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Abstract—Identifying historical records of patients who are 
similar to the new patient could help to retrieve similar 
reference cases for predicting the clinical outcome of the new 
patient. Amongst different potential applications, this study 
illustrates use of patient similarity in predicting survival of 
patients suffering from hepatocellular carcinoma (HCC) 
treated with locoregional chemotherapy. This study used 14 
similarity measures derived from relevant clinical and imaging 
parameters to classify the HCC patient pairs into two classes, 
namely the difference between their survival time being longer 
or no longer than 12 months. Furthermore, this paper 
proposes and presents a patient similarity algorithm for the 
classification, named SimSVM. With the 14 similarity 
measures as input, SimSVM outputs the predicted class and 
the degree of similarity or dissimilarity. A dataset was collected 
from 30 patients, forming 300 and 135 patient pairs as training 
and test datasets respectively. The trained SimSVM with linear 
kernel gave the best accuracy (66.7%), sensitivity (64.8%) and 
specificity (67.9%) on the test dataset. 
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I.  INTRODUCTION 

Case-based reasoning and patient similarity are well 
known concepts for mining useful information from database 
but their applications in clinical decision support have not 
been deeply investigated. In this paper, the patient similarity 
method is adopted for prognostication of patients suffering 
from hepatocellular carcinoma (HCC) who underwent 
Transarterial chemoembolization (TACE). TACE is a 
locoregional chemotherapy treatment method, in which 
chemotherapeutic drugs with embolic material are delivered 
to the target tumor through the feeding hepatic arteries of 
liver tumors. Owing to the almost exclusive arterial supply of 
HCC, the occlusion of the feeding arteries with the embolic 
material causes ischemia and thus dramatically increases the 
contact and local concentration of the chemotherapeutic 
agent with the tumor. TACE is widely used as a treatment 
option to control symptoms, improve quality of life and 
extend survival for the inoperable HCCs [1-3]. 

A number of risk factors potentially affect survival rate 
after TACE. According to the accepted treatment guidelines, 
including those published by the American Association for 

Study of Liver Diseases (AASLD), the European 
Association for the Study of the Liver (EASL), and the Japan 
Society of Hepatology, TACE is recommended if some 
selection criteria are satisfied, e.g. no vascular invasion, no 
extrahepatic spread and more than 4 lesions [4-6]. Other risk 
factors include refractory ascites, extrahepatic metastases, 
hepatofugal blood flow, encephalopathy, active 
gastrointestinal bleeding, and advanced liver disease [1]. 
However, these risk factors do not absolutely or directly 
jeopardize the survival rate as long-term survival was 
observed in some high risk HCCs. The evaluation of survival 
benefit of TACE for individual patients becomes a critical 
issue in the personalized medicine. 

Electronic Health Record (EHR) system is patient-
centered information resource supported by computer 
software and hardware infrastructure, providing the 
archiving and communications of clinical information of 
each patient throughout the episodes of care [7]. The 
historical patient records after TACE provide informative 
evidence for evaluation of survival benefit. It is interesting to 
hypothesize that the survival time of a patient with HCC, 
who will undergo TACE, can be predicted from previous 
records of similar patients whose characteristics were 
documented in EHR. 

According to Trevisani, et al. (1995) [8], degree of liver 
damage, maximum tumor size, number of lesion(s), portal 
vein invasion, and alphafetoprotein (AFP) value are five 
independent predictors of patient prognosis. This study is 
aimed to establish patient similarity measures using these 
five predictors and other risk factors, including age, gender, 
treatments before TACE, complete blood picture, liver 
function test results, hepatitis-B, renal function test results, 
locations of lesions and image findings, which are generally 
crucial for prognosis, to apply machine learning to form the 
linear or nonlinear combinations of these similarity measures, 
and to evaluate the accuracy the learnt algorithm in matching 
patients with similar survival time, which were not 
investigated or analyzed by other studies.. 

Support Vector Machine (SVM), derived from the 
statistical learning theory, is a linear weighted combination 
of symmetric kernels satisfying the Mercer’s condition [9-
11]. The input of the kernels consists of the features of 
interest, while the output is a dichotomous or scalar outcome 
estimate with respect to the features of interest. Because of 
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strong theoretical foundations and excellent empirical 
success, SVM can be used to combine the abovementioned 
similarity measures with statistical learning and then form a 
model for classifying the patient pairs into “similar” or 
“dissimilar” class. The direct classification of patients into 
long or short survival time using SVM is not considered in 
this study because the model becomes unreliable and 
inaccurate to estimate the survival time of the current patient 
if the SVM is trained based on the empirical data from 
TACE records of patients who may be dissimilar to the 
current patient. To obtain a more accurate estimate of 
survival time, the records of the similar patients are retrieved 
and sorted with the similarity first and then the decision 
support system picks a number of patient records according 
to the similarity and predict the survival time of the current 
patient from that of the selected similar patients. Such case-
based reasoning approach makes the solution more specific 
to individuals when compared with the global model 
identification approach. The success of the patient similarity 
in identifying HCC patients with similar survival time after 
TACE represents a patient-oriented clinical decision support 
system for the personalized medicine. 

II. METHODS 

A. Dataset 

Historical data of 30 HCC patients who had undergone 
TACE were retrospectively collected from the EHR system 
from a regional hospital in Hong Kong. The data were de-
identified during the collection. The fields of the collected 
data and their corresponding categories and variables used 
for the computer algorithm are shown in Table I. 

TABLE I.  DATA FIELDS AND THE CORRESPONDING CATEGORIES AND 
VARIABLES IN THE COLLECTED DATASET 

Category Data field Variable 

Age Age age 

Gender 
Male 

Female 
gender1 
gender2 

Treatment 
before 
TACE 

Operation 
Radiofrequency ablation 

Alcohol 
Embolization 

ptreat1 
ptreat2 
ptreat3 
ptreat4 

Complete 
blood 
picture 

Hemoglobin 
Platelet 

International normalized ratio 

cbp1 
cbp2 
cbp3 

Liver 
function 
test 

Albumin 
Bilirubin 

Alkaline phosophatase 
Alanine aminotransferase 

lft1 
lft2 
lft3 
lft4 

Serology 
–Hepatitis 

Hepatitis-B 
Not hepatitis-B 

hepb1 
hepb2 

Serology 
–AFP 

Alphafetoprotein value afp 

Renal 
Function 
Test 

Serum urea 
Serum creatinine 

rft1 
rft2 

Number 
of lesions 

Number of lesions lesion 

Locations 
of lesions 

Left side 
Right side 

side1 
side2 

Category Data field Variable 

Tumor 
size 

Tumor size tsize 

Portal 
vein 
invasion 

Portal vein invasion 
No portal vein invasion 

pvein1 
pvein2 

Degree of 
liver 
damage 

Cirrhosis 
No cirrhosis 

damage1 
damage2 

Other 
image 
findings 

Tumor enhancement 
Splenomegaly 

Ascites 
Varices 

Metastasis 

image1 
image2 
image3 
image4 
image5 

B. Patient Similarity Measure 

The data fields, representing TACE risk factors, can be 
classified into 14 independent categories, including the five 
predictors mentioned in the previous section. A similarity 
measure is used to generate a similarity score for each 
category. The scores quantify the similarity between two 
patients with respect to the corresponding categories. 

For those categories consisting of a single scalar data 
field (age, AFP value, number of lesions and tumor size), the 
similarity measure between the ith and jth patients is given by 
the following expression (we use AFP value as an example). 

 ( )
( ) ( )jafpiafp

jiSimAFP
−+

=

1

1
, . (1) 

For those categories consisting of two mutually exclusive 
binary data fields (gender, hepatitis, portal vein invasion, 
degree of liver damage), the patient similarity is given by the 
following expression (we use degree of liver damage as an 
example). 

 ( ) ( ) ( )jdamageidamagejiSimDamage •=, . (2) 

where damage(k)=[damage1(k),damage2(k)] and • is the dot 
product. 

For those categories consisting of multiple binary data 
fields (treatment before TACE and other image findings), the 
patient similarity is given by the following expression (we 
use treatment after TACE as an example). 

 ( )
( ) ( )

( ) ( )jltreatiltreat

jltreatiltreat
jiSimLtreat

⋅

•
=, . (3) 

where ltreat(k)=[ltreat1(k), ltreat2(k), ltreat3(k), 1] and |.| is 
the modulus of a vector. 

For those categories consisting of two independent binary 
data fields (locations of lesions), the patient similarity is 
given by the following expression. 

 ( )
( ) ( )

( ) ( )jsideiside

jsideiside
jionSimLocLesi

⋅

•
=, . (4) 
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where side(k)=[side1(k), side2(k)]. 
For those categories consisting of multiple scalar data 

fields (Complete blood picture, liver function test and renal 
function test), the patient similarity is given by the following 
expression (we use liver function test as an example). 

 ( )
( ) ( )

( ) ( )jlftilft

jlftilft
jiSimLFT

⋅

•
=, . (5) 

where lft(k)=[lft1(k), …, lft4(k), 1]. 

C. Performance analysis 

The dataset was used in the generation of 435 patient 
pairs. The survival time of the 30 patients are known. Those 
patient pairs are labeled with 1 as similar if the difference in 
the survival time is not greater than 12 months; otherwise, -1 
as dissimilar. All the patient pairs are divided into training 
dataset of 300 patient pairs and test dataset of 135 patient 
pairs. The ratios of similar pairs to dissimilar pairs in training 
and test datasets are 130:170 and 54:81 respectively. 

Regarding similar pairs as positives and dissimilar pairs 
as negatives, the accuracy of matching is defined as the sum 
of the true positives and negatives divided by the total 
number of pairs in the test dataset. The sensitivity is defined 
as the true positive rate and specificity, 1- false positive rate. 

D. Support Vector Machine 

SVM in the binary classification setting is considered in 
this study. For the kth patient pair, the input of SVM is the 
feature vector x(k) consisting of the 14 similarity measures 
as its elements. For n patient pairs, the training dataset 
comprises feature vectors {x(1), …, x(n)} and the given 
labels {y(1) . . . y(n)} where y(i) � {−1, 1}. Using two-
dimensional feature space as an example, SVM learns a 
hyperplane that separates the training data by a maximal 
margin as illustrated in Fig. 1. Each point (circle or cross) in 
this plot represent the feature vector of a patient pair. Feature 
vectors lying on one side of the hyperplane are ideally the 
similar patient pairs, while those on the other side are 
dissimilar patient pairs. The feature vectors that lie closest to 
the hyperplane are called support vectors. SVM allow one to 
transform the feature vector x to a higher dimensional space 
through a kernel K. The classifier f(x) is represented in the 
following form. 

 ( )( ) bxixKxf
n

i
i +=�

=1

,)( α . (6) 

where αi is the Lagrange multiplier and b is the bias. The 
kernel K(u,v) can be represented by a dot product of the 
nonlinear regressors, φ(u) and φ(v), when the Mercer’s 
condition is satisfied [9]. Commonly used kernels include 
linear kernel (u•v), polynomial kernel ((u•v+1)r) and radial 
basis function kernel (e-γ|u-v||u-v|). The classifier can be 
rewritten by the following form. 

 ( ) bxwxf +•= φ)( . (7) 

where w is the weight vector normal to the hyperplane and 
defined by the following equation. 

 ( )( )�
=

=

n

i
i ixw

1

φα . (8) 

As the available information from the 35 data fields may 
not be sufficient to identify the similarity of some patient 
pairs, there exist pairs misclassified by the SVM. 

 

Figure 1.  The ideal hyperplane learnt by SVM separates the feature 
vectors with a maximal margin. The weight vector w and the bias specify 

uniquely the hyperplane. 

Through the constrained optimization of a linear 
combination of the model complexity and an error penalty 
function, the maximal margin is “soft” so that the learnt 
hyperplane can split the feature vectors as cleanly as possible. 
A regulating constant is used to achieve a balance between 
model complexity and error penalty. After the constrained 
optimization, some Lagrange multipliers become zeros and 
those feature vectors of training dataset corresponding to the 
non-zero Lagrange multipliers represent the support vectors 
of the SVM. The resulting SVM is expressed in the 
following form. 

 ( ) bxSVKz
p

j
jj +=�

=1

,α . (9) 

where z is the output of the SVM, SVj is the jth support 
vectors and p is the number of support vectors. After the 
training, the SVM given by (9) can be used to determine 
whether, by logic sign(z), and how much, by logic |z|, a new 
patient pair in the test dataset is similar or dissimilar with 
each other. The computation of the similarity measures, the 
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trained SVM and the determining logics can be combined to 
form a patient similarity algorithm, which is called SimSVM 
in this paper. Fig. 2 illustrates the architecture of the 
SimSVM where the input comprises of two patient records to 
be compared and the output includes the predicted class of 
the patient pair (similar or dissimilar) and the corresponding 
degree of similarity or dissimilarity. 

III. RESULTS 

SimSVMs with linear, radial basis function (RBF) and 
polynomial kernels were trained using the training dataset. 
The values of γ for RBF and r for polynomial were 1 and 3 
respectively. The soft margin coefficient  was set at infinity 
because the accuracy of the prediction is more important 
than the model complexity in this application. These three 
SimSVMs were trained using the training dataset and then 
applied to the test dataset. 

It is shown in Table II that the SimSVM with linear 
kernel outperformed SimSVMs with RBF kernel and 
polynomial kernel as it gave the best accuracy, sensitivity 
and specificity on the test dataset. 

TABLE II.  ACCURACY, SENSITIVITY AND SPECIFICITY OF SIMSVMS 
WITH RADIAL BASIS FUNCTION (RBF), POLYNOMIAL AND LINEAR KERNELS. 

Performance 
SimSVM 

Accuracy Sensitivity Specificity 

RBF 
Polynomial 
Linear 

0.600 
0.578 
0.667 

0.500 
0.482 
0.648 

0.667 
0.642 
0.679 

IV. DISCUSSION 

This study investigated the use of 14 similarity measures 
in determining the similarity between patients with HCC 
with respect to the survival time after TACE. 

A patient similarity algorithm, called SimSVM, is 
presented in this paper. SimSVMs were learnt using the 
training dataset and applied to the test dataset. The accuracy 
and sensitivity of SimSVM with linear kernel were superior 
to that with polynomial or RBF kernel. 

SimSVM with linear kernel can be regarded as a 
weighted combination of the 14 similarity measures and the 
weights were estimated using the training dataset. The use of 

linear kernel outperforming the use of RBF and polynomial 
indicates that the patient similarity in survival time is just 
linearly related to the 14 similarity measures. 

Further research work would focus on the derivation and 
choice of similarity measures that can yield better 
performance in classification of similar and dissimilar patient 
pairs. 
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Figure 2.  Architecture of SimSVM. 
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