
A Simple and Efficient Way to Combine
Microcontrollers with RSA Cryptography

Echo P. Zhang, Junbin Fang∗, Delta C.C. Li, Michael W.H. Ching, T.W. Chim, Lucas C.K. Hui, S.M. Yiu

Abstract—Microcontroller can be easily adopted in various
applications with a variety of peripherals due to its merits of
small size, simple architecture and etc. However, the limited
computing power restricts its application in cryptography. In
this paper, we try to integrate microcontroller with different
peripheral devices to support more powerful cryptography
computation in a simple and efficient way. Based on the most
popular open source microcontroller development platform,
Arduino, we design and develop a cryptographic hardware
device for a real-life application which provides data protection
functions for authority and integrity with RSA cryptography
supported. With the peripherals Java card, our Arduino-cored
solution is able to efficiently generate digital signature of photos
taken by smart phone using the asymmetric cryptographic
algorithm, RSA, which has a poor performance if it is directly
implemented on microcontroller. The experimental results show
that the device can finish a RSA 1024-bit encryption in 82.2
microseconds, which is reasonable in real application scenario
and illustrates the feasibility of implementing more complicated
cryptographic system using microcontroller.

Index Terms—microcontroller, Arduino, cryptography, Java
card, RSA.

I. I NTRODUCTION

In the recent decade, microcontroller is getting popular
application in portable devices, embedded system and mobile
platform due to its integrated architecture, rich functionalities
and increasing processing power. Arduino is one kind of mi-
crocontroller with open source platform. It has been widely
adopted in different areas recently. Both Google and Apple
have decided to use Arduino as the accessories for their
products. Another outstanding feature of Arduino is that it is
easy and convenient to be connected to different peripheral
devices such as SD card reader, smart card reader, Bluetooth
adapter and etc. In short, Arduino has a broad developing
future because of its low cost, cross-OS scalability, open
source and easy usage features. As a result, various multi-
functional applications can be developed on this platform.

Consider a real-life application.In the collection of digital
evidence, how can a picture taken by a smart phone be
properly verified and be presentable as from a trusted
source?To achieve this goal, digital signature should be
used. However, the signature should not be generated by
the smart phone itself as one can use some Apps to forge
signature easily. Therefore, a convenient hardware module
(assumed to be trusted) is desired to complete this procedure
with high efficiency and low-power consumption. For this

Manuscript received July 14, 2013.
Echo P. Zhang, Junbin Fang (corresponding author, e-mail: junbin-

fang@gmail.com), Delta C.C. Li, Michael W.H. Ching, T.W. Chim, Lucas
C.K. Hui and S.M. Yiu are with the Department of Computer Science, The
University of Hong Kong, HKSAR, China.

Junbin Fang is also with the Key Laboratory of Optoelectronic Infor-
mation and Sensing Technologies of Guangdong Higher Education Insti-
tutes and the Department of Optoelectronic Engineering, Jinan University,
Guangzhou, China.

purpose, Arduino should be the best choice to be the core of
the hardware solution with various peripherals.

According to the existing literature, block cipher perfor-
mance on Arduino’s microcontroller is good [1]. However,
due to limitation of the 8-bit micro-processor, any kind of
modern cryptographic algorithms, like RSA and ECC, cannot
be executed efficiently. In [2], the performance of running
RSA and ECC algorithms on Arduino with several different
libraries is tested, including AvrCryptolib, Wiselib, TinyECC
and Relic-toolkit is tested. As for AvrCryptolic, the running
time is 25.0s for RSA-512bit and 199.0s for RSA-1024bit
algorithms. Normally the shortest key length for commercial
application of RSA is 1024 bits. This clearly indicates that
using the microcontroller circuit to provide security RSA
cryptography (i.e. at least 1024 bits) is not practical.

One direction to solve this problem is to use special
ECC algorithms (Elliptic Curve Cryptography) to replace
RSA, since it is believed that ECC will provide the same
security level as RSA, with a shorter key length. From the
experimental result of [2], we find that the ECC outperforms
RSA on Arduino with the involvement of hardware. How-
ever, to have such a hardware-based ECC implementation,
additional RAM needs to be added to the Arduino, which
is a precious resource in the microcontroller. Also, using
ECC will create an extra software compatibility problem.
If an IT system is built in which the microcontroller with
that ECC algorithm is used, the other software components
need to add a special ECC cryptographic library to work
with the microcontrollers. Therefore, it is still better if
there is a solution that enables the microcontrollers to use
standard RSA (i.e. those already being used in the X.509 PKI
standard), to avoid the microcontroller memory problem and
the software compatibility problem.

A. Contribution of This Paper

In this paper, we try to explore the possibility of inte-
grating different peripheral devices with Arduino platform
to protect the authority and integrity of data in a simple and
efficient way. The major contribution of our work is that
we utilize the peripheral device, the JavaCard, to enhance
the performance of RSA in our proposed Arduino system.
JavaCard, being one form of SmartCard, has an efficient
hardware circuit for modern cryptography including RSA-
1024. Therefore our solution is to find an efficient way to
enable the microcontroller to call the SmartCard to carry
out RSA cryptography. Note that although SmartCard is a
mature technology that the driver from personal computer
is available, such driver for microcontroller does not exist.
Also a full implementation of SmartCard driver is too much
burden for the microcontroller. Therefore, our solution is to
implement a trim-down version of SmartCard driver, enough

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

for driving the JavaCard to carry out RSA cryptography,
and lightweight enough for the microcontroller to support.
As a summary, by linking up the JavaCard, we enable the
microcontroller to carry out RSA cryptography efficiently.

The rest of this paper is organized as follows. In Sec-
tion II, we present the framework of our integrated hardware
platform with the technical details of integrating Arduino
platform with the peripheral modules, e.g., Java Card module.
Our data protection solution for the real-life application of
digital evidence is introduced in Section III. The performance
of our solution is discussed in Section IV. Section V con-
cludes this paper.

II. T HE INTEGRATED HARDWARE PLATFORM AND

MODULES

1. Hash

Value

2. Hash Value

& check ID

5. Digital

Signature

3. Current Time 4. Private key

Bluetooth

Real Time Clock

SD Card
Arduino

JavaCard

Fig. 1: The Components of Integrated Hardware Platform

The integrated hardware device is shown in Fig. 1. The
major components in the integration include:

• Arduino - which is the heart of our integration;
• Java Card - which can be considered as a cryptographic

component for providing cryptographic functions;
• Bluetooth adapter - which facilitates wireless commu-

nications with an Android phone nearby;
• Real Time Clock (RTC) - which is battery-driven and a

standalone component for retrieving the current time;
• SD Card - which provides storage capabilities.

Each component has its unique features and some com-
plicated tuning is required before it can be integrated with
Arduino.

A. Java Card Module and Arduino

Here, we utilize Java card to assist Arduino implementing
RSA. Previous research works have shown that Java card
is a self-contained cryptographic platform with proper key
management. In our implementation, we load different Java
card Applets (or known as cardlets) onto the Java card
together with symmetric or asymmetric keys. We then use
the Arduino board to invoke cardlets to execute message
digest and symmetric or asymmetric cryptographic functions.
With reference to the CheckPoint Charlie project of Philips
ARM Design Contest [3], the circuit shown in Fig. 2 was
designed to connect a contact type smart card under ISO-
7816 standard [4] with an Arduino board.

For the connection of Arduino and Java card, there are
three main points needed to be paid more attentions.

1) Serial Communications:The first point is serial com-
munications. In ISO-7816 standard, serial communications
with a contact type smart card requires even parity bit and 2
stop bits for every 8 bits of data transfer, which is different
from the default setting of Arduino UART interface with no
parity and 1 stop bit.

������������������

�������������������

�����������������

	
�����������������

������������������
��

���������������������

���

�

��

��

��

��

���

���

��	

��

���

�

���

���

�

��

�� �� ���

���

����

��

�

���

���

�

���

���

�
��
���

�

�
��
��
�
�
�
�
	
	

�
��
�
��
�
�

�
�

�
�
�
�	
�

��

����

���

���������	

�������
�

�

�

� �

	

�

�����

�

�

�

�

�����

Fig. 2: Schematic of JavaCard Module

Only a single I/O pin is available on a contact type smart
card (Pin 7) for asynchronous half-duplex mode communi-
cation. To connect the card’s serial I/O pin with Arduino
UART interface, a 4.3K resistor is installed on the trans-
mission line to avoid message loop back. Packet sequence
control and standard timeframe are also important for the
implementation.

2) Power Cycle:The second point is the power cycle. To
power up and reset a contact type smart card to the initial
operation state with Arduino, the following conditions are
required:

(1) RST is in state Low
(2) VCC shall be powered
(3) I/O in the Arduino shall be put in reception mode (by

controlling RX pin register)
(4) VPP shall be raised to idle state (applicable to smart card

using VPP for programming)
(5) CLK shall be provided with a suitable and stable clock
(6) RST is in state High after 40,000 clock cycles

Answer to Reset message is expected from the smart
card, which contains specification and mode of operation
supported by the smart card.

3) Protocol Parameter Selection and Baud Rate:The last
point is protocol parameter selection and baud rate. Serial
baud rate of the contact type smart card is controlled by the
clock signal of an external oscillator. With a 3.579545MHz
clock signal, the baud rate is about 9,600 bps. However, a
baud rate of 9,600 bps is obviously slow when compared
to the processing speed of microcontroller and smart card
processor nowadays. If the smart card supports Protocol and
Parameter Selection (PPS) function, it is possible to adjust
the baud rate before the actual smart card APDU operation
starts.

Two parameters, F (clock-rate conversion factor) and D
(bit-rate conversion factor), can be adjusted as follow:

CurrentETU = F (D ∗ f)

Baudrate = 1/CurrentETU

In general, the PPS bytes contain 4-7 bytes of data
describing the mode of communication required by the host
device. Assume F = 372, D = 12, and the standard baud
rate is multiplied by 12 times, the PPS bytes in HEX are
0xFF1118F6. The corresponding binary format are:

PPSS: B11111111 - PPS request
PPS0: B00010001 - PPS1 present, T=1
PPS1: B00011000 - TA1 where F=372, D=12

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

PCK: B11110110 - XOR all bytes to zero
The operation sequence of activating a Java card with PPS

on the Arduino board is as follows::

(1) Start serial communication at 9600bps.
(2) Set serial transmission mode as 8-bit data, even parity,

2 stop bits.
(3) Reset the JavaCard.
(4) Wait for 4-400 ETU cycles.
(5) Receive the ATR message form the JavaCard.
(6) Check if PPS is supported, and process other card

information from ATR.
(7) If PPS is supported, send the PPS byte 0xFF1118F6.
(8) If no error occurs, the JavaCard echo back the PPS.
(9) Terminate the serial communication.

(10) Restart the serial port at 115200 baud rate.
(11) Continue APDU operation at current baud rate.

B. Bluetooth Module and Arduino

Another important module in our design is the bluetooth.
To enable wireless communication with the Arduino board,
we have developed a Bluetooth module that can be attached
to UART serial interface of Arduino with Bluegiga WT11
Bluetooth module [5]. The module is composed of a 5V to
3.3V voltage regulator and LEDs indicating power status and
connection status.

Using the WT11 module, Arduino can interact with dif-
ferent types of Bluetooth devices using various Bluetooth
profiles supported. Such flexibility can help us achieving dif-
ferent security requirements over the wireless communication
channel.

There are also three points needed to draw attention when
connect bluetooth with Arduino.

1) Device Paring: The first point is device paring. As
the Arduino is not attached with human interface device by
default, auto pairing of bluetooth device is preferred. The
default auto pairing mechanism of WT11 module makes use
of a four-digit PIN. Any connecting device presenting the
correct PIN can be paired. Yaniv Shaked and Avishai Wool
[6] suggested that the short PIN can be cracked using wire-
less packet eavesdropping technique and re-authentication
attempt attack. One the PIN is compromised, intrusion de-
tection becomes infeasible and the system is subjected to
vulnerability over the wireless communication channel.

To address this issue, additional logic is added to the
Arduino to handle pairing request to the WT11 module. Fol-
lowing protocol can be used for auto pairing using bluetooth
device address filtering:

(1) A Bluetooth device calls WT11 module over RFCOMM
layer for connection;

(2) If a correct 256-bit link key is presented by the connect-
ing device, pairing is not required;

(3) Else WT11 module sends 40-bit Bluetooth Device Ad-
dress to Arduino;

(4) Arduino verifies the address with records on external
storage / over the network;

(5) If the address can be verified, Arduino responses WT11
module to accept the pairing. A new 256-bit link key is
stored on WT11 module with the address;

(6) Else Arduino responses WT11 module to drop the con-
nection.

The Arduino can control the wireless access by whitelist-
ing / blacklisting. This can prevent intrusion of the system by
PIN cracking. However, the level of security measure using
the 256-bit link key after the pairing phase is not affected by
this protocol, and the link level security is bounded by the
bluetooth standard.

2) Data Communication:Once the pairing of connecting
device and the WT11 module is completed, RFCOMM con-
nection can be established. WT11 module can notify Arduino
the device address of incoming ring and enter data mode
automatically. The programmable I/O pin (PIO7) connecting
an LED is set to high when the connection is up, and this
pin can also be connected to a digital input pin of Arduino
as interrupt.

The data rate of Arduino UART interface is limited by the
processor speed and the 128 bytes serial buffer. A typical
receive loop of serial data can be defined as follow in the
Arduino:

wh i l e (S e r i a l . a v a i l a b l e ()){
by te inBy te = S e r i a l . r ead () ;
/ / p r o c e s s t h e incoming by te . . .

}

At high serial baud rate, Arduino should process the in-
coming bytes as quick as possible to prevent buffer overflow.
In case of buffer overflow, Serial.read() function returns
garbage byte in the loop. However, if link quality drops and
buffer underflows at the receiver side, which simply breaks
the Serial.available() loop. Both cases suggest that flow
control and error control are required. We have tested the
following protocol over the bluetooth connection:

• Pack the raw message into 1024-byte packets;
• Sender sends a packet with sequence number;
• Receiver expects a 1024-byte packet and responses

ACK message;
• Sender sends next packet if ACK is received;
• The transmission is completed by escape sequence

number.
The error handling mechanism (in case of no ACK re-

sponse) should be agreed by both sender and receiver with
proper timeout handling, otherwise the receiver loop may
keep running forever. Interrupt driven timeout is not directly
supported by the Arduino environment and should be imple-
mented using Interrupt Service Routine related libraries.

With the above flow control, the achievable data rate is
around 80% of the max data rate at 115200 baud. Predefined
OPCODE (such as “SIGN” and “VERIFY”) are used in our
implementation to limit the functions of the system exposed
to other bluetooth devices. If the connected device does not
follow the flow with predefined OPCODE during the data
exchange, Arduino can switch the WT11 module from data
mode to control mode and disconnect the device, which can
prevent the system from buffer overflow attack.

3) Serial Port Profile: The Serial Port Profile (SPP)
emulates a serial port connection between two bluetooth
devices over the RFCOMM layer, which provides an ab-
straction of those calling and answering processes. bluetooth
device supporting SPP, such as Android mobile platform,
can establish a serial port connection over bluetooth directly,
and the underlying processes such as pairing and ringing are
triggered automatically. From the application point of view,

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

data communication is over the ad-hoc serial port connection
established.

If multiple bluetooth hosts are required to be connected at
the same time, other network profile such as Personal Area
Networking Profile (PAN) should be loaded to the WT11
module.

C. Real Time Clock Module and Arduino

Timestamp is an important kind of information for design-
ing and implementing a security protocol to prevent man-in-
the-middle attack and replay attack. Timestamping also can
associate objective evidence to the data being protected.

Implementation of timestamp with Arduino depends on the
power state of the board. Clock cycle count can be returned
by mills() or micros() function call, but the counter is
reset after a restart of the board. To provide a more reliable
timestamp for the security application, an external real time
clock module running on battery is connected to the Arduino.
The real time clock module consists of a DS1307 clock, a
crystal (connected toX1 andX2) for oscillator and a battery
(connected to Vbat) for running the clock under battery-
backup mode. A standard alone DS1307 clock can run on
battery for a few years at 500nA[7].

I2C interface is used to connect the Arduino and the real
time clock module. Developer can make use of< Wire.h >
library to handle the communication over I2C interface.
Following protocol should be used in getting / setting the
time value of the module:

(1) Define I2C address of the connected module (e.g. 0x68)
(2) Begin transmission on the I2C address
(3) Transmit a zero byte
(4) Transmit or request 7 bytes representing the time value

data
(5) End transmission

The real time clock module can provide seconds, minutes,
hours, day, date, month, and year information with leap-year
compensation.

D. SD Card Module and Arduino

With limited amount of memory available on the mi-
crocontroller of Arduino, external storage is required for
dumping output of the running application. Even if the
output data can be transmitted over a network connection,
temporary non-volatile storage plays an important role in
case of network or power failure. The external storage is
also useful for data logging or storing routing path that
changes from time to time. Arduino can be connected to a
SD flash memory card with the SPI bus. Both FAT16/FAT32
file format on SD card are supported.

1) Device Connection:The SD card is running in SPI
mode when connected with the Arduino. Arduino can use
the Slave Select(SS) pin to select the target device over the
SPI bus. As the master host, developer can define multiple
SS pins on Arduino and attach multiple slave devices to the
bus. Different types of slave devices (flash memory, network
interface, etc.) can be attached at the same time. The serial
communication is under synchronous full duplex mode over
the MISO and MOSI pins. Throughput of SPI bus is higher
than other interfaces provided the Arduino.

2) SD Card Library: Using the sdfatlib developed by
William Greiman [8] and the< SD.h > wrapper of
SparkFun [9], accessing the SD card storage is convenient.
Developer can first list out the directories and files on the SD
card, and open a file by the full file path. File should be open
in either FILE READ or FILE WRITE. Under FILE READ
mode, content of open file can be accessed from start to EOF.
Under FILE WRITE mode, data can be written to a new file
or appended to an existing file. File point operation is similar
to C file reading / writing, and the operation is byte oriented.

3) Data Format: Our implementation uses the SD card to
store the cipher data of the security application. Digital digest
and PKI signature on input data are usually in binary format.
Although the binary data can be stored directly onto the SD
card, such format is not human readable and not portable to
other application if the stored data is dumped out directly.
So we use thesprintf() function to convert binary data into
HEX string representation for storage, andsscanf() is used
for forming binary array of data from the HEX string stored.
The HEX string comes in standard length with respect to
the cryptographic function being used, and standardize the
exchange format for cipher data outside the hardware of our
own application.

III. A PPLICATION

A. Registration

There are two phases for the application which is dispicted
in the introduction: Registration and Verification. During the
phase of Registration, a customized application is needed
on the customer’s Android mobile phone. We develop this
customized application to carry out the simple behavior of
taking a photo and gathering metadata such as current time,
GPS location, etc. Then the application generates a hash
value on these information together with the binary data of
the image,

Hash = SHA1(Image|Metadata)

After receiving the hash value from the mobile phone,
the Arduino collects the following information from various
components: (1) The phone’s identity from its Bluetooth
adapter and (2) the current time from a Real Time Clock.
With these information, the Arduino requests the Java card
to generate a digital signature. The signature is generated as
follows:

Sign = RSAEnc(PrivArduino,HashPhone|Time|IDPhone)

wherePriv Ard refers to the Arduino’s private key as stored
on the Java card (retrieved via the Java card reader). The
digital signature, together with the time and device ID are
then stored in the SD Card for future verification purpose.

B. Verification

As for the Verification phase, for digital signature verifica-
tion purpose, the user selects a stored photo and the related
metadata. The Arduino looks up from the SD Card the hash
value and performs a digital signature to verify that the hash
was submitted by a phone with the same ID at the time
specified by the stored value. The decryption is done using
the public key of the Arduino as stored in the JavaCard.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

TABLE I: Running Time of Different Algorithms in Our
Device and PC

Arduino + JavaCard JCOP on Windows
AES 128bit Encrypt 62.2ms 46.459ms
AES 128bit Decrypt 59.3ms 49.0299ms
RSA 1024bit Encrypt 82.2ms 74.6552ms
RSA 1024bit Decrypt 357.9ms 345.7577ms

SHA1 4 Blocks 60.1ms 52.9774ms

Such a verification process validates the phone-time-image
tuple, and allows the usage of this information for official
evidence as long as the digital signature is performed using
a key signed by a trusted authority.

IV. PERFORMANCE

The performance of this integrated device can be affected
by many different aspects.

A. UART

First of all is UART. Theoretically, the baud rate of UART
serial interface is limited by the accuracy of clock signal
supplied to the channel. Some of the peripheral devices, such
as Bluetooth module, can achieve higher baud rate up to
3 Mbps. However, if different serial devices are running at
different baud rates, additional waiting cycles induced by
delay() function are required, which in turn may create
unnecessary overhead and I/O error in the Arduino. Our
integrated solution unifies the maximum UART baud rate to
115,200 bps among all serial interfaces. Achievable data rate
then becomes about 80% (about 100 kbps) after applying the
flow control protocol over the application.

B. Cryptographic Functions using Java Card

The second aspect affected the performance is crypto-
graphic functions using Java card. We load all different
cryptographic functions onto a JCOP21 v2.3.1 JavaCard. The
data block size was set to 128 bits. We then perform a series
of tests. We compare the results with directly invoking JCOP
operations on a Java card from a Windows 7 x64 computer
environment via a USB 2.0 card reader. The results are shown
in I.

From the results, it can be shown that the performance of
driving a Java card over Arduino is comparable to the per-
formance of standard JCOP console on Windows computer.
The only difference is caused by overhead in the transmission
protocol which is not well optimized in our implementation.

C. Bus Speed between Arduino and SD Card

SPI bus speed of Arduino is at 500 kbps, and most of
the SD flash memory card can achieve a few Mbps data
rate. Whereas I/O throughput is not a major concern in our
implementation. With external flash memory, the bus speed
is relatively slow when compared to the single cycle read
and write operations on internal SRAM. If intensive table
lookup operations are required, the lookup data should still
be placed in the internal flash memory or loaded into the
SRAM, rather than from the external SD card.

D. Real Time Clock

The real time clock retrieves 8 bytes of timestamp data,
including the first zero byte being transmitted. Such an
operation takes around 1 ms. On the other hand, converting
binary-coded decimal timestamp into unsigned integer takes
around 2.3 ms. Thus the overall operation of timestamping
can be completed in 4ms.

V. CONCLUSION

In this paper, the use of hardware platform for building a
real-life application has proved to be satisfactory and promis-
ing in terms of speed, versatility and security. As one of the
most common micro-processor, Arduino can be utilized in
the application to provide various security features. However,
due to Arduino’s limited processing power and memory,
Arduino yields a pretty poor performance especially when
RSA algorithms are involved. Our research work utilized the
good compatibility of Arduino. By integrating Java card, we
accelerate the efficiency of RSA encryption and decryption
computation on Arduino. Besides, we also connect Arduino
with Bluetooth adapter, real-time clock and SD card module
to complete an interesting and useful application for Android
smart phone.

REFERENCES

[1] M. Gerd, “Encryption with Arduino AES-256 and RSA-512,”
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1276073358/,
2012, [Online; accessed 19-July-2012].

[2] J. Arkko, H.-M. Rissanen, A. Keranen, and M. Sethi, “Practical con-
siderations and implementation experiences in securing smart object
networks,” 2012.

[3] C. Cossio, “The checkpoint charlie,” inPhilips ARM Design Contest
2005, Spain, 2005.

[4] “ISO/IEC 7816 Identification cards - Integrated circuit cards,” 2005.
[5] Bluegiga, “Wt11 data sheet,” http://www.iearobotics.com/personal/

ricardo/proyectos/skybluetooth/docs/wt11.pdf, 2007.
[6] Y. Shaked and A. Wool, “Cracking the bluetooth pin,” inProceedings

of the 3rd international conference on Mobile systems, applications,
and services. ACM, 2005, pp. 39–50.

[7] D. Semiconductor, “Ds1307 64x8 serial-real time clock,” 2008.
[8] W. Greiman, “sdfatlib under gnu gpl v3 license,” http://code.google.

com/p/sdfatlib/, 2012.
[9] S. Electronics, “Sd under gnu gpl v3 license,” http://arduino.cc/en/

Reference/SD/, 2010.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

