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Abstract: In 22nm optical lithography and beyond, source mask
optimization (SMO) becomes vital for the continuation of advanced ArF
technology node development. The pixel-based method permits a large
solution space, but involves a time-consuming optimization procedure
because of the large number of pixel variables. In this paper, we introduce
the Zernike polynomials as basis functions to represent the source patterns,
and propose an improved SMO algorithm with this representation. The
source patterns are decomposed into the weighted superposition of some
well-chosen Zernike polynomial functions, and the number of variables
decreases significantly. We compare the computation efficiency and opti-
mization performance between the proposed method and the conventional
pixel-based algorithm. Simulation results demonstrate that the former can
obtain substantial speedup of source optimization while improving the
pattern fidelity at the same time.
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21. T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. A. Poonawala, K. N. Taravade, and W. A.
Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X
(2010).

22. J.-C. Yu, P. Yu, and H.-Y. Chao, “Library-based illumination synthesis for critical CMOS patterning,” IEEE
Trans. Image Process. 22, 2811–2821 (2013).

23. J. Y. Wang and D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510–1518
(1980).

24. M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999).
25. S. Liu, X. Zhou, W. Lv, S. Xu, and H. Wei, “Convolution-variation separation method for efficient modeling of

optical lithography,” Opt. Lett. 38, 2168–2170 (2013).
26. J. Aluizio Prata and W. V. T. Rusch, “Algorithm for computation of Zernike polynomials expansion coefficients,”

Appl. Opt. 28, 749–754 (1989).
27. S. Liu, X. Wu, W. Liu, and C. Zhang, “Fast aerial image simulations using one basis mask pattern for optical

proximity correction,” J. Vac. Sci. Technol. B 29, 06FH03 (2011).
28. A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005).
29. J. L. Sturtevant, L. Hong, S. Jayaram, S. P. Renwick, M. McCallum, and P. D. Bisschop, “Impact of illumination

source symmetrization in OPC,” Proc. SPIE 7028, 70283M (2008).
30. J.-C. Yu, P. Yu, and H.-Y. Chao, “Fast source optimization involving quadratic line-contour objectives for the

resist image,” Opt. Express 20, 8161–8174 (2012).
31. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.0 beta,”

http://cvxr.com/cvx (2013).

1. Introduction

As the critical dimension (CD) continues to shrink in the semiconductor industry, the con-
tinuation of ArF optical lithography depends heavily on resolution enhancement techniques
(RETs) [1]. Source mask optimization (SMO) as one of the RETs becomes critical in 22nm
technological node and beyond since it provides a viable and powerful approach to scale down
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(a) Traditional sources (b) Sector/track sources (c) Pixel sources

Fig. 1. Source representation methods in optical lithography.

the resolution [2]. This is because highly customized sources are available by using diffractive
optical element (DOE) or programmable illumination, which can shape the light to free-form
with little throughput loss [3, 4]. At the same time, the SMO process is carried out by various
algorithms including the gradient-based method, the genetic algorithm, and more recently the
augmented Lagrangian method for speed enhancement [5–7]. The algorithm is extended to take
robustness to process variations into account [8]. Simulations and experiments of SMO are also
performed to demonstrate its applicability in integrated circuits fabrication [9, 10].

SMO is usually carried out through analysis of the aerial image generated on the wafer plane
and inverse optimization for the mask and source designs [11–13]. In this process, source rep-
resentation methods play a critical role, and they affect the optimization performance and the
efficiency significantly [14]. As shown in Fig. 1, the source pattern in optical lithography has
evolved from the traditional circular, annular, dipole, and quadrupole sources, to more compli-
cated shapes such as sectors/track, and more recently to pixel-based sources. The traditional
source patterns need only one or several parameters for its description [15]; more customized
sources represented by arcs, sectors/tracks and so on, however, use dozens of variables, and
bring larger flexibility [6,16]. For these sources, the number of variables to represent the source
patterns is small, and the source optimization problem is also of a limited scale. However, these
representation methods lead to a nonlinear relationship between the aerial image and the vari-
ables, and thus the optimization requires a nonlinear optimization problem. More importantly,
the source patterns described by these methods are binary, largely limiting the freedom of the
source patterns and the optimization performance [14]. A kernel based parametric model is also
proposed that can represent the physical distribution of real-world illumination sources [17].
However, the nonlinear relationship still remains, which make it difficult to be incorporated in
source optimization.

In contrast, most of the recent SMO algorithms compute a source pattern represented by
grayscale pixels [18–20]. In these algorithms, the source patterns are discretized into matri-
ces according to a specified pixel size, and each entry of the matrices is a variable [21]. The
grayscale pixel can represent a continuum of real numbers from 0 to 1, and the freedom of the
solution space is then greatly enlarged. These methods can take advantage of the linear rela-
tionship between the aerial image and the source patterns, and the source optimization can be
formulated as a quadratic problem. The drawback of the pixel-based method is that the num-
ber of pixel variables can be very large, leading to a computationally intensive optimization
problem.

Recently, a library-based method is proposed by Yu et al. for efficient source optimization
with a large mask pattern [22]. This method employs the illumination cross coefficient (ICC)
for source optimization for small mask patterns, setting up a library with the optimized source
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patterns and optimizing the source pattern within this library for large mask patterns. Yet, the
steps in constructing the library still amount to substantial computation. Thus, it is still highly
desirable to find a source representation method that can better leverage the representation
freedom and optimization efficiency.

In this paper, we develop an SMO algorithm by representing the source patterns using the
superposition of weighted Zernike polynomial functions. In optical lithography, these functions
are widely used for the phase representation of the wavefront aberration [23, 24], and can be
easily incorporated in efficient modeling of the imaging process [25]. The coefficients can be
computed through matrix inversion or 2-D integration, making it straightforward to transform
between the pixel images and the Zernike coefficients [26]. In addition, we can take advantage
of the source pattern characteristics, such as symmetry, to choose the Zernike polynomials.
Thus the number of variables in source optimization can be significantly reduced compared with
pixel-based algorithms. The relationship between the aerial image and the Zernike coefficients
is also linear, and the former can be calculated efficiently.

In the following sections, we first model the forward aerial image formation with partially co-
herent imaging systems using the Zernike polynomials. We then develop an algorithm for a fast
transmission cross coefficient (TCC) calculation with a similar linear relationship, which helps
to reduce the computation of mask optimization by introducing the sum of coherent systems
(SOCS) [27]. Next, we cast the source optimization as a quadratic problem, which can be ef-
ficiently solved through convex optimization tools. We further analyze the source optimization
results with different terms of the Zernike polynomial functions. Finally, simulations of a se-
quential SMO are performed to show the computation efficiency and optimization performance
improvement of the proposed algorithm compared with the pixel-based SMO algorithm.

2. Fast aerial image calculation

The optical lithography imaging process is usually modeled as a partially coherent system,
which consists of an extended source, a condenser, a mask pattern, a projection lens, and an
aerial image on the wafer plane. Generally, the aerial image I on the wafer plane can be ex-
pressed, using Abbe’s formulation, as [28]

I(x,y) =

+∞∫∫

−∞

J( f ,g)
∣∣∣F[O( f ′,g′)H( f ′+ f ,g′+g)

]∣∣∣2 d f dg, (1)

or with Hopkins’ formulation as

I(x,y) =

+∞∫∫∫∫

−∞

T ( f1,g1; f2,g2)O( f1,g1)O
†( f2,g2)e

−i2π
[
( f1− f2)x+(g1−g2)y

]
d f1 dg1 d f2 dg2,

(2)
where (x,y) are the spatial coordinates, ( f ,g) are the spatial frequency coordinates, J is the
illumination source, O is the mask spectrum, H is the projection pupil, F denotes the Fourier
transform, † denotes the complex conjugate, and T is the transmission cross coefficient (TCC)
defined by

T ( f1,g1; f2,g2) =

+∞∫∫

−∞

J( f ,g)H( f + f1,g+g1)H
†( f + f2,g+g2) d f dg. (3)

In this system, J( f ,g) is conventionally a circular function with radius σ , also known as the
partial coherence factor. To improve the resolution, lithographers have developed off-axis illu-
mination, including annular, dipole and quadrupole sources, and more recently the technology
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Fig. 2. The sampling method of the source patterns and the Zernike polynomial functions.

has enabled the use of more customized sources with a variety of shapes. These customized
sources can be represented by several methods, including sector/track-based, and pixel-based.
The former uses a small number of variables to represent the source patterns, but with limited
flexibility. The latter permits much more flexible designs, leading to the highest possibility to
improve the resolution. However, this representation method requires a large number of pixel
variables.

To cope with this, we make use of the Zernike polynomial functions, which are a sequence of
orthogonal basis functions [24, 28]. We denote the source patterns as the expansion of P terms
of Zernike polynomials, i.e.

J( f ,g) =
P

∑
l=1

ψlZl( f ,g), (4)

where ψl is the corresponding Zernike coefficient, and Zl is the lth Zernike polynomial. For
convenience, we can change this to a matrix representation using lexicographic ordering. Equa-
tion (4) can then be rewritten as

J = ZΨ, (5)

where Ψ is the vector of Zernike coefficients Ψ =
[
ψ1 ψ2 . . .

]T
, and Z is a N2

s ×P matrix
generated by stacking the vectors of the Zernike polynomials together.

In the pixel-based SMO method, the source patterns are discretized to a square grid, and the
intensity of each grid location is represented by a pixel value. In order to better represent the
source patterns with the Zernike polynomial functions, we also discretize these basis functions
into matrices of the same size as the source patterns, as shown in Fig. 2. For our purposes
here, we assume that they are of size Ns ×Ns. Moreover, we note that for a partially coherent
imaging system, the effective source intensity is limited to a unit disk, and only the pixels within
the circle shown in Fig. 2 are of interest. Thus, we only need to consider the values within the
unit disk for the Zernike polynomial functions.

The number of terms P can be quite large to represent a free-form source, which would re-
quire significant computation as a result. However, realistic source patterns in optical lithog-
raphy often have some characteristics such as symmetry to reduce the pattern placement
shift [9, 29]. This property can reduce the number of polynomials because we can restrict
ourselves to those symmetrical to both the horizontal and vertical axes. The first 21 Zernike
polynomial functions satisfying this requirement are shown in Fig. 3.
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Fig. 3. The first 21 Zernike polynomial functions chosen to represent the source patterns.

Using the Zernike polynomial representation, we substitute Eq. (4) into Abbe’s aerial im-
age formulation in Eq. (1). Since the aerial image is linearly related to the source pattern, we
separate the Zernike coefficients by changing the position of integration and summation such
that

I(x,y) =
P

∑
l=1

ψl Îl(x,y), (6)

where

Îl(x,y) =

+∞∫∫

−∞

Zl( f ,g)
∣∣∣F[O( f ′,g′)H( f ′+ f ,g′+g)

]∣∣∣2 d f dg. (7)

This equation can be considered as the basis aerial image corresponding to the Zernike polyno-
mial function Zl . In matrix form, Eq. (6) can be written as

I = ÎΨ. (8)

where I is the vector form of I, and Î is a matrix generated in the same way as Z.
In a similar way, we also substitute Eq. (4) in the TCC expression, getting

T ( f1,g1; f2,g2) =
P

∑
l=1

ψl T̂l( f1,g1; f2,g2), (9)

where the basis TCC matrix T̂l is

T̂l( f1,g1; f2,g2) =

+∞∫∫

−∞

Zl( f ,g)H( f + f1,g+g1)H
†( f + f2,g+g2) d f dg. (10)

The equivalent matrix form of Eq. (9) is

T = T̂Ψ. (11)

Again, the generation of this matrix form of TCC follows the same method as Eqs. (5) and (8).
We would like to point out that the basis TCCs can be pre-computed because they only in-

volve the corresponding basis Zernike polynomial functions and the pupil functions. Then, only
the coefficients ψp vary when the source pattern changes, and the new TCC can be calculated
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Fig. 4. Theory of aerial image simulation with Zernike polynomial-based source represen-
tation.

through a linear combination of these bases, which can be very efficient. We depict this in
Fig. 4, where Fig. 4(a) shows the Zernike coefficients, Figs. 4(b), 4(c), and 4(d) are the basis
Zernike polynomial functions, basis TCCs, and basis images, respectively, and Figs. 4(e), 4(f),
and 4(g) are correspondingly the source pattern, the TCC, and the aerial image in the imaging
systems.

3. Inverse problem formulation

3.1. Mask optimization

In this section, we formulate the inverse optimization scheme for SMO based on the forward
imaging model derived above. First, we consider the mask optimization. In previous SMO algo-
rithms, Abbe’s formulation is usually used for aerial image calculation, since the calculation of
the TCC involves multiple integrations. Here, we can use the sum of coherent systems (SOCS)
theory for fast aerial image calculation since the TCC can be calculated efficiently through
Eq. (11) without computationally intensive integrations [27].

In this theory, the TCC matrix is decomposed into kernels through singular value decom-
position (SVD), and the singular values descend rapidly. Only the few largest singular values
and their corresponding eigenfunctions, which are considered as kernels in the imaging system,
are maintained for the aerial image calculation. Thus the amount of computation can be sig-
nificantly reduced. Let K be the number of singular values used for the computation. After the
TCC is computed efficiently through Eq. (9), the decomposition can be expressed as

T ( f1,g1; f2,g2) =
K

∑
n=1

λnφn( f1,g1)φ †
n ( f2,g2), (12)

#201875 - $15.00 USD Received 25 Nov 2013; revised 28 Jan 2014; accepted 30 Jan 2014; published 12 Feb 2014
(C) 2014 OSA 24 February 2014 | Vol. 22,  No. 4 | DOI:10.1364/OE.22.003924 | OPTICS EXPRESS  3930



where λn is the nth eigenvalue, and φn is the corresponding eigenvector. Then the aerial image
can be calculated through

I(x,y) =
K

∑
n=1

λn

∣∣∣F[O( f ,g)φn( f ,g)
]∣∣∣2 (13)

=
K

∑
n=1

λn|M(x,y)∗Φn(x,y)|2, (14)

where M is the mask pattern in the spatial domain, Φn is the Fourier transform of the eigen-
function φn( f ,g), and ∗ denotes 2-D convolution.

For the cost function, we define the difference between the resist image Ir and the target
pattern It as a measure of the image fidelity. The resist image is obtained from the aerial image
with a sigmoid function modeled as the resist effect

Ir(x,y) = sig
{

I(x,y)
}
=

1

1+ e−α [I(x,y)−tr]
, (15)

where tr is the threshold in the photoresist effect, and α indicates the steepness of the sigmoid
function. Then the image fidelity term Rm is given by

Rm
{

M(x,y)
}
= ∑

x,y

∥∥Ir(x,y)− It(x,y)
∥∥2

2. (16)

In addition, to enhance image contrast, we define a penalty term Ra on the aerial image as

Ra
{

M(x,y)
}
= ∑

x,y

∥∥I(x,y)−2trIt(x,y)
∥∥2

2. (17)

This term can force the aerial image to be 0 while the target is 0, and the aerial image to be 2tr
while the target is 1. More explanations about this term can be found in Ref. [5]. The overall
cost function Lm for mask optimization can be represented as

Lm
{

M(x,y)
}
= Rm

{
M(x,y)

}
+ τRa

{
M(x,y)

}
, (18)

where τ is a weight assigned to the image contrast term. Therefore the mask optimization can
be formulated as

M̂(x,y) = argmin
M

Lm
{

M(x,y)
}
. (19)

A conjugate gradient method can be employed to optimize the mask pattern iteratively [5].

3.2. Source optimization

We formulate the source optimization as a quadratic problem as introduced by Yu et al. [30].
Note, however, that in our method, the source patterns are fully characterized by the Zernike co-
efficients, and therefore we only need to optimize them instead of the pixel variables. The cost
function consists of two terms, namely the contour awareness term Rc and the side-lobes com-
pressing term R0. The former forces the intensity on the contour to be equal to the threshold,
as defined by

Rc{Ψ}= ‖ÎcΨ− tr‖2
2, (20)

where Îc is a Nc × P matrix denoting the aerial images extracted from Î by choosing those
located on the mask edge position, Nc is the number of points on these position, and tr is a
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Nc-element vector whose values are all tr. The latter suppresses the side-lobes by forcing the
aerial image around the main features to be small, as given by

R0{Ψ}= ‖Î0Ψ−ε‖2
2, (21)

where Î0 is a N0 ×P matrix denoting the aerial images located on a closed curve surrounding
the main features of the mask, N0 is the number of points on the curve, and ε is a N0 length
vector with all its values equal to ε , which is a small positive value. The distance between the
curve and the main features is half a pitch for periodic patterns and 0.61λ/NA for isolated
and semi-isolated patterns, where λ is the wavelength of the source, and NA is the numerical
aperture.

Adding these two items together, we get the overall cost function

Ls{Ψ}= Rc{Ψ}+μR0{Ψ}, (22)

where μ signifies the relative importance of the two terms. This cost function can be written as
a quadratic form

Ls{Ψ}= (ÎcΨ− tr)
T(ÎcΨ− tr)+(Î0Ψ−ε)T(Î0Ψ−ε)

= ΨTQΨ−bTΨ+ c, (23)

where Q = ÎT
c Îc + μ ÎT

0 Î0, b = 2ÎT
c tr + 2μ ÎT

0ε, c = tT
r tr + μεTε. The sizes of Q and b are P×P

and P×1, respectively, and c is a scalar.
The source intensities in lithography tools are non-negative, real-value functions. On the

other hand, the Zernike polynomial functions contain negative values, and their summation is
not necessarily positive. Another issue is that to avoid sharp spikes that can damage the lenses,
the source intensities are limited to some value Smax. As the source patterns with the Zernike
representation can be expressed as ZΨ, these two requirements can be satisfied by setting a
linear constraint on the source patterns as 0 ≤ ZΨ ≤ Smax.

In addition, the dose variation in optical lithography can be characterized by either the total
intensity of the illumination source, or the threshold value tr in the resist model. Here, we fix the
threshold value, and limit the total intensity of the illumination source to a certain value Dmax.
The total intensity of the source can be calculated as the summation of all the pixel values of
the source patterns, that is, EZΨ, where E is an N2

s row vector whose values are all 1. Thus, this
requirement can be expressed as a linear constraint EZΨ ≤ Dmax in the optimization process.

Overall, the source optimization can be formulated as

minimize
Ψ

Ls{Ψ},
subject to 0 ≤ ZΨ � Smax (24)

EZΨ ≤ Dmax.

This is a quadratic problem with linear constraints, and can be conveniently solved by convex
optimization tools such as CVX [31].

4. Simulations

4.1. Selection of the Zernike polynomials

In the above derivations, we take advantage of the prior information of the source patterns to
choose the symmetric Zernike polynomial functions. There is a tradeoff between the amount of
computation and the optimization performance, i.e., fewer terms can lead to faster computation,
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Fig. 5. The tradeoff between optimization performance and computation speed.

at the expense of lower source pattern flexibility. Here, we first perform simulations to evaluate
this quantitatively.

We compute the source optimization using different numbers of Zernike polynomial func-
tions on several line array mask patterns with different densities. The line width of the line ar-
ray patterns, also known as the CD, is 51.5nm. For different densities, the ratio of CD to pitch
ranges from 2 to 5, thus we have four mask patterns in total. It is well known that the Zernike
polynomials have radial components and axial components [24]. For the chosen symmetric
Zernike polynomials, the number P = L(L+1)/2 if the first L orders of radial components are
selected. Here, we set L ranges from 2 to 17, and the corresponding P equals to 3,6,10, · · · ,136.
Each Zernike polynomial, and therefore the source pattern, is represented by a 65× 65 pixel
image. The number of source pixels of interest located within the unit disk is 3785. The source
wavelength is 193nm, and the NA is 1.35. The tr and α in the sigmoid function to calculate
the resist image are 0.3 and 85, respectively. We also set the weight μ = 0.1, ε = 0.001 in the
source optimization, and the maximum pixel values Smax = 1 and Dmax = 500.

Figure 5 plots the source optimization runtime and the optimized cost function value versus
the number of Zernike polynomials. Each line in Fig. 5(a) plots the relationship between the
runtime and the number of Zernike polynomials, while Fig. 5(b) displays the optimized values
of the cost function corresponding to mask patterns at various densities. The runtime increases
almost linearly in the shown simulation region, while the optimized value decreases with more
Zernike terms. This demonstrates the tradeoff mentioned above between the amount of com-
putation and the optimization performance. It is also noted that when the number of Zernike
polynomials increases to a certain number, the optimized cost function reduces slowly. It indi-
cates that the Zernike polynomials of low order contribute to the main features of the optimized
source patterns. The Zernike polynomials of high order have little contribution to the reduction
of the cost function, and can be neglected in source optimization.
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Fig. 6. Two test mask patterns for source mask optimization.

To better balance the amount of computation and the optimization performance, we choose
P = 78 in our following simulations of source mask optimization. This is because the optimiza-
tion process can approximate the largest solution space when P = 78, and the increase of terms
can only add computational burden.

4.2. Optimization results

Source optimization alone is insufficient to obtained the required pattern fidelity in compu-
tational lithography. Thus, we apply the above technique to a sequential SMO process, and
compare the performance and efficiency between the pixel-based algorithm and the Zernike
polynomial based algorithm under the same conditions. The sequential SMO process is carried
out by first performing source optimization with the target pattern as the initial step, and then
performing mask optimization with the optimized source obtained earlier [5]. This process can
be repeated several times until convergence. Note that the source representation method here
can be applied to other SMO algorithms, such as the simultaneous and hybrid algorithms.

We evaluate the optimization performance by measuring both the pattern fidelity and the
robustness to process variations. The pattern fidelity is evaluated by computing the pattern
error (PE) defined as the difference between the output pattern and the target pattern, and the
edge placement errors (EPE) at critical places. In order to evaluate the robustness to process
variations, we estimate the process windows and normalized image log slopes (NILS) at critical
places. We also assess the optimization efficiency by calculating the runtime of the optimization
process.

Figure 6 shows the two target mask patterns, namely, a brick contact array and a regular
contact array, which we use to test the SMO algorithm. Both patterns are of size 201× 201
pixels, and each pixel represents 4.47nm. The size of each contact is 40.2nm×125.1nm, and
the distances between neighboring contacts are 107.2nm and 180.9nm in the horizontal and
vertical directions, respectively. The critical places to calculate the EPE are located at the cut-
lines, which are the central places of each contact region. As stated above, we choose 78 terms
of Zernike polynomial functions as the basis functions to represent the source patterns. Each
is represented as a size 65×65 pattern. The source pattern is therefore also of this size, hence
Ns = 65, and the spatial frequencies ranges from −1 to 1 after normalization by NA/λ . Similar
to the earlier simulation, we set Smax = 1, Dmax = 500, and μ = τ = 0.1. Furthermore, in mask
optimization, the number of kernels maintained for the aerial image calculation is K = 10.

The optimization results of the brick contact array are shown in Fig. 7. The source optimiza-
tion results using the pixel-based (PB) method and the Zernike polynomial-based (ZPB) method
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Fig. 7. Simulation results of SMO for the brick contact array.

are shown in Figs. 7(a) and 7(d), respectively. As we can see, the locations of the main features
of the optimized source patterns are similar, located at the 45 degree quadrupole position. The
PB source pattern contains some isolated points and holes, while the ZPB source is smooth and
less complicated, which is advantageous because this means the source can be manufactured
more easily. The corresponding optimized masks are shown in Figs. 7(b) and 7(e), which are
quite similar with one another. Finally, the output patterns on the wafer are given in Figs. 7(c)
and 7(f), which are obtained at the best focus plane. Numerically, the PEs of the two cases are
502 and 492, and the average EPE are 2.66nm and 2.49nm, respectively. The results for the
regular contact array pattern are shown in Fig. 8, where the locations of the main features in
both the optimized source pattern and mask patterns from PB and ZPB are similar. The PEs of
the two output patterns are 484 and 496, and the average EPE are 1.98nm and 2.02nm, respec-
tively. In both cases, the numerical values indicate that the ZPB method can deliver comparable
results with the more conventional PB method.

We also depict the average exposure-defocus (E-D) window of the optimization results in
Fig. 9 to evaluate the robustness to process variations. The E-D windows are measured at the
critical places, which are the same as those in EPE measurement. The curves show the maxi-
mum and minimum doses with 10% line width changes and −40nm to 40nm focus variations
for both the PB and ZPB algorithms. We also measure the depth of focus (DoF) as the largest
focus range where the vertical length of an ellipse is tangent to the curve pair for a particular E-
D window. It is shown that the optimization results obtained by the Zernike polynomial-based
method have similar E-D window sizes compared with the pixel-based algorithm. Quantita-
tively, the DoF obtained from the PB algorithm is 54nm for the brick contact array and 68nm
for the regular contact array, while the DoF of the ZPB algorithm is 56nm and 66nm, respec-
tively. The NILS are also measured and summarized in Table 1, which also demonstrates similar
optimization performance. It indicates the ZPB algorithm can obtain competitive optimization
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Fig. 8. Simulation results of SMO for the regular contact array.
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Fig. 9. Comparison of process window for (a) brick contact array and (b) regular contact
array.

results compared with the PB algorithm in terms of robustness to process variations.
After evaluating the optimized image performance of the two algorithms, we now assess the

optimization efficiency. Table 1 summarizes the runtime for both the source optimization (SO)
and the mask optimization (MO) steps with the two test patterns. With both algorithms, the SO
converges to a global solution in about 30 iterations. The total runtime of the ZPB algorithm
is about 40−−50 times shorter than the PB algorithm. This is attributed to the fact that the
number of source variables in the PB algorithm is 3785, including all the pixels inside the unit
circle represented by a 65×65 image, which is about 48 times the number of bases used in the
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Table 1. Comparison of the optimization performance and efficiency.

Test patterns Methods PE (nm) EPE (nm) NILS
Runtime (sec)

SO MO

Brick contact array
PB 502 2.66 0.93 110.0 54.9

ZPB 492 2.49 0.95 2.45 38.6

Regular contact array
PB 484 1.98 1.32 116.4 52.2

ZPB 496 2.02 1.28 2.34 39.8

ZPB algorithm. In addition, the MO also records a slight speedup with the latter. This is because
the TCC can be calculated from the linear equations in Eq. (11) efficiently, while ordinarily it
would need multiple integrations.

5. Conclusions

In this paper, we propose an efficient SMO algorithm using the Zernike polynomial functions to
represent the source patterns. We demonstrate that the source patterns can be represented with a
small number of Zernike polynomials, and the source optimization problem can be formulated
as a quadratic problem. We show that this can deliver similar performance to that provided by
the pixel-based algorithm in enhancing both the pattern fidelity and robustness; at the same
time, the optimization efficiency can be significantly improved due to the smaller number of
source variables in source optimization and the use of the linear relationship to calculate the
TCC in mask optimization.
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