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Abstract  

Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals 

from one- to multi-dimensional spaces and play an important role in extending the fractional 

differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular 

kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. 

It is noted that these kernels after simple transforms can be taken as the Jacobi weight functions which 

are related to the weight factors of Gauss-Jacobi and Gauss-Jacobi-Lobatto rules. These rules can 

evaluate the fractional integrals at high accuracy. Comparisons with the three typical adaptive 

quadrature rules are presented to illustrate the efficacy of the Gauss-Jacobi-type rules in handling 

weakly singular kernels of different strengths. Potential applications of the proposed rules in 

formulating and benchmarking new numerical schemes for generalized fractional diffusion problems 

are briefly discussed in the final remarking section.  
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1. Introduction 

Recent decades have witnessed a fast growing research on the applications of fractional calculus in 

diverse science and engineering fields such as physics [1,2,3], rheology [4,5], finance [6,7], acoustics 

[8,9], fractal geometry [10], hydrology [11,12,13], etc. In particular, by replacing the second-order 

derivative with a derivative of fractional order α(1,2] in the conventional advection-diffusion 

equation, fractional advection-diffusion equation (FADE) appears to be a promising tool to describe 

solute transport in groundwater [11]. Solutions of the FADE are the Lévy-stable motions which can 

describe the super-diffusive flow [12]. For modeling problems in higher spatial dimensions, the 

fractional diffusion operator in the FADE has been extended to the weighted, fractional directional 

diffusion operator MD
 from which the full range of the Lévy-stable motions can be generated [13]. 

The mathematical complexity of fractional derivatives often makes the analytical solutions of 

FADEs inaccessible [14]. Hence, the numerical solution techniques are usually resorted to. To test a 

numerical method for solving FADE, a reference solution with defined source term is needed. Take 

the 2D problem, i.e.  

 ( , ) ( , ) 0MD u x y f x y     (1) 

as an example. It is common that the solution u is pre-fixed and the source term f is numerically 

computed to satisfy the FADE. With f prescribed, the efficacy of the numerical method can be 

assessed by comparing its prediction with the pre-fixed u. This paper presents a numerical scheme 

which can compute f to high accuracy for each discrete point in the computational domain.  

Fractional directional integrals are involved in the definition of fractional diffusion term ( )MD u
x  

where u is the solute concentration and x the position vector. To evaluate MD
, one must first calculate 

the fractional directional integrals. Since the fractional directional integration of even the most 

elementary functions may have non-closed form expression, numerical approximation is often 

required. The vector Grünward formula [15] is a possible choice. However, its accuracy is only O(h) 

where h is the grid size. Integration quadrature is another alternative. Owing to the weakly singular 

kernel in the integrand of the fractional directional integral, the conventional quadrature rules such as 

Newton-Cotes, Gauss-Legendre rule, and its Kronrod refinement [16] fail to offer adequate accuracy. 

This constitutes a motivation to seek other quadrature rules which are more accurate and fast-

convergent.  

Gauss-Jacobi-type quadrature rules are potentially effective tools to evaluate fractional directional 

integrals. This type of rules takes the Jacobi weight function, which defines the orthogonality of the 

Jacobi polynomials, as the weight function. For a fractional directional integral, the weakly singular 

kernel -1 ((0,1)) in the integrand can be transformed to (1+)-1 which becomes a special case of 
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the Jacobi weight function (1-)μ(1+)λ for μ, λ>-1. Consequently, the singularity of the integrand can 

be effectively removed. 

Section 2 will discuss the definitions of fractional directional operators and their roles in the multi-

dimensional fractional spatial operators, followed by Section 3 in which Gauss-Jacobi-type rules and 

their applications to fractional directional integrals are presented. In Section 4, one- and two- 

dimensional examples are examined and discussed. Finally, Section 5 remarks on the utility of the 

proposed rules in formulating and benchmarking numerical schemes for generalized fractional 

directional diffusion problems. 

 

2. Fractional directional integrals and their applications 

This section first introduces how the fractional directional integrals are extended from 

conventional n-fold definite integrals and then defines the fractional directional derivatives. In the last 

subsection, three typical two-dimensional fractional spatial operators are mentioned. 

2.1. Directional integrals 

The Cauchy formula [17] can rewrite the left-sided n-fold definite integral in a convolution form, 

i.e. 

 

3 2

1

1 1 2 1

1
( ) ( ) ( ) ( )

( )

nx x xx x

n n

a n n

a a a a a

I f x f x dx dx dx dx x f d
n

  

   
      (2) 

in which f(x) is defined on [a,b], n is a positive integer and Г(z) the gamma function. Similarly, the 

right-sided integral reads  

 

3 2

1

1 1 2 1

1
( ) ( ) ( ) ( )

( )
n

b b b b b

n n

b n n

x x x x x

I f x f x dx dx dx dx x f d
n

  

   
     . (3) 

Applying the transforms =±(x-ξ) to formulas (2) and (3) produces  

 
1

0

0

1
( ) ( cos0)

( )

x a

n nI f x f x d
n

  


 
  , (4) 

 
1

0

1
( ) ( cos ) , [ , ]

( )

b x

n nI f x f x d x a b
n

    


  
  .  (5) 

The subscripts of the above integration operators “In” denote the integration direction θ[0,2π). The 

integration operators in (4) and (5) can be generalized to rectangular domain 
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( , , )

1

0

1
( , ) ( cos , sin ) ,

( )

                                 ( , ) [ , ] [ , ], [0,2 ).

d x y

n nI g x y g x y d
n

x y a b c d



      

 

  


   

  (6) 

The upper integration limit d(x,y,θ) is termed as the “backward distance” of point (x,y) to ∂Ω along 

the direction θ={cosθ,sinθ}T, as seen in Fig.1. Similarly, the directional integral in three-dimensional 

space can be defined as 

 

( , , , )

1

1 2 3

0

1 2 3 2

1
( , , ) ( , , ) ,

( )

      ( , , ) [ , ] [ , ] [ , ], { , , } , =1.

d x y z

n n

T

I h x y z h x y z d
n

x y z a b c d e f

    

  

   


    


θ

θ

θ θ

 (7) 

 

For simplifying discussion, we shall concentrate on the integrations in one- and two- dimensional 

spaces. Substituting n in integral (6) with a fraction γ  (n-1,n) yields the fractional directional 

integrals, i.e.  

 

( , , )

1

0

1
( , ) ( cos , sin )

( )

d x y

I g x y g x y d



 

      


  
  . (8) 

Through integration by parts, one can prove that I  becomes the identity operator I as γ→0. When θ 

equals 0 and π, integral (8) can be recovered to left- and right-sided Riemann-Liouville integrals [17], 

respectively. 
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Fig.1. The backward distance d(x,y,θ) of node (x,y) to the boundary  

of a rectangle in the direction θ. 
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2.2. Compounding the directional differentiation and fractional directional integration operators 

The n-th order directional derivative of g(x, y) is defined as  

  ( , ) cos sin ( , )
nnD g x y g x y

x y
  

 
 

 
. (9) 

The operators in (8) and (9) can be compounded in two different ways which leads to the Riemann-

Liouville and Caputo fractional directional operators, namely 

 
*

Riemann - Liouville

Caputo

( , ) ( , ) ( ),
 ( 1, ).

( , ) ( , ) ( ),

n n

n n

D g x y D I g x y
n n

D g x y I D g x y

 

  

 

  







 
 



 (10) 

The fractional directional integration operators possess the following properties similar to those of 

0I  or aI   [18], i.e.  

 1 2 2 1 1 2I I I I I
     

    


  , (11) 

 I uvd uI vd 

  
 

   , (12) 

and the integration and differentiation operators of the same order satisfy 

 D I I 

   . (13) 

More properties of the fractional directional integrals and derivatives can be found in [18]. 

 

2.3. Riesz potential, fractional Laplacian and generalized fractional diffusion operator 

The formulation of the Laplacian of a fractional order generally depends on the Fourier transforms 

[19]: 

 
/2 1

2
( ) ( )

   x κ  (14) 

with x, κ  ℝ2.  

For α<0, the left hand side of (14) is the Riesz potential [19] 

 
2

/2

2
2

1 ( )
( ) ( ) ( ) , ,4,6,...

( )
2

d
I 2 




  

 




    

 


y y
x x

x yR
 (15) 

with ( )2 
 
defined in [Eq.(25.26) ,19]. Using the polar coordinates and the definition in (8), one 

can rewrite (15) in the following form [Eq. (25.34), 19]: 
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2

3/2

0

1 2
( ) ( )

2 2( , ) ( , ) , ,4,6,...
2

I x y I x y d 2



 



 

   


 

 
 

   . (16) 

Eq.(16) shows that the Riesz potential can be interpreted as an integration of fractional directional 

integral ( , )I x y

 
. Here, the backward distance d(x,y,θ) in ( , )I x y

 
is ∞.  

For α>0, the fractional Laplacian can similarly be defined as an integration of fractional directional 

derivative, namely [Eq. (26.24) ,19]   

  
2

/2

2 0

( )sin( / 2)
( , ) ( , )

( )
x y D x y d


 



 
  

 

 
     (17) 

with β2(α) defined in [Eq. (26.8),19]. Using basic relationships of the gamma function [20], i.e. 

 

2 1

( ) ( 1) ( 1),Re( ) 0,

( ) (1 ) , ;0 Re( ) 1,
sin( )

2 1
(2 ) ( ) ( ), ,

2

z

z z z z

z z z z
z

z z z z









     

      

     

Z

C

 (18) 

 (17) can be written in a form similar to (16)  

  
2

/2

3/2

0

1 2
( ) ( )

2 2( , ) ( , )
2

x y D x y d


 



 

  


 
 

   . (19) 

From (16) and (19), one can see that the Laplacian of a fractional order can be expressed in terms of 

an integration of the fractional directional integral or derivative. Incidentally, another type of 

definition of fractional Laplacian, which helps to model the acoustic attenuation in lossy media 

exhibiting arbitrary frequency power-law dependency, can be found in [30]. 

Assigning a probability weight to each direction θ in (19) will yield a generalized fractional 

diffusion operator [13]: 

 

2

0

( , ) ( , ) ( ), (1 2)MD x y D x y M d



 

       (20) 

with the finite probability measure M(dθ). In compliance with the differential order in FADE, α(1,2] 

is limited. When M(dθ) is uniform or M(dθ)=1/(2π)dθ, the relationships in (18) lead to the following 

relation between the fractional Laplacian and the generalized fractional diffusion operator 
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/2( , ) ( ) ( , ), (1,2]

1 2
( ) ( )

2 2

MD x y x y 
  

 
  

 
 

. (21) 

A trivial case of (21) is 
2 0.5MD   .  It can be seen from (21) that the fractional Laplacian is simply a 

special case of the generalized fractional diffusion operator with a uniform M.  

 

3. Gauss-Jacobi-type rules 

The Gauss-Jacobi-type rules approximate the integral of the form 

 

1

( , )

1

( ) ( )w f d    




 ,  μ, λ>-1 (22) 

in which f is a sufficiently smooth non-singular function and  

 
( , ) ( ) (1 ) (1 )w         , , 1     (23) 

is the Jacobi weight function. The quadrature points are the zeros of the Jacobi polynomials to be 

discussed in the following subsection. The approach in [21] is employed here to solve the zeros.  

 

3.1. Jacobi polynomials and their zeros 

Jacobi polynomials 
( , )

nP  
 of degree n defined in [-1,+1] satisfy the following orthogonal 

condition 

 

1

( , ) ( , ) ( , )

, ,

1

( ) ( ) ( )m n n mnw x P x P x dx C     

 




  (24) 

where  

 

1

, ,

2 ( 1) ( 1)

2 1 ( 1) !
n

n n
C

n n n

 

 

 

   

       


      
. (25) 

The Jacobi polynomials 
( , )

NP  
 can be obtained by the following recursive relation 

 

( , ) ( , ) ( , )

1 2

( , ) ( , )

1 0

( ) ( ) ( ) ( ), 1,2,...,

( ) 0, ( ) 1

n n n n n nP x a x b P x c P x n N

P x P x

     

   

 



   

 
 (26) 

with  
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2 2

2 2

2 2

2 1
(2 , ), 1

2 ( ) 2 2

1
( , ) (2 1, ), 2, 1

2 3

1
(1, ), 1, 1,

2

n n

n
n

n n n

a b n n
n n

n

   
   

   

 
 

   

    
    

    

 

     



    



, (27) 

 
( 1)( 1)(2 )

, 2
( )(2 2)

n

n n n
c n

n n n

   

   

     
 

    
. (28) 

The equation system in (26) can be expressed in a matrix-vector form as [21,22] 

 

( , ) ( , )

0 01 1

( , ) ( , )

1 11 2 2

2

( , ) ( , )
1 12 2

( , ) ( , )
1

1 1

( ) ( )0

( ) ( )

           

           

( ) ( )

0( ) ( )

N NN N

N N
N N

P x P xA B

P x P xB A B

B
x

A BP x P x

B AP x P x

   

   

   

   

  


 

   
   
   
    

   
  
  
  
     

( , )

        0

        0

        

        

        0

( )N NB P x 

   
   
   
      

   
   
   
   

     

 (29) 

in which /n n nA b a  , 1 1/n n n nB c a a   and 
( , ) ( , )

, ,/n n nP P C   

  . One can see that xi is the 

zero of 
( , ) ( )NP x 

 
iff xi is the eigenvalue of the above tridiagonal matrix.  

 

3.2. Gauss-Jacobi rule 

In the Gauss-Jacobi rule, the weighted integration in (22) is evaluated by 

 

1

( , )

11

( ) ( ) ( )
N

k k

k

f w d f     




  (30) 

and the error [23] is 

 

21(2 )

11

( )
( ) (1 ) (1 ) , ( 1, 1)

(2 )!

N N

k

k

f
d

N

 
     





 
      

 
 . (31) 

Obviously, the rule is exact for polynomials of degree up to 2N-1. The quadrature points k are the 

zeros of 
( , ) ( )NP    . And according to [21], the weight factors ωk are determined by 

 
2

0k kc q   (32) 
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where qk is the first component of the normalized (unit) eigenvector corresponding to the k-th 

eigenvalue k and 

 

1 1

( , ) 1

0

1 1

( ) (1 ) (1 ) 2 ( 1, 1)c w d d B           
 

 

 

         (33) 

where B(∙,∙) is the beta function. As a matter of fact, the commonly used Gauss-Legendre rule can be 

regarded as a special case of the Gauss-Jacobi rule with weight function 1=(1-)0(1+)0, i.e.  =  = 0. 

3.3 Gauss-Jacobi-Lobatto rule 

In the Gauss-Jacobi-Lobatto rule, the weighted integration in (22) is evaluated by   

 

1 1

1 2

21

( )(1 ) (1 ) ( 1) ( ) (1)
N

k k N

k

f d f f f        
 





       (34) 

and the error [23] is 

 

21(2 2) 1
2

21

( )
( 1) ( ) (1 ) (1 ) , ( 1, 1)

(2 2)!

N N

k

k

f
d

N

 
      

 



 
         

  (35) 

It can be seen that the quadrature points include the integration limits and the rule is exact for 

polynomials of degree up to 2N+1. The interior quadrature points k are zeros of 
( 1, 1) ( )NP    

. There 

are three equivalent sets of formulas for the weight factors ωk [24,25,26], among which the one by 

Zheng and Huang [25] is as follows 

 

 

, 1

1

1
,

2
,2

1

, ,

2 1

1

      ( 2) ( 1)
2 ,

1 2( 3)

            

2 ( 2) ( 2)
, 2,3,..., 1,

( 1) ( 1) ( 3) ( )

.

k

N k

N

N

N

N N

N N

N N
k N

N N N P

   

 
 

 

   



 


   

 


  

 

 

 





   
  

      
          
   

  
      

  
        

 





 (36) 

For the purpose of reducing the accumulative numerical errors for a large N, 
 ,

1 ( )N kP
 

  
in (36) is 

evaluated by 

 
1

( , ) ( , )

1 1

1

( ) ( )
N

N k N k i

i

P K x    


 



   (37) 
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with the zeros ix  of 
 ,

1NP
 

  
from the computed eigenvalues and the leading coefficient 

( , )

1NK  

  derived 

from (26).   

 

3.4 Gauss-Jacobi-type rules for fractional directional integrals 

Returning to the fractional directional integral in (8), the transform =(d/2)(1+) allows us to 

rewrite (8) as  

 

1

1

1

1 ( , , )
( , ) (1 ) ( ; , , ) ,  (0,1)

( ) 2

d x y
I g x y g x y d



 




    







 
   
  

  (38) 

where 

 
( , , ) ( , , )

( ; , , ) ( (1 )cos , (1 )sin )
2 2

d x y d x y
g x y g x y

 
          . (39) 

Here the weakly singular term (1+)γ-1 in (38) can be treated as the weight functions with μ = 0 and λ 

= γ-1 in (30) and (34). Accordingly, (30) or (34) can be adopted to evaluate (38). Our Matlab codes 

for computing the quadrature points and weight factors of the Gauss-Jacobi-type rules based on any 

input μ- and λ- values larger than -1 can be accessed at http://www.ismm.ac.cn/download.html. 

 

4. Numerical results and discussions 

In Section 4.1, we consider the Riemann-Liouville integration 
aI  of two elementary functions. 

aI  can be seen as a directional integration operator along the positive x-axis, i.e. 0aI I 

  . We 

compare the approximations of the Gauss-Jacobi quadrature (GJ) and Gauss-Jacobi-Lobatto 

quadrature (GJL) with those from the Matlab build-in functions quad, quadl and quadgk which offer 

the adaptive Simpson quadrature, adaptive Lobatto quadrature [27] and adaptive Gauss-Kronrod 

quadrature [28], respectively. To avoid the endpoint infinities, quad and quadl replace the function 

evaluations at the endpoints by the values computed at their close neighborhoods. On the other hand, 

quadgk does not sample the integrand at the endpoints and is recommended for integral with moderate 

endpoint singularity [28]. An integration interval/subinterval would be kept being subdivided into 

shorter intervals unless the integral over the subinterval before and after a subdivision is smaller than 

a priori tolerance. The following warning messages may be returned by quad, quadl and quadgk: 

 

 

 

 

http://www.ismm.ac.cn/download.html
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Table 1. Err of GJL, GJ for different   and numbers of quadrature points.  

  
Number of quadrature points 

1 2 3 4 5 6 7 8 

0.25 
GJL _ 4.61e-1 5.92e-2 3.61e-3 1.25e-4 2.90e-6 4.68e-8 7.84e-10 

GJ 6.94e-1 7.08e-2 4.10e-3 1.43e-4 3.22e-6 5.16e-8 6.38e-10 4.16e-10 

0.50 
GJL _ 9.50e-1 1.13e-1 6.40e-3 2.17e-4 4.87e-6 7.72e-8 9.11e-10 

GJ 9.13e-1 1.03e-1 6.23e-3 2.14e-4 4.86e-6 7.75e-8 1.00e-9 2.95e-10 

0.75 
GJL _ 1.37e+0 1.63e-1 8.81e-3 2.84e-4 6.09e-6 9.24e-8 1.09e-9 

GJ 9.35e-1 1.19e-1 7.12e-3 2.41e-4 5.35e-6 8.35e-8 1.01e-9 2.96e-10 

 

 

W1: the minimal step size is reached  

(For quad and quadl, W1 will be returned when the shortest subinterval reaches  

eps(b-a)/1024 where a and b are the integration limits and eps  2.2610-16. For quadgk, 

W1 will be returned when |xi-xi+1|  100 eps xi+1 in which xi and xi+1 are the real non- 

normalized coordinate of two consecutive integration points) 

 W2: the maximum number of function evaluations is reached 

(For quad and quadl, the number is 10000. For quadgk, W2 is returned when the total number 

of subintervals exceeds control parameter MaxIntervalCount which is 650 in default.) 

       W3: infinite value is encountered in a function evaluation. 

 

In Section 4.2, the discretization of the generalized fractional diffusion operator mentioned in 

Section 2.3 would be investigated by using the approximations of the fractional directional integrals in 

two-dimensional space. 

 

4.1 Riemann-Liouville fractional integration of sin(x)and x-1cos (2x)  

4.1.1  sin(x) 

The fractional integral being considered is  

 
1

0

0

1
sin( ) sin( )

( )

x

I x x d   


 
  , [0,2 ], (0,1)x    . (40) 

The explicit expression of the integral is [Table 9.1, 19]: 

  0 1 1 1 1sin( ) (1; 1; ) (1; 1; )
2 ( 1)

x
I x F ix F ix

i


  


    

 
 (41) 

where i denotes 1  and 1F1 is the generalized hyper-geometric function defined as 
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 1 1

0

( )
( ; ; )

( )

k

k

k k

p z
F p q z

q





 . (42) 

In (42), (a)k=a(a+1)⋯(a+k-1). The function 1F1 is available in some computational software such as 

Matlab and Maple. The test point set {xk = kπ/8, k = 0,1,2,…,16} is considered. Denoting the exact 

and quadrature results at xk by respectively Rk and Qk, the following normalized error is computed:  

 

 
16

2

0

16
2

0

k k

k

k

k

Q R

Err

R











. (43) 

Err of GJL (=0, =-1) and GJ (=0, =-1) are listed in Table 1. Err of the adaptive methods with 

the error tolerance 10-6 and 10-10 are listed in Table 2. The “(Wn)” behind the data in Table 2 are the 

warning messages, if any, returned by Matlab and “Inf” indicates that the returned value of the 

integration is infinite. 

From the two tables, it can be seen that the Gauss-Jacobi-type rules can handle singularities of 

different strengths controlled by 0< <1, whilst the adaptive methods cannot. The influence of the 

strong singularity on the adaptive methods is obvious. To summarize, the adaptive methods fail more 

readily when the singularity is strong and when the preset tolerance is high. Among them, quadgk is 

the best option as recommended by the Matlab manual.  

Table 2.  Err of adaptive methods with error tolerances 10-6 and 10-10.       

 Error tolerance = 10-6 Error tolerance = 10-10 

 = 0.25  = 0.5  = 0.75  = 0.25  = 0.5  = 0.75 

quad 1.29e-4(W1) 1.21e-5 1.16e-5 1.38e-5(W1) 1.43e-8 2.98e-10 

quadl 2.70e-5 4.52e-7 9.84e-7 2.54e-5(W1) 5.65e-10(W1) 2.96e-10 

quadgk Inf(W3) 2.96e-10 3.38e-8 Inf(W3) 2.96e-10 2.98e-10 

 

Table 3. Err of GJL, GJ rules for different   and numbers of quadrature points.  

  
Number of quadrature points 

1 2 3 4 5 6 7 8 

0.01 
GJL _ 4.41e-3 1.52e-3 1.32e-4 5.94e-6 1.64e-7 3.08e-9 4.18e-11 

GJ 2.87e-1 2.52e-3 1.88e-4 7.74e-6 2.02e-7 3.66e-9 4.85e-11 4.90e-13 

0.1 
GJL _ 5.54e-2 1.89e-2 1.65e-3  7.37e-5 2.04e-6 3.82e-8 5.19e-10 

GJ 3.80e-1 2.74e-2 2.25e-3 9.10e-5 2.41e-6 4.39e-8 5.85e-10 5.93e-12 

0.3 
GJL _ 2.98e-1  9.55e-2 8.21e-3 3.65e-4 1.00e-5 1.88e-7 2.55e-9 

GJ 7.34e-1 1.12e-1 9.31e-3 4.03e-4 1.09e-5 2.00e-7 2.70e-9 2.76e-11 
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Table 4.  Err of adaptive methods with error tolerances 10-6 and 10-10        

 Error tolerance = 10-6 Error tolerance = 10-10 

 = 0.01  = 0.1  = 0.3  = 0.01  = 0.1  = 0.3 

quad Inf(W3) Inf(W3) 1.56e-5 Inf(W3) Inf(W3) Inf(W3) 

quadl Inf(W3) Inf(W3) Inf(W3) 2.60e+3(W2) 1.00e+3(W2) Inf(W3) 

quadgk 6.90e-1(W1) 2.41e-2(W1) 1.14e-5(W1) 6.90e-1(W1) 2.41-1(W1) 1.14e-5(W1) 

 

4.1.2  x-1cos (2x)  

The fractional integral being considered is  

  1 1 1

0

0

1
cos(2 ) ( ) cos[2( )] , [0, ], (0,1)

( )

x

I x x x x d x        


      
  . (44) 

The explicit expression for the integral is [Table 9.1, 19]: 

  1 0.5

0 0.5cos(2 ) ( ) cos( ) ( )
2

x
I x x x J x  

 

  (45) 

in which J(x) denotes the Bessel function of the first kind. Unlike (40), the integrand of (45) is 

singular at both endpoints. With the transform =(x/2)(1+), (44) becomes 

  
1

1 2 1 1 1

0

1

1
cos(2 ) ( ) (1 ) (1 ) cos[ (1 )]

( ) 2

x
I x x x d       



   



   
   (46) 

To take proper account of the singularities, the parameters for GJL and GJ are μ = λ = -1. With the 

test point set {xk=kπ/16, k=0,1,2,…,16}, Err defined in (43) is computed for GJ and GJL. We only 

consider relatively strong singularities given by  = 0.01, 0.1 and 0.3. The results are listed in Table 3. 

The errors of the adaptive methods are shown in Table 4.  

This example is more challenging than the previous one for the adaptive methods as the integrand 

is singular at both endpoints. Since only the relatively strong singularities are considered, the adaptive 

rules fail in all combinations of singularities and error tolerances. All the three warning messages can 

be seen in Table 4. On the other hand, Gauss-Jacobi-type rules still give very accurate approximants. 

 

4.2 Fractional spatial differentiation of x2(1-x)2y2(1-y)2 

Owing to the hyper-singularity in the generalized fractional diffusion term (20), for convenience of 

computation, the following Caputo-type counterpart is considered 
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2

* *

0

( , ) ( , ) ( )MD x y D x y M d



 

   
 

,   1 <   2 ,  (x,y)[0,1]2. (47) 

 

Table 5. Err of the approximants of fractional diffusion term (48) for different GL rules 

applied to the subinterval of θ.  

Rule for 

integration w.r.t. 

Number of quadrature points in GL for each subinterval of θ 

4 8 12 16 20 24 28 

4-point GJL 1.62e-2 1.62e-2 1.62e-2 1.62e-2 1.62e-2 1.62e-2 1.62e-2 

5-point GJL 3.49e-5 5.69e-7 7.40e-9 6.60e-10 2.46e-11 1.14e-12 9.95e-13 

3-point GJ 1.39e-2 1.39e-2 1.39e-2 1.39e-2 1.39e-2 1.39e-2 1.39e-2 

4-point GJ 3.49e-5 5.69e-7 7.40e-9 6.60e-10 2.46e-11 1.14e-12 9.97e-13 

 

In this example, α=1.5, φ(x,y)=x2(1-x)2y2(1-y)2 and M(dθ)=1/(2π)dθ are taken. The backward distance 

for any internal node (x,y) is 

 

, ,arctan( ) ,
cos

, arctan( ), arctan( ) ,
sin 1

( , , )
1 1

, arctan( ), arctan( ) ,
cos 1 1

1 1
, arctan( ),2

sin 1

x y

x

y y y

x x
d x y

x y y

x x

y y

x

 


 




  


   


  
   
 

  
     

 
         


        

 (48) 

in which  = arctan( (1-y)/x )  (0, /2). It is trivial that d is not C1 at the θs defined by the lines 

joining (x,y) and the four corners of the square domain [0,1]2. Without loss of generality, the diffusion 

term to be evaluated can be expressed as: 

 

( , , )2

* 1.5 0.5

0

1
( , ) ( cos , sin )

2 (0.5)

d x y

MD x y v x y d d

 



       








  
    (49) 

in which 
2( , ) ( , )v x y D x y  and the integration limits for  have been shifted from (0,2) to (-, 

2-). The integration with respect to θ is handled by dividing [-,2-] into four subintervals 

according to (48).  

The following normalized error for the set of test points {(xi, yi)=(i/8, j/8), i,j = 1,2,…,7} is 

computed by 
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 
7

2

, 1

7
2

, 1

.

ij ij

i j

ij

i j

Q P

Err

P












 (50) 

For Qij, the integration with respect to  is calculated  by the GJ or GJL whilst the integration with 

respect to θ is done by applying Gauss-Legendre quadrature (GL) to each of the four subintervals of θ. 

Based on the error terms (31), (35) and the fact that φ(x,y) is a polynomial of degree 8 on arbitrary 

oblique line, 4-point GJ and 5-point GJL are exact for the integration with respect to . Pij is the 

reference solution in which the integration with respect to  is analytically evaluated whilst the 

integration with respect to θ is numerically done with successively higher order GL rule until the 

result has been highly converged.  The errors by using GJL/GJ and GL to evaluate (49) are tabulated 

in Table 5. Very high accuracy can be yielded by judiciously combining GJL/GJ and GL in the two 

integrations with respect to  and , respectively.  

Next, we examine the definition of 
*

MD
 by illustrating that the fractional diffusion term can be 

recovered to the conventional diffusion term, i.e.  

 
* * 2

2
lim M MD D


 . (51) 

From the definitions of two fractional directional derivatives in (10) and 
0I I  , it can be proven that 

* 2 2

M MD D . Only the special case of (51) in which M(dθ)=1/(2π)dθ is considered. By (21),  one gets 

* 2 2 0.5M MD D   . Thus, (51) can be illustrated through  

 
*

2
lim ( , ) 0.5 ( , )MD x y x y


 


  . (52) 

The following normalized difference is computed 

 

  

  

15
2

, 1

15
2

, 1

0.5 /16, /16

0.5 /16, /16

ij

i j

i j

Q i j

Dif

i j









 








 (53) 
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Fig.2. Surface plot of 
* 1.999 ( , )Mz D x y . 

 

Fig.3. Surface plot of 0.5 ( , )z x y  . 
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in which Qij is 
* ( /16, /16)MD i i evaluated by the 5-point GJL rule and the 8-point GL rule (for each 

subinterval of θ) whilst 0.5∆φ(i/16,j/16) is derived analytically. The difference reduces from 1.79e-1 

to 1.86e-7 when α – 2 varies from -10-1 to -10-7 as listed in Table 6. On the other hand, Figs.2 and 3 

illustrate the closeness of 
* 1.999 ( , )MD x y  and 

* 2 ( , )MD x y . These results show that 
* ( , )MD x y  is 

left-continuous at α=2 and 
*

MD
 can be regarded as a generalization of Laplacian.  

 

Table 6. Dif between 
* ( , )MD x y  and 

* 2 ( , )MD x y  as α closes with 2  

 α = 2 - 10-1 α =2 - 10-3 α = 2 - 10-5 α = 2 - 10-7 

Dif 1.79e-1 1.86e-3 1.86e-5 1.86e-7 

 

 

5. Concluding Remarks 

Gauss-Jacobi and Gauss-Jacobi-Lobatto quadrature rules are applied to the fractional directional 

integral by treating the weakly singular kernel as the Jacobi weight function that defines the Jacobi 

polynomials. The kernel is therefore removed from the integrand in the quadrature formula. This 

enables the rules to obtain very accurate approximants regardless of the singularity strength. In the 

last example in Section 4, the rules are compounded with the Gauss-Legendre rule to calculate the 

generalized fractional diffusion operator. As is discussed in the Introduction, the procedure is useful 

for computing the source term f in the FADE, e.g. [29]  

 
* ( , ) ( , ) 0MD u x y f x y   , (54) 

associated with a known solute distribution u(x,y). The accurately determined source term f together 

with the boundary conditions on u(x,y) can help benchmarking the performance of the present 

numerical schemes to solve the generalized fractional diffusion problems.  

On the other hand, since the rules discussed in this paper can accurately implement the generalized 

fractional diffusion operator, they are useful in developing solution techniques for FADE. Our future 

study will focus on using these rules to solve FADE with different trial functions such as polynomials 

and radial basis functions.  
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