−1
A♥

= X♥ +
(

A♦
)T (

X♥
)−1

A♦, (10)

which indicates that W = X♥ > 0 is a solution of equation (7).

“⇐=” Let equation (7) have a solution W > 0. Then it must have a maximal solution according to Lemma
7 in Appendix A. We denote such maximal solution by W+. In the following we show that there must exist
a matrix Y > 0 such that W+ = Y ♥. According to Lemma 8 in Appendix A, we know that

Wk+1 = I2n −
(

A♦
)T

W−1
k A♦, W0 = I2n, (11)

converges monotonically to W+, namely, 0 < W+ ≤ Wk+1 ≤ Wk ≤ I2n, k ≥ 0 and

lim
k→∞

Wk = W+ > 0. (12)

We show that, for any integer k ≥ 0, there exists a matrix Yk > 0 such that

Wk = Y ♥
k , ∀k ≥ 0. (13)

We show this by induction. Clearly, equation (13) holds true for k = 0 by setting Y0 = In. Assume that (13)
is true with k = s, say, there exists a Ys > 0 such that Ws = Y ♥

s . Then, for k = s+ 1, by applying Lemma
2, we have

Ws+1 = I2n −
(

A♦
)T (

Y ♥
s

)−1
A♦

= I2n −
(

A♥
)T (

EnY
♥
s ET

n

)−1
A♥

= I2n − (A∗)
♥
(

Ys
−1
)♥

A♥

= I2n −
(

A∗Ys
−1

A
)♥

= Y ♥
s+1,

where Ys+1 = I − A∗Ys
−1

A. As Ws+1 > 0, we know that Ys+1 > 0 also. Therefore, (13) is proved by
induction.

Hence, it follows from (12) and (13) that there exists a matrix Y∞ > 0 such that

W+ = lim
k→∞

Wk = lim
k→∞

Y ♥
k = Y ♥

∞ ,

namely,

I2n = Y ♥
∞ +

(

A♦
)T (

Y ♥
∞

)−1
A♦,

which, by using a similar technique used in deriving (10), is equivalent to

In = Y∞ +A∗Y
−1

∞ A.

5



Hence the nonlinear matrix equation (1) has a solution X = Y∞.

Proof of Item 1: Since for any positive definite solution X of (1), there is a real positive definite solution X♥

of (7), we must have X♥ ≤ W+ = Y ♥
∞ which indicates that X ≤ Y∞. However, X = Y∞ is also a solution

of the nonlinear matrix equation (1). Hence, the nonlinear matrix equation (1) has the maximal solution
X+ = Y∞. The relation W+ = X♥

+ then follows directly.

Proof of Item 2 : If the nonlinear matrix equation (1) has a positive definite solutionX > 0, then, asX < In,

by Lemma 6, the nonlinear matrix equation (6) also has a positive definite solution In−X, which, according
to item 1 of this theorem, indicates that equation (6) must have a maximal positive definite solution Y+.

Hence, by applying Lemma 6 again, X− , In − Y + is also a solution of equation (1). In fact, X− is the
minimal positive definite solution of equation (1). Otherwise assume that X∗ ≤ X− is a positive definite
solution of (1). Then

Y∗ = In −X∗ ≥ In −X− = Y+,

is a positive definite solution of (6). This is impossible since Y+ is the maximal positive definite solution of
equation (6) by assumption.

According to item 1 of this theorem, the maximal positive definite solution Y+ to equation (6) is related
with Z+ = Y ♥

+ where Z+ is the maximal positive definite solution of

I2n = Z +A♦Z−1
(

A♦
)T

. (14)

As A♦ is nonsingular, by applying Lemma 6 again, the maximal positive definite solution Z+ to equation
(14) is related with Z+ = I2n−Y− where Y− is the minimal positive definite solution of equation (7). Hence
the minimal positive definite solution X− to equation (1) satisfies

X♥
− = (In − Y+)

♥
= I2n − Z+ = Y−.

The proof is finished.

Remark 2 The nonlinear matrix equation in (7) is in the standard from of (39) with Q = In (see Ap-
pendix) which has been extensively studied in the literature. Therefore, by adopting the existing results on the
nonlinear matrix equation (7), we can get corresponding results on the original nonlinear matrix equation
(1).

According to the proof of Theorem 1, we have the following result regarding iteration based numerical
solution of the nonlinear matrix equation (1).

Corollary 1 Assume that the nonlinear matrix equation (1) has a positive definite solution. Denote the
largest solution by X+. Then the iteration

Wk+1 = I2n −
(

A♦
)T

W−1
k A♦, W0 = I2n, (15)

converges and such that limk→∞ Wk = X♥
+ . Moreover, if

∥

∥X−1
+ A

∥

∥ < 1, then the iteration in (15) converges

to X♥
+ with at least a linear convergence rate, namely, there exists a k∗ > 0 and a number 0 < µ < 1 such

that
∥

∥

∥Wk+1 −X♥
+

∥

∥

∥ ≤ µ
∥

∥

∥Wk −X♥
+

∥

∥

∥ , ∀k ≥ k∗. (16)

Proof. The convergence of the iteration (15) follows from the proof of Theorem 1. So we need only to show
(16). We use the idea found in [36] to prove the result. According to Theorem 1, we have X♥

+ = W+, the
maximal solution to equation (7). Notice that

∥

∥

∥Wk+1 −X♥
+

∥

∥

∥ = ‖Wk+1 −W+‖

=
∥

∥

∥I2n −
(

A♦
)T

W−1
k A♦ −

(

I2n −
(

A♦
)T

W−1
+ A♦

)∥

∥

∥

=
∥

∥

∥

(

A♦
)T (

W−1
+ −W−1

k

)

A♦
∥

∥

∥

=
∥

∥

∥

(

W−1
+ A♦

)T
(Wk −W+)W

−1
k A♦

∥

∥

∥

≤
∥

∥W−1
+ A♦

∥

∥

∥

∥W−1
k A♦

∥

∥ ‖Wk −W+‖ . (17)

6
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Figure 1: Numerical solution of the nonlinear matrix equation (1) via iteration (15)

On the other hand, by using Lemma 2, we can compute

∥

∥W−1
+ A♦

∥

∥ =
∥

∥

∥

(

X−1
+

)♥
EnA

♥
∥

∥

∥ =
∥

∥

∥En

(

X−1
+

)♥
EnA

♥
∥

∥

∥

=

∥

∥

∥

∥

(

X
−1

+

)♥

A♥

∥

∥

∥

∥

=

∥

∥

∥

∥

(

X
−1

+ A
)♥
∥

∥

∥

∥

=
∥

∥

∥X
−1

+ A
∥

∥

∥ =
∥

∥X−1
+ A

∥

∥ .

Let µ ∈ (0, 1) be such that
∥

∥W−1
+ A♦

∥

∥ =
∥

∥X−1
+ A

∥

∥ <
√
µ < 1. As limk→∞ Wk = X♥

+ , there exists a k∗ such

that
∥

∥W−1
k A♦

∥

∥ <
√
µ < 1, ∀k ≥ k∗. Hence, the inequality in (17) reduces to (16) immediately. The proof is

finished.

We emphasize that the condition
∥

∥X−1
+ A

∥

∥ < 1 is only sufficient for guaranteeing the linear convergence of
the iteration in (15) which converges as long as the nonlinear matrix equation (1) has a positive definite
solution. By combining Lemma 6 and Corollary 1, we can also present a result regarding obtaining the
minimal solution to the nonlinear matrix equation (1). The details are omitted for brevity.

Example 2 Consider the nonlinear matrix equation in Example 1. By computation we have
∥

∥X−1
+ A

∥

∥ =

0.614 < 1. Then by Corollary 1, we conclude that the corresponding iteration in (15) converges to X♥
+ at

least linearly. For illustration, the history of the iteration is recorded in Figure 1. From this figure we see
that the convergence of the corresponding iteration in (15) is indeed linear. Hence, the estimation in (16)
may be nonconservative.

In the particular case that A is real, we can show the following result.

Corollary 2 Suppose that A is real. If the nonlinear matrix equation (39) has a positive definite solution,
then X+ is real. Furthermore, if A is nonsingular, then X− is also real. Hence in this case, equation (1)
and the following nonlinear matrix equation

In = X +ATX−1A,

has the same maximal and minimal positive definite solutions.

7



Proof. Under the assumption of this corollary, W+ = X♥
+ and W− = X♥

− are respectively the maximal and
minimal solution of equation (7). Therefore, we need only to show that W+ and W− are in the form of

W+ =

[

W1+ 0
0 W1+

]

, W− =

[

W1− 0
0 W1−

]

.

Since W+ is the limit of the iteration in (11), we only need to show that

Wk =

[

W1k 0
0 W1k

]

, ∀k ≥ 0. (18)

We show this by induction. Clearly, (18) holds true for k = 0. Assume that it is true with k = s. Then, for
k = s+ 1, we can compute

Ws+1 =

[

In −AT
1 W1sA1 0
0 In −AT

1 W1sA1

]

,

[

W1(s+1) 0
0 W1(s+1)

]

.

Therefore, (18) is proved by induction. The case W− can be proved similarly.

Combining Theorem 1 and Lemma 10 gives the following corollary.

Corollary 3 Suppose that A is invertible. Then the nonlinear matrix equation (1) has a positive definite
solution if and only if ω

(

A♦
)

≤ 1
2 .

Our next theorem presents some properties of the maximal and minimal positive definite solutions of the
nonlinear matrix equation (1).

Theorem 2 Assume that the nonlinear matrix equation in (1) has a solution X > 0.

1. Let the maximal positive definite solution be X+. Then X+ is the unique solution such that X+ +

sAX
−1

+ A is invertible for all s ∈ {z : |z| < 1}, or equivalently,

coρ
(

X
−1

+ A
)

≤ 1. (19)

2. Assume further that A is nonsingular. Let the minimal positive definite solution be X−. Then X− is

the unique solution such that X− + sA
∗
X

−1

− A∗ is invertible for all s ∈ {z : |z| > 1}, or equivalently,

coρ
(

X
−1

− A∗
)

≥ 1. (20)

Proof. Proof of Item 1 : By Theorem 1, W+ = X♥
+ is the maximal solution of the nonlinear matrix equation

(7). Then according to Lemma 7 in appendix, W+ is the unique positive definite solution of equation (7)
such that W+ + λA♦ is nonsingular for all λ ∈ {z : |z| < 1}. Since P ∗

nEnPn = En, we can compute

W+ + λA♦ = X♥
+ + λEnA

♥

= Pn

[

X+ 0
0 X+

]

P ∗
n + λEnPn

[

A 0
0 A

]

P ∗
n

= Pn

([

X+ 0
0 X+

]

+ λP ∗
nEnPn

[

A 0
0 A

])

P ∗
n

= Pn

([

X+ 0
0 X+

]

+ λEn

[

A 0
0 A

])

P ∗
n

= Pn

[

X+ λA

λA X+

]

P ∗
n ,

from which it follows that

det
(

W+ + λA♦
)

= det (X+) det
(

X+ − λ2AX
−1

+ A
)

. (21)
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Hence, det
(

W+ + λA♦
)

is nonzero for all λ ∈ {z : |z| < 1} if and only if det(X+ −λ2AX
−1

+ A) is nonzero for
all λ ∈ {z : |z| < 1}. Notice that

∀λ ∈ {z : |z| < 1} ⇔ ∀s , −λ2 ∈ {z : |z| < 1} .

The first conclusion then follows directly. Moreover, it follows from (21) that

det
(

W+ + λA♦
)

= det (X+) det
(

In + sAX
−1

+ AX−1
+

)

det (X+)

= (det (X+))
2 det

(

In + sAX
−1

+ AX−1
+

)

,

where s ∈ {z : |z| < 1} . Hence det
(

W+ + λA♦
)

is nonzero for all λ ∈ {z : |z| < 1} if and only if the matrix

AX
−1

+ AX−1
+ has no poles α ∈ {z : |z| > 1} which is equivalent to

1 ≥ ρ
(

AX
−1

+ AX−1
+

)

= ρ

(

(

X
−1

+ A
)

(

X
−1

+ A

))

= ρ

((

X
−1

+ A

)

(

X
−1

+ A
)

)

.

By applying Lemma 4, the above inequality is equivalent to (19). Assume that there exists another positive

definite solution X∗ such that coρ
(

X
−1

+ A
)

≤ 1. As the above process is invertible, we can show that

W∗ = X♥
∗ is such that W+ + λA♦ is nonsingular for all λ ∈ {z : |z| < 1} which contradicts with Lemma 7

in appendix.

Proof of Item 2 : By Theorem 1, W− = X♥
− is the minimal solution of the nonlinear matrix equation (7).

Then according to Lemma 7 in appendix, W− is the unique positive definite solution of equation (7) such

that W− + λ
(

A♦
)T

is nonsingular for all λ ∈ {z : |z| > 1}. Similar to the proof of item 1 of this theorem,
via some computation, we have

W− + λ
(

A♦
)T

= Pn

[

X− λA
∗

λA∗ X−

]

P ∗
n .

The remaining is similar to the proof of item 1 and is omitted for brevity. The proof is complete.

4 Bound of the Positive Definite Solutions

In this section, we study the bound of the positive definite solutions of the nonlinear matrix equation (1).
Let {Hk}∞k=1 be generated recursively as follows:

H1 = In, Hk+1 =

























































Hk

[

0

A∗

]

[

0 A
]

In






, k is odd,







Hk

[

0

A
∗

]

[

0 A
]

In






, k is even.

(22)

Here, if k = 2, the zero matrices in H2 are obviously of zero dimension. Then we can prove the following
result.

Theorem 3 If the nonlinear matrix equation (1) has a positive definite solution, then Hk > 0, ∀k ≥ 1, and
for any integer k ≥ 1, there holds

X >

[

0

A
∗

]∗

H−1
k

[

0

A
∗

]

, Sk, k is even, (23)

and

X >

[

0

A
∗

]∗

H
−1

k

[

0

A
∗

]

, Sk, k is odd, (24)
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in which, if k = 1, the zero matrices involved are of zero dimensions. Moreover, Sk is nondecreasing, namely,

Sk+1 ≥ Sk, ∀k ≥ 1. (25)

Proof. Since X = In −A∗X
−1

A > 0, via a Schur implement, we have

0 <

[

In A∗

A X

]

=

[

In A∗

A In −A
∗
X−1A

]

= H2 −
[

0

A
∗

]

X−1

[

0

A
∗

]∗

,

which indicates that H2 > 0. Applying another Schur complement on the above inequality gives

0 <







H2

[

0

A
∗

]

[

0 A
]

X






=









H2

[

0

A
∗

]

[

0 A
]

In −A∗X
−1

A









= H3 −
[

0

A∗

]

X
−1
[

0

A∗

]∗

,

which indicates that H3 > 0. By using Schur complement again, the above inequality can be equivalently
rewritten as

0 <







H3

[

0
A∗

]

[

0 A
]

X






=







H3

[

0

A∗

]

[

0 A
]

In −A
∗
X−1A







= H4 −
[

0

A
∗

]

X−1

[

0

A
∗

]∗

,

which indicates that H4 > 0. Repeating the above process gives Hk > 0, ∀k ≥ 1.

On the other hand, from the above development, we see that, if k is even, then






Hk

[

0

A
∗

]

[

0 A
]

X






> 0,

and if k if odd, then






Hk

[

0

A∗

]

[

0 A
]

X






> 0,

where, if k = 1, the zero matrices are of zero dimension. We notice that the above two inequalities are
respectively equivalent to (23) and (24) via Schur complements.

We finally show (25). We only prove the case that k is odd since the case that k is even can be proven
similarly. As k + 1 is even, we have

Sk+1 =

[

0

A
∗

]∗

H−1
k+1

[

0

A
∗

]

=

[

0

A
∗

]∗







Hk

[

0

A∗

]

[

0 A
]

In







−1
[

0

A
∗

]

. (26)

We notice that, if k is odd, then






Hk

[

0

A∗

]

[

0 A
]

In






=







In
[

A∗ 0
]

[

A

0

]

Hk







=





▽11 ▽12

▽∗
12

(

Hk −
[

A

0

]

[

A∗ 0
]

)−1





−1

,
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where ▽11 and ▽12 are two matrices that are of no concern. With this, the relation in (26) can be continued
as

Sk+1 =





0
[

0

A
∗

]





∗






In
[

A∗ 0
]

[

A

0

]

Hk







−1




0
[

0

A
∗

]





=

[

0

A
∗

]∗(

Hk −
[

A

0

]

[

A∗ 0
]

)−1 [
0

A
∗

]

≥
[

0

A
∗

]∗

H
−1

k

[

0

A
∗

]

= Sk.

In the above development, the zero matrices involved are of zero dimension if k = 1. The proof is finished.

Since Sk is bounded above, there must exist a positive definite matrix S∞ < In such that

lim
k→∞

Sk = S∞.

Obviously, we have X > S∞. It is not clear whether S∞ = X−. Moreover, it is clear that the larger the k,
the better the Sk gives a lower bound of X. However, large k may lead to numerical problems. By choosing
some special values in k, the following corollary can be obtained.

Corollary 4 If the nonlinear matrix equation (1) has a positive definite solution, then A satisfies

In > AA∗ +A∗A. (27)

Moreover, the solution X satisfies the following inequalities

X > S1 = AA∗, (28)

X > S2 = A (In −AA∗)
−1

AT, (29)

X > S3 = A
(

In −A
(

In −AA∗
)−1

A∗
)−1

AT. (30)

Proof. Let k = 2. We get from Theorem 3 that H2 > 0, which, via a Schur complement, is equivalent to
In > AA∗. Similarly, by letting k = 3, we get from H3 > 0 that

0 <





In A∗ 0

A In A
∗

0 A In



 ,

which, via a Schur complement, implies

In −
[

0 A
]

[

In A∗

A In

]−1 [
0

A
∗

]

= In −A (In −AA∗)−1
AT > 0.

By applying Schur complement again, the above inequality is equivalent to
[

In A

AT In −AA∗

]

> 0.

However, another Schur complement indicates that the above inequality implies A∗A+AA∗ < In.

Now if we set k = 1, we get from (24) that X > AA∗ = S1 (or X > AAT = S1) which is (28); if we set
k = 2, we get from (23) that

X > S2 =
[

0 A
]

[

In A∗

A In

]−1 [
0

A
∗

]

=
[

0 A
]

[

▽11 ▽12

▽∗
12 (In −AA∗)

−1

] [

0

A
∗

]

= A (In −AA∗)−1
AT,

11



which is (29). Here ▽ij denotes the elements that are of no concern. Moreover, if we set k = 3, we know
from (24) that

X > S3 =

[

0

A
∗

]∗

H
−1

3

[

0

A
∗

]

=
[

0 A
]





In A
∗

0

A In A∗

0 A In





−1
[

0

A
∗

]

=
[

0 A
]

[

▽11 ▽12

▽∗
12

(

In −A
(

In −AA∗
)−1

A∗
)−1

]

[

0

A
∗

]

= A
(

In −A
(

In −AA∗
)−1

A∗
)−1

AT,

which is just (30). The proof is finished.

With the help of Lemma 6 and Theorem 3, we can also obtain upper bounds of X. To this end, we let
{Gk}∞k=1 be generated as (22) where A∗ is replaced with A, namely,

G1 = In, Gk+1 =

























































Gk

[

0

A

]

[

0 A∗
]

In






, k is odd







Gk

[

0

A

]

[

0 A
∗ ]

In






, k is even.

Again, if k = 2, the zero matrices in G2 are obviously of zero dimension.

Theorem 4 Assume that A is nonsingular and the nonlinear matrix equation in (1) has a positive definite
solution. Then Gk > 0, ∀k ≥ 1, and for any integer k ≥ 1, there holds

X < In −
[

0

A

]∗

G
−1

k

[

0

A

]

, Rk, k is even, (31)

and

X < In −
[

0

A

]∗

G−1
k

[

0

A

]

, Rk, k is odd. (32)

in which, if k = 1, the zero matrices involved are of zero dimension. Moreover, Rk is non-increasing, namely,

Rk+1 ≤ Rk, ∀k ≥ 1. (33)

Proof. Since A is nonsingular, by Lemma 6, equation (1) is equivalent to equation (6) with Y = I − X.

Applying Theorem 3 on equation (6) gives Gk > 0, k ≥ 1 and

Y >

[

0

A

]∗

G−1
k

[

0

A

]

, S′
k, k is even,

Y >

[

0

A

]∗

G
−1

k

[

0

A

]

, S′
k, k is odd,

which are respectively equivalent to (31) and (32) by using Y = I−X. Finally, Rk = In−S′
k is non-increasing

because S′
k is nondecreasing according to Theorem 3. The proof is finished.

It is also clear that the larger the k, the better the Rk gives an upper bound of X. However, large k may
lead to numerical problems. Choosing some special values in k gives the following corollary.

12



Corollary 5 If the nonlinear matrix equation in (1) has a positive definite solution and A is nonsingular,
then A satisfies

In > A∗A+AA∗.

Moreover, the solution X satisfies the following inequalities

X < R1 = In −A∗A,

X < R2 = In −A∗
(

In −A∗A
)−1

A,

X < R3 = In −A∗
(

In −AT (In −A∗A)−1
A
)−1

A.

5 Sufficient Conditions and Necessary Conditions

In this section, we present some necessary conditions and sufficient conditions for the existence of a positive
definite solutions of the nonlinear matrix equation (1).

Theorem 5 If the nonlinear matrix equation (1) has a positive definite solution, then ρ
(

AA
)

≤ 1
4 , ‖A‖ < 1

and
ρ
((

A±A
∗
)(

A±A
∗
))

≤ 1, (34)

which can be equivalently rewritten as coρ
(

A±A
∗
)

≤ 1.

Proof. It follows from Theorem 1 and Lemma 11 in appendix that if the nonlinear matrix equation (1) has
a positive definite solution, then ρ

(

A♦
)

≤ 1
2 ,
∥

∥A♦
∥

∥ < 1 and

ρ
(

A♦ ±
(

A♦
)T
)

≤ 1. (35)

Clearly, by applying Lemma 2, ρ
(

A♦
)

≤ 1
2 is equivalent to ρ

(

AA
)

≤ 1
4 and

∥

∥A♦
∥

∥ < 1 is equivalent to
‖A‖ < 1 (we point out that ‖A‖ < 1 also follows directly from (27)). We next show that (35) is equivalent
to (34). By virtue of Lemma 2 and in view of P ∗

nEnPn = En, we get

ρ
(

A♦ ±
(

A♦
)T
)

= ρ
(

EnA
♥ ±

(

A♥
)T

En

)

= ρ

(

EnPn

[

A 0
0 A

]

P ∗
n ± Pn

[

A∗ 0

0 A
∗

]

P ∗
nEn

)

= ρ

(

P ∗
nEnPn

[

A 0
0 A

]

±
[

A∗ 0

0 A
∗

]

P ∗
nEnPn

)

= ρ

(

En

[

A 0
0 A

]

±
[

A∗ 0

0 A
∗

]

En

)

= ρ

([

0 A±A∗

A±A
∗

0

])

= ρ
1

2

(

[

0 A±A∗

A±A
∗

0

]2
)

= ρ
1

2









(

A±A∗
)

(

A±A
∗
)

0

0
(

A±A
∗
)

(

A±A∗
)









= ρ
1

2

((

A±A
∗
)

(

A±A∗
)

)

,

which is the desired relation. Finally, the equivalence between (34) and coρ
(

A±A
∗
)

≤ 1 follows from

Lemma 4. The proof is finished.
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Theorem 6 The nonlinear matrix equation (1) has a positive definite solution provided

‖A‖ ≤ 1

2
. (36)

Moreover, if A is con-normal, then the nonlinear matrix equation (1) has a positive definite solution if and
only if A satisfies (36). In this case, the maximal solution is given by

X+ =
1

2

(

In + (In − 4A∗A)
1

2

)

. (37)

If A is further assumed to be nonsingular, then the minimal solution can be expressed as

X− =
1

2

(

In − (In − 4A∗A)
1

2

)

. (38)

Proof. If ‖A‖ ≤ 1
2 , then by Lemma 2, we know that

∥

∥A♦
∥

∥ ≤ 1
2 , which, by using Lemma 12, indicates that

equation (7) has positive definite solution. This is further equivalent to the existence of positive definite
solution of equation (1) in view of Theorem 1. The case that A is con-normal can be shown similarly. We
next show (37). Notice that, according to Lemma 12, the maximal solution of equation (7) is given as

W+ =
1

2

(

I2n +
(

I2n − 4
(

A♦
)T

A♦
)

1

2

)

=
1

2

(

I2n +
(

I2n − 4
(

A♥
)T

ET
nEnA

♥
)

1

2

)

=
1

2

(

I2n +
(

I2n − 4
(

A♥
)T

A♥
)

1

2

)

=
1

2

(

I2n +
(

I2n − 4 (A∗A)
♥
)

1

2

)

=
1

2

(

In + (In − 4A∗A)
1

2

)♥

,

which, according to Theorem 1, implies (37). The equation (38) can be shown similarly. The proof is done.

6 Conclusion

This paper has studied the existence of a positive definite solutions to the nonlinear matrix equation X +

A∗X
−1

A = Q. With the help of some operators associated with complex matrices, we have shown that
the existence of a positive definite solution of this type of nonlinear matrix equation is equivalent to the
existence of a positive definite solution of a nonlinear matrix equation in the form of W + BTW−1B = I

where B is real and is determined by A. Since the later nonlinear matrix equation has been well studied in
the literature, properties of the original nonlinear matrix equations can be established based on the existing
results on the transformed nonlinear matrix equations. Moreover, with the help of Schur complement, we
have shown in this paper some upper bounds and lower bounds on the solutions to the nonlinear matrix
equations. Simultaneously, some easily tested sufficient conditions and necessary conditions for the existence
of positive definite solution of the nonlinear equations have also been established. We point out that, by
combining the results obtained in this paper and the existing results on numerical computation of solutions
to the standard nonlinear matrix equation W + BTW−1B = I, numerical reliable algorithms can be built
for computing the positive definite solutions to the original nonlinear matrix equation, which is currently
under study.
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Appendix

A: Solutions of Matrix Equation X + A∗X−1A = Q

In this subsection, we recall some basic results regarding positive definite solutions of the following matrix
equation

X +A∗X−1A = Q. (39)

Lemma 7 (Theorem 3.4 in [18]) Suppose that Q > 0 and assume that he nonlinear matrix equation (39)
has a positive definite solution. Then it has a maximal and minimal solution X+ and X−, respectively.
Moreover, X+ is the unique solution for which X + λA is invertible for all |λ| < 1, while X− is the unique
solution for which X + λA∗ is invertible for all |λ| > 1.

Lemma 8 (Algorithm 4.1 in [18]) Suppose that Q = I. If the nonlinear matrix equation (39) has a positive
definite solution, then the iteration

Xk+1 = In −A∗X−1
k A, X0 = In,

converges to the maximal solution X+, namely, limk→∞ Xk = X+.

Lemma 9 (Theorem 8.1 in [18]) Suppose that Q = I and A is real. If the nonlinear matrix equation (39)
has a positive definite solution, then X+ is real. Furthermore, if A is nonsingular, then X− is also real.

Lemma 10 (Theorem 5.1 in [18]) Suppose that A is invertible. Then the nonlinear matrix equation (39)
has a positive definite solution if and only if ω (A) ≤ 1

2 .

Lemma 11 (Theorem 7 in [19] and Theorem 3.1 in [35]) If the nonlinear matrix equation (39) has a positive
definite solution, then ρ (A) ≤ 1

2 , ‖A‖ < 1 and ρ (A±A∗) ≤ 1.

Lemma 12 (Theorem 11 and Theorem 13 in [19]) The nonlinear matrix equation (39) has a positive definite
solution provided ‖A‖ ≤ 1

2 . Moreover, if A is normal, then the nonlinear matrix equation (39) has a positive
definite solution if and only if ‖A‖ ≤ 1

2 . In this case, the maximal solution is given by

X+ =
1

2

(

In +
(

In − 4ATA
)

1

2

)

.

Furthermore, if A is nonsingular, then

X− =
1

2

(

In −
(

In − 4ATA
)

1

2

)

.

B: Proof of Lemma 2

Proof of Item 1: These equalities can be verified directly by definition.

Proof of Item 2. This result follows from Lemma 9 in [37].

Proof of Item 3: We need only to show that A is a normal matrix if and only if A♥ is a real normal matrix

since unitary matrix is a special case of normal matrix. If A♥ is a real normal matrix, then
(

A♥
)T

A♥ =

A♥
(

A♥
)T

. However, A♥
(

A♥
)T

= (AA∗)
♥

and
(

A♥
)T

A♥ = (A∗A)
♥
. Hence we have (AA∗)

♥
= (A∗A)

♥

and consequently AA∗ = A∗A, that is, A is a normal matrix. The converse can be shown similarly.
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Proof of Item 4: From item 2 of this lemma, we obtain

ρ
(

A♥
)

= ρ

(

Pn

[

A 0
0 A

]

P ∗
n

)

= ρ

([

A 0
0 A

])

= max
{

ρ (A) , ρ
(

A
)}

= ρ (A) .

Similarly, we can compute

ρ
(

A♦
)

= ρ
(

EnA
♥
)

= ρ

(

EnPn

[

A 0
0 A

]

P ∗
n

)

= ρ

(

P ∗
nEnPn

[

A 0
0 A

]

P ∗
nPn

)

= ρ

(

En

[

A 0
0 A

])

= ρ

([

0 A

A 0

])

= ρ
1

2

([

0 A

A 0

] [

0 A

A 0

])

= ρ
1

2

([

AA 0

0 AA

])

= ρ
1

2

(

AA
)

.

Proof of Item 5: By definition, we can compute

(

A♦
)T

A♦ =
(

EnA
♥
)T

EnA
♥ =

(

A♥
)T

ET
nEnA

♥

=
(

A♥
)T

A♥ = (A∗)
♥
A♥ = (A∗A)

♥
,

and similarly,

A♦
(

A♦
)T

= EnA
♥
(

EnA
♥
)T

= EnA
♥
(

A♥
)T

ET
n

= EnA
♥ (A∗)

♥
ET

n = En (AA∗)
♥
ET

n =
(

AA∗
)♥

.

Clearly, A♦ is a normal matrix if and only if
(

A♦
)T

A♦ = A♦
(

A♦
)T

, which is equivalent to
(

AA∗
)♥

=

(A∗A)
♥
, namely, A∗A = AA∗.

Proof of Item 6: By using item 1 of this lemma, we obtain

∥

∥A♦
∥

∥ =
∥

∥EnA
♥
∥

∥ =
∥

∥A♥
∥

∥ =

∥

∥

∥

∥

Pn

[

A 0
0 A

]

P ∗
m

∥

∥

∥

∥

=

∥

∥

∥

∥

[

A 0
0 A

]∥

∥

∥

∥

= ‖A‖ .

Proof of Item 7 : Let U be a unitary matrix such that A = UDU∗ where D is a real diagonal positive
semi-definite matrix. Then

(

A♥
)

1

2 =
(

(UDU∗)
♥
)

1

2

=

(

U♥

[

D 0
0 D

]

(

U♥
)T
)

1

2

= U♥

[

D
1

2 0

0 D
1

2

]

(

U♥
)T

=
(

UD
1

2U∗
)♥

=
(

A
1

2

)♥

.

C: Proof of Lemma 4

We only show the case “≤”. According to the results in [4], we know that

(1). for λ ≥ 0, λ ∈ coλ (A) ⇔ λ2 ∈ λ
(

AA
)

.
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(2). for λ < 0, λ ∈ coλ (A) ⇔ λ ∈ λ
(

AA
)

.

(3). for Im (λ) 6= 0, λ ∈ coλ (A) ⇔ λ, λ ∈ λ
(

AA
)

.

Let s be an arbitrary eigenvalue of AA. Then |s| ≤ 1. Consider three cases. Case 1: 1 ≥ s ≥ 0. Then it
follows that λ =

√
s ∈ coλ (A) and hence |λ| ≤ 1. Case 2: −1 ≤ s < 0. Then we see that λ = s ∈ coλ (A)

and hence |λ| ≤ 1. Case 3: Im (λ) 6= 0. In this case, we see that either λ = s ∈ coλ (A) or λ = s ∈ coλ (A) .
In both cases, there holds |λ| = |s| ≤ 1. The proof is completed.
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