Floristic and habitat differentiation of heritage trees in Hong Kong's urban forest

C Y Jim The University of Hong Kong hragjcy@hku.hk geog.hku.hk/staff_FT_jim.html

16th European Forum on Urban Forestry Milano, Italy 7 - 11 May, 2013

Presentation Outline

Introduction

Study area and methods

Main results

Discussion of key findings

Management implications and conclusion

16th European Forum on Urban Forestry Milano, Italy 7 - 11 May, 2013

Champion calibre tree

Outstanding remnants of urban trees Tiny cohort of meritorious trees Soldier on despite heavy odds of urban living Genetic superiority (genotype) Freedom from grave human impacts Freedom from nature's extreme impacts ► Quality of tree management Respected and sometimes revered Collective memory of citizens Linking present to past and future Emotional attachment > Fine examples of nature-in-city Linking people to nature

Heritage trees (HT) as outstanding members of urban forest

Inherent tree attributes

≻ Age

➢ Size

➢ Form

➤ Health

Species

- Ecological function
- Landscape contribution
- Cultural & historical association

Valuable nature-cum-culture inheritance

Study objectives

- Deep understanding of precious living resource
 - Floristic composition and diversity
 - Biomass structure
 - Importance value
 - Spatial differentiation by districts and habitats
 - Findings to inform practical management and conservation
 - Knowledge transfer to south China and other cities

Presentation Outline

Introduction

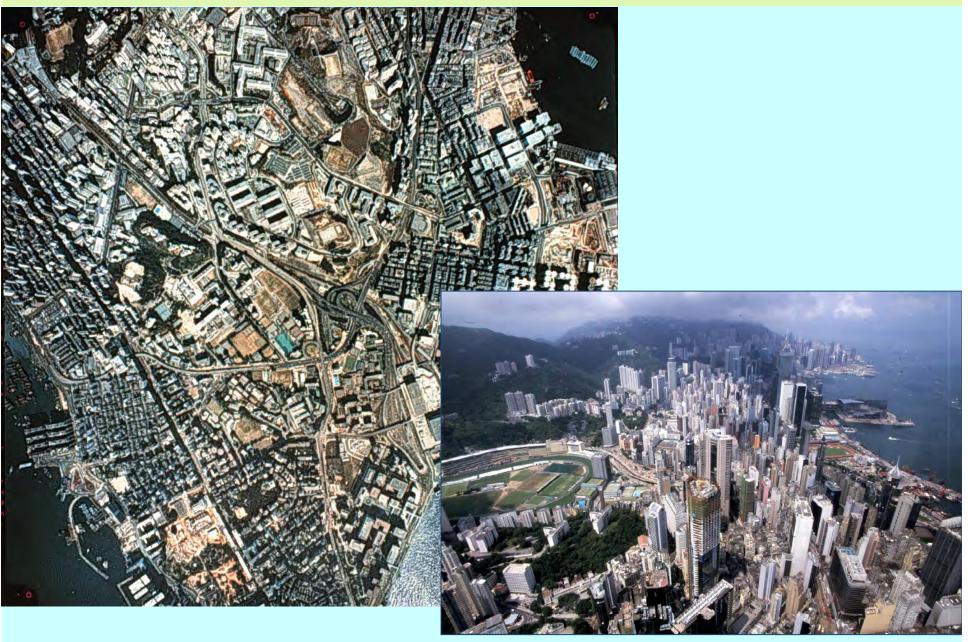
Study area and methods

Main results

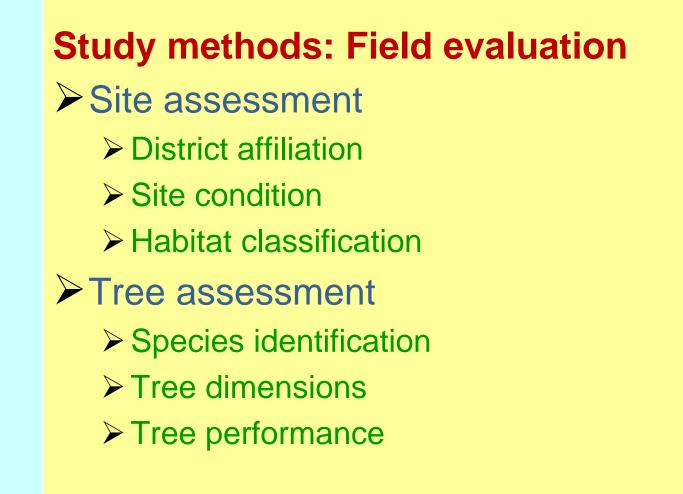
Discussion of key findings

Management implications and conclusion

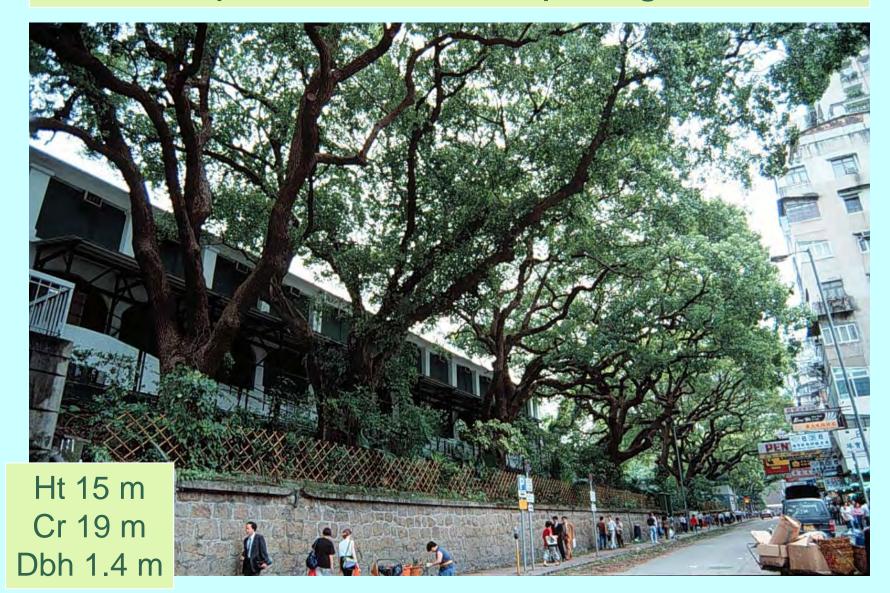
16th European Forum on Urban Forestry Milano, Italy 7 - 11 May, 2013


Study area: Hong Kong South China subtropical city 1104 km² with hilly and difficult terrain \geq 7 million population \succ Living in 22% built-up areas Average urban density 33,000 persons/km² Ultra-compact and vertical city Focus of study Official register of heritage trees \geq 9 districts in core urban areas 10 main tree habitats

Limited land area and difficult terrain



Heritage Trees in Hong Kong / C Y Jim


Ultra-compact development mode

Heritage Trees in Hong Kong / C Y Jim

Camphor Trees at Haiphong Road

Study methods: Data analysis Plant and community ecology techniques Detrended correspondence analysis (DCA) Similarity percentage analysis (SIMPER) Other statistical tests (SPSS) Species diversity indices Shannon-Wiener species diversity index Evenness index Species importance value New indices of spatial differentiation District similarity index (DDI) District heterogeneity index (DHI) Habitat similarity index (HDI) Habitat heterogeneity index (HHI)

Presentation Outline

Introduction

Study area and methods

Main results

Discussion of key findings

Management implications and conclusion

16th European Forum on Urban Forestry Milano, Italy 7 - 11 May, 2013

Species composition and importance value ➢ 352 HT, 70 species, 56 genera, 35 families Dominant species (> 100 trees) Ficus microcarpa (Chinese Banyan) ▶ 181 trees (51.4%) \succ Common species (10 – 100 trees) Ficus elastica (Indian Rubber Tree, exotic) Ficus virens (large-leaf Banyan) *Cinnamomum camphora* (Camphor Tree) \triangleright Rare species (2 – 9 trees), 22 species \succ Solitary species (1 tree), 44 species

Species composition and importance value Highly uneven species frequency \succ Top 4 species: 83% trees Remaining 66 species: 17% trees Native versus exotic species ➢ Natives: 20% species, 66% trees ► Exotics: 80% species, 34% trees Family and genus representation Domination by Moraceae (Mulberry family) Domination by genus Ficus (Fig)

Species differentiation by districts

Highly uneven distribution by districts > Oldest CW: highest species and tree counts Uniqueness of species in districts (DCA) Found in 8/9 districts, led by CW > High floristic distinctiveness or fidelity Spatial differentiation of species in districts (SIMPER) > High degree of dissimilarity amongst most districts

Distribution and characteristics of HT in 9 districts

Table 4

The frequency, dimensions and diversity of OVTs in the study area composed of nine districts in Hong Kong.

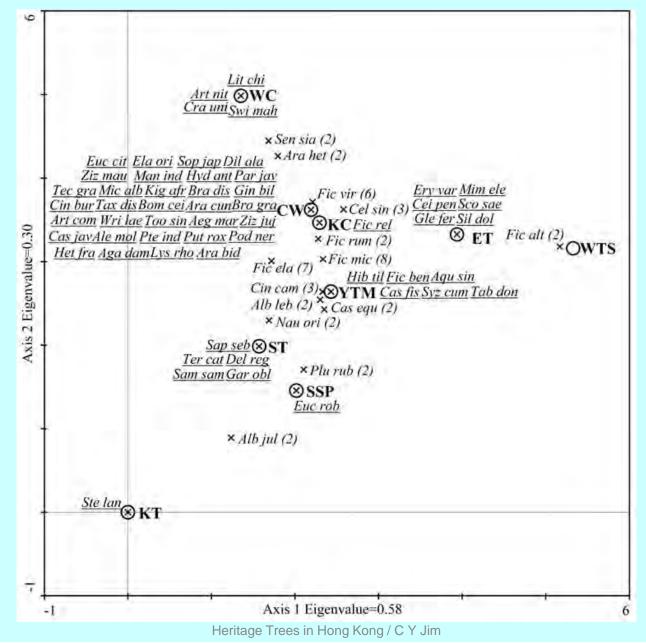
District ^a	Species count	Tree count	Mean height (m)	Total basal area (m ²)	Total crown cover (m ²)	Shannon diversity index (H')	Evenness index (E)
CW	40	121	17.04	180.92	35,144.45	2.21	0.60
YTM	13	102	12.54	147.66	25,090.17	1.22	0.48
ST	11	35	15.27	72.57	10,972.93	2.03	0.85
ET	12	31	16.67	27.63	8,128.87	2.10	0.85
WC	10	23	19.60	45.12	8,069.80	2.07	0.90
SSP	6	16	13.33	25.00	4,265.69	1.39	0.77
KC	4	12	14.25	21.05	4,805.77	0.98	0.71
WTS	2	8	16.50	18.48	3,870.05	0.66	0.95
KT	3	4	15.00	3.43	1,292.11	1.04	0.95
Total	101	352	140.20	541.86	10,1639.84	13.70	7.06
Average	11.22	39.11	15.58	60.21	11,293.32	1.52	0.78

^aRefer to Table 1 for the meaning of the district abbreviations.

SIMPER dissimilarity amongst districts

Table 5

Dissimilarity among nine districts based on tree species composition found by SIMPER analysis.


District ^a	CW	WC	ET	ST	KT	KC	WTS	YTM	SSP
CW	0.00								
WC	73.77	0.00							
ET	84.11	60.14	0.00						
ST	70.01	62.16	70.21	0.00					
KT	97.21	88.33	92.21	92.28	0.00				
KC	81.78	50.68	39.59	64.11	81.02	0.00			
WTS	94.56	80.53	74.68	86.23	100.00	69.18	0.00		
YTM	35.39	88.35	84.77	75.85	100.00	83.97	93.54	0.00	
SSP	83.02	61.98	50.43	63.82	79.29	27.69	73.03	81.46	0.00
$\mathrm{DDI}^{\mathrm{b}}$	77.48	70.74	69.52	73.08	91.29	62.25	83.97	80.42	65.09
DHI ^c	22.55	20.12	25.93	21.94	9.95	24.85	18.32	22.38	20.49

^aRefer to Table 1 for the meaning of district abbreviations.

^bDDI denotes district dissimilarity index, computed by summing the dissimilarity values of a given district and then average it.

^cDHI denotes district heterogeneity index, computed by summing the difference between the highest dissimilarity value of a given district and the remaining seven values and then average it.

DCA ordination of 9 districts by HT species

Species differentiation by habitats

- ➢ Variations by habitats
 - Public parks and gardens (PPG): highest species and tree counts
 - Followed by: GIC, residential, roadside tree pit
- Uniqueness of species in habitats (DCA)
 - ➢ Found in 5/10 habitats, led by PPG
 - High floristic distinctiveness or fidelity
- Spatial differentiation of species in habitats (SIMPER)

Highest dissimilarity: public housing (PH)

Distribution and characteristics of HT in 10 habitats

Table 7

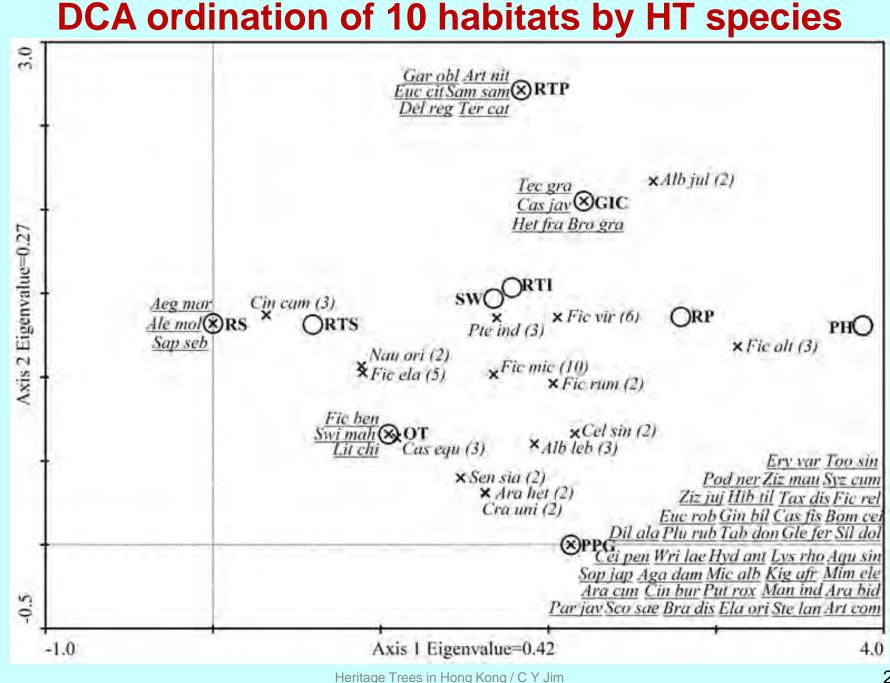
The frequency, dimensions and diversity of OVTs in ten main tree habitats in urban Hong Kong.

Tree habitat ^a	Species count	Tree count	Mean height (m)	Total basal area (m ²)	Total crown cover (m ²)	Shannon diversity index (H')	Evenness index (E)
PPG	53	144	15.82	172.15	38,114.11	2.90	0.73
RTP	12	36	15.46	42.36	11,553.63	2.05	0.82
OT	10	19	18.21	29.81	7,537.77	1.73	0.75
GIC	9	23	16.22	31.27	7,979.53	1.75	0.80
RS	8	27	15.24	64.96	8,006.22	1.46	0.70
RTS	3	45	14.24	89.01	9,081.86	0.59	0.53
PH	3	4	15.25	14.23	1,982.91	1.04	0.95
RP	3	19	17.47	34.44	7,108.96	0.71	0.64
RTI	2	7	13.57	12.28	2,014.31	0.41	0.59
SW	2	28	16.46	51.34	8,260.56	0.34	0.49
Total	105	352	157.94	541.86	10,1639.84	12.98	7.00
Average	10.50	35.20	15.79	54.19	10,163.99	1.30	0.70

^a GIC denotes government, institutional and community land; PH public housing estate; PPG public park and garden; RP roadside planter; RS roadside slope; RTI roadside traffic island; RTP roadside pavement tree pit; RTS roadside tree strip; SW stone wall; and OT others.

SIMPER dissimilarity amongst habitats

Table 8


Dissimilarity among ten main tree habitats based on tree species composition found by SIMPER analysis.

Tree habitat ^a	RTP	RTS	RTI	PPG	GIC	PH	RP	RS	SW	ОТ
RTP	0.00									
RTS	68.75	0.00								
RTI	61.85	78.02	0.00							
PPG	74.79	54.79	88.93	0.00						
GIC	53.97	74.57	48.55	75.84	0.00					
PH	80.04	89.69	57.66	94.30	78.84	0.00				
RP	47.17	55.25	47.94	75.99	58.27	57.63	0.00			
RS	63.59	59.50	69.24	75.36	64.09	85.49	61.88	0.00		
SW	48.28	32.95	60.72	61.32	57.48	83.96	33.81	67.71	0.00	
ОТ	54.75	65.34	51.39	78.10	54.44	76.79	46.20	52.27	56.98	0.00
$\mathrm{HDI}^{\mathrm{b}}$	61.47	64.32	62.70	75.49	62.89	78.27	53.79	66.57	55.91	59.28
HHI ^c	20.90	28.54	29.51	21.16	17.94	18.04	24.97	21.29	31.55	20.83

^aRefer to footnote of Table 7 for the meaning of tree habitat abbreviations.

^bHDI denotes habitat dissimilarity index, computed by summing the dissimilarity values of a given habitat and then average it.

^cHHI denotes habitat heterogeneity index, computed by summing the difference between the highest value of a given habitat and the remaining nine values and then average it.

Presentation Outline

Introduction

Study area and methods

Main results

Discussion of key findings

Management implications and conclusion

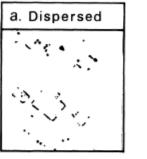
16th European Forum on Urban Forestry Milano, Italy 7 - 11 May, 2013

Key features of HT

Domination by Ficus species Robustness and tenacity in stressful urban sites Strong presence of large trees Contradicts shrinkage and degradation of habitats Linger despite harsh urbanization impacts Preferential preservation of large trees Land allocation for trees in urbanization Protect existing HT > Nurture future cohort of HT

Roadside habitat: Outstanding Chinese Banyan

Common occurrence of minority members \geq 66/70 rare and solitary species Botanical, ecological & landscape diversity Genuine rare Pre-urbanization inheritance Woodland relicts (spontaneous) Post-urbanization enrichment Ruderal colonization (spontaneous) Idiosyncratic choice (cultivated) Accidental substitute (cultivated) ➤Garden vestige (cultivated) Selected rare ➢ 55/66 species: exotic & not naturalized Cultivated & post-urbanization enrichment

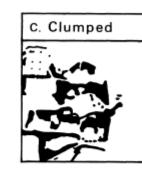


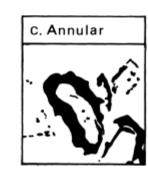
Heritage Trees in Hong Kong / C Y Jim

Spatial differentiation by districts Old districts: better HT inheritance > Old town plan, park and barracks European avenue planting tradition since 1840s Intra-site interstitial spaces: off-road trees Endurance of town plan >Allow persistence of trees in townscape > Unique species composition Bygone landscape preference, fad and fashion Later districts: less HT inheritance High-density development mode and infilling Departure from tree-planting tradition Less plantable spaces for new trees Loss of existing plantable spaces and trees

Reduction in plantable space

1. ISOLATED





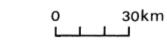
b. Clustered

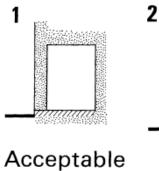
C. Continuous

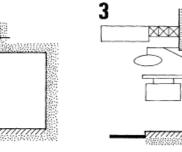


Tree canopy cover

b. Ramified



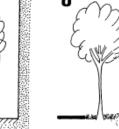

FIG. 6-Classification scheme for urban tree canopy.

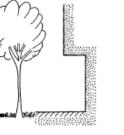

Impossible

4

Ideal

7





5


Carriageway Building /structure 0.0000000

777777777 Pavement

waxwe Lawn 0

_m__3

Heritage Trees in Hong Kong / C Y Jim

Loss of plantable space

Spatial differentiation by habitats

Public parks and gardens & barracks

- Islands of nature in congested city
 - Less physical and physiological stresses
 - ► Nurture ground and refuge for HT
 - More species
 - More species exclusiveness (dissimilarity index)
 - ► Larger trees
- Continual emergence of next generation of HT?
 - Contingent upon critical links and conditions
 - Soil and site quality
 - Planting material quality
 - Match between site and species
 - Tree care quality

Spatial differentiation by habitats

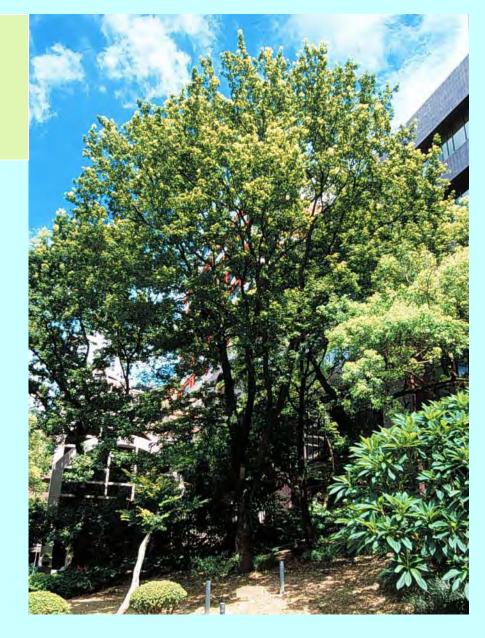
- Roadside habitats
 - Relicts of European avenue planting tradition
 - ► Mainly planted in the 19th century
 - Lower development density
 - Less conflicts between buildings, roads and trees
 - Degraded growth spaces and conditions
 - Persistence of exceptionally tenacious trees
 - Continual emergence of next generation of HT?
 - Grave limitations
 - Discontinuity in tree populating structure
 - Lack of successors
 - Need conscious efforts to create enabling conditions

Roadside habitat

Heritage Trees in Hong Kong / C Y Jim

Roadside habitat

Spatial differentiation by habitats


- Government institutional & community habitat
 - Low building site coverage
 - Generous ground-level spaces
 - Disappointing HT quantity and performance
 - Almost ubiquitous pour-concrete paving
 - Catering to car-parking and other activities
 - ► Wasted greening opportunities

Government institutional community habitat

Heritage Trees in Hong Kong / C Y Jim

Government institutional community habitat

Spatial differentiation by habitats

Public housing estates

- Accommodate nearly half of population
 - More and better ground-level spaces
 - ► Generous use of spaces for greening
- Highest dissimilarity index
 - Species make-up stands aloof and alone
 - Autonomous operation outside government regime
 - Escape from bondage and baggage burden
 - Enlightened attitude and policy towards greening
 - Relatively young HT
 - ► Pool of potential HT for future contributions

Public housing estate

Spatial differentiation by habitats ➢ Old stone retaining walls Highest habitat heterogeneity index Special vertical artificial-cliff habitat Unusual ecological habitat for unusual trees Spontaneous colonization by strangler figs ► Mainly native *Ficus* species Sustainability of stonewall HT? Relict construction material and method Superseded by reinforced concrete walls Degradation and destruction by adjacent urban redevelopment and stabilization works Threatened heritage

Old stone retaining wall

Heritage Trees in Hong Kong / C Y Jim

Presentation Outline

Introduction

Study area and methods

Main results

Discussion of key findings

Management implications and conclusion

16th European Forum on Urban Forestry Milano, Italy 7 - 11 May, 2013

Optimize tree-city-people complex

- Evident failure of some later districts and habitats to rear HT
 - Defend HT against negative forces
 - Ameliorate limitations in different habitats
 - Protect and provide conditions for HT
 - Create high-quality planting sites
 - Nurture proactively the future crop of HT
 - Treat trees as indispensable urban infrastructure
 - Establish professional-scientific arboricultural team
 - Enact tree ordinance
 - Improve and consolidate tree management structure

Conclusion

Conspicuous urban landscape elements > Antithesis of urbanization Needs extra efforts and ingenuity to sustain A precious inheritance Product of fortuitous and serendipitous circumstances in the past Normally inheritable and should be inherited to future generations Overhaul attitude and mentality Arrest the decline Replenish and refurbish the HT stock Act before it becomes irreversible Wise and visionary application of knowledge

The End Questions and Comments are Welcome

16th European Forum on Urban Forestry Milano, Italy 7 - 11 May, 2013

