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1. Introduction

Let (X,) be a sequence of p X p non-random and nonnegative definite Hermi-
tian matrices and let (w;;), 4, > 1 be a doubly infinite array of i.i.d. complex-
valued random variables satisfying

E(wy1) =0, E(lwil?)=1, E(wl|*) < .
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related to m such that when n — oo, p/n —y > 0. Then the matrix S
%E}/ 2ZnZ:;Ell/ * can be considered as the sample covariance matrix of an i.i.d.

sample (x1,...,%,) of p-dimensional observation vectors x; = E;l)/ 2uj where
u; = (wij)1<i<p denotes the j-th column of Z,,. Note that for any nonnegative
definite Hermitian matrix A, A'/? denotes a Hermitian square root and we call
the spectral distribution (SD) the distribution generated by its eigenvalues.
Assume that the SD H,, of ¥, converges weakly to a nonrandom probabil-
ity distribution H on [0,00). It is then well-known that the SD F*» of S,,,
generated by its eigenvalues A\, 1 > --- > \, ,, converges to a nonrandom lim-
iting SD G (Marcenko and P , [1967; Silverstein|, 11995). The so-called null
case corresponds to the situation ¥, = I,, so H, = ¢; and the limiting SD is
the seminal Maréenko-Pastur law GY with index y and support [ay, b,] where
ay = (1= /1% b, = (1+ /¥)?, and an additional mass at the origin if y > 1.
In this paper we consider the spiked population model introduced in
(2001)) where the eigenvalues of X, are

al,"',al,...,ak,"',G/k;,l,"',].. (11)
—— —

ni N p—M

Here M and the multiplicity numbers (ng) are fixed and satisfy n; + --- +
ng = M. In other words, all the population eigenvalues are unit except some
fixed number of them (the spikes). The model can be viewed as a finite-rank
perturbation of the null case. Obviously, the limiting SD G of S, is not af-
fected by this perturbation. However, the asymptotic behaviour of the extreme
eigenvalues of S,, is significantly different from the null case. The analysis of
this new behaviour of extreme eigenvalues has been an active area in the last

few years, see e.g. Baik et all (2005), Baik and Silverstein (2006), [Paul (2007),
l&umd_Yad (IZDDS) |Benavch GeorEeS et al | (2011), Nadakuditi and Silverstein
(2010), (2011) and [Bai and Yag (2012). In
particular, the base component of the population SD H,, in the last three refer-
ences has been extended to a form more general than the simple Dirac mass 1
of the null case.

For statistical applications, besides the principa components analysis which
is indeed the origin of spiked models m ), large-dimensional strict
factor models are equivalent to a spiked population model and can be analyzed
using the above-mentioned results. Related recent contributions in the area in-

clude, among others, Kritchman and Nadler (2008, 2009), [Onatski (2009, 2010,
IZQlj) and IPjis_semler_and_YaQ] (2012) and they all concern the problem of esti-
mation and testing the number of factors (or spikes).

In this note, we analyze the effects caused by the spike eigenvalues on the
fluctuations of linear spectral statistics of the form

Tn(f) = Zf(An,z) = F%n (f) ) (12)
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where f is a given function. Similarly to the convergence of the SD’s, the pres-
ence of the spikes does not prevent a central limit theorem for T),(f); however
as we will see, the centering term in the CLT will be modified according to the
values of the spikes. As this term has no explicit form, our main result is an
asymptotic expansion presented in Section 21 To illustrate the importance of
such expansions, we present in Section [B] an application for the determination
of the power function for testing the presence of spikes. The Appendix contains
some technical derivations.

2. Centering parameter in the CLT of the LSS from a spiked
population model

Fluctuations of linear spectral statistics of form (L2) are indeed covered by
a central limit theory initiated in Bai and Silversteirl (2004). The theory was
later improved by [Pan and Zhou (2008) where the restriction E(jwy;]|*) = 3
matching the real Gaussian case was removed.

Let f1,..., fr be L functions analytic on an open domain of the complex plan
including the support of the limiting SD. These central limit theorems state that
the random vector

(Xn(f1), - XalfL))

where
Xo(f) =p [F(f) = Fomtin(f)] = p/f(x)d(FS" — ot (@)
converges weakly to a Gaussian vector

(Xfw T 7XfL)

with known mean function E[Xy] and covariance function Cov(Xy, X,) that
can be calculated from contour integrals involving parameters m(z) and H,
where m(z) is the companion Stieltjes transform corresponding to the limiting
SD of §,, = %Z,’;E,,Zn. If the population has a spiked covariance structure, we
know that the limit H and m(z) remain the same as the non-spiked case, so the
limiting parameters E[Xf] and Cov(Xy, X,) are also unchanged.

It is remarked that the centering parameter pF¥~H»(f) depends on a par-
ticular distribution F¥»H» which is a finite-horizon proxy for the limiting SD
of S,,. The difficulty is that F¥»f» has no explicit form; it is indeed implic-
itly defined through m,,(z) (the finite counterpart of m(z)), which solves the
equation:

1 t
=4y, | ——dH,(t) . 2.3
N Y /1—|—tmn ®) (2:3)

my,

This distribution depends on the SD H,, which in turn depends on the spike
eigenvalues.
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More precisely, the SD H,, of ¥, is

k
M. 1
Hy="""65+ =3 nida, . (2.4)
p i=1

The term
1 k
Ly
P

vanishes when p tends to infinity, so it has no influence when considering limiting
spectral distributions. However for the CLT, the term pEFY~>H»(f) has a p in
front, and 1 ZZ 1 Mibq, times p is of order O(1), thus cannot be neglected.

It is here reminded that, following Baik and Silverstein (2006), for a distant
spike a; such that |a; — 1| > |/y, the corresponding sample eigenvalue is equal
to ¢(a;) = a; + ;*24, while for a close spike such that |a; — 1] < \/y, the
corresponding sample eigenvalue tends to the edge points a, and b,.

Our main result is an asymptotic expansion for this centering parameter.

Theorem 1. Suppose the population has a spiked population structure as stated
in (LI) with ki distant spikes and k — k1 close spikes (arranged in decreasing
order), Let [ be any analytic function on an open domain including the support

of M-P distribution GY and all the ¢(a;), i < k1. We have:

Foth(f)
k
1 1 Yn M n;a?m
=_ — - = _\d 2.
2m'pj£1f( m+1+m)(ynm ;(1+aim)2) n #9)
k
1 / (1—a;)n; 1 YnIl
——_)dm (2.6
+27Tip7£1f( 1+m ; (1+am 1+m)(m (1+m)2)m (2.6)

u—;mn me (>; (2.7)

Here m = m,, is the companion Stieltjes transform of F¥~Hn defined in [23),
GY(f) is the integral of f with respect to the Mardenko-Pastur distribution with
index y, = p/n. And

(i). when 0 <y, <1, the first k1 spike eigenvalues as satisfy |a; — 1| > \/yn,
the remaining k — k1 satisfy |a; — 1| < /yn, C1 is a contour counterclock—
wise, when restricted to the real axes, encloses the interval [——— ﬁ, T \/3/7]

(ii). when y, > 1, the first k1 spike eigenvalues als satisfy a; —1 > \/yn, the
remaining k— ki satisfy 0 < a; < 14 ,/yn, C1 is a contour clockwise, when
restricted to the real azes, encloses the interval [—1, ﬁ]

If there are no distant spikes then the second term in (2.7) does not appear.
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Proof. We divide the proof into three parts according to whether 0 < y,, < 1,
Yn > 1 ory, =1.

Case of 0 <y, < 1:

Recall that GY (f f f(x)dG¥" () when no spike exists, where G¥~ is the
M-P distribution With mdex yn And by the Cauchy integral formula, it can be
expressed as — zm f f(z)m(z)dz, where the integral contour ~; is chosen to be

positively oriented, enclosmg the support of GY» and it’s limit GY. Due to the
restriction that 0 < y, < 1, we choose 1 such that the origin {z = 0} is not
enclosed inside.

Using the relationship between m(z) and m(z) (the companion Stieltjes trans-

form of m(z)): m(z) = ynm(z) — =22, we can rewrite
() = g § SEmENE= o § ) (B g,
n 1
= i f(z)m(z)dz . (2.8)

Besides, for z ¢ supp(GY"), m(z) satisfies the equation:

Yn
1+m

Taking derivatives on both sides with respect to z, we get:

1 Yn
= ~ T mp

Changing the variable from z to m in equation ([Z8]), we get:

= b et T 2 — g g (210)

Here, the contour 7; of z in equation (Z8) is transformed into a contour of m
through the mapping (Z9), denoted as C;.

We present the mapping (Z9) when 0 < y,, < 1 in Figure[l] restricting z and
m to the real domain. From [Silverstein and Choi (1995), we know that the z’s
such that z (m) > 0 are not in the support of G¥». Therefore, we shall focus on
the increasing intervals, where a one-to-one mapping between z and m exists.
From the figure, we see that when 7 is chosen to enclose the support of G¥»:

[ay,,, by, ], the corresponding C; will enclose the interval [;——— \/u_’ T \/_] and
m = —1 is the pole contained in this interval. The point on v, 1ntersect1ng the
real line to the left of a,, (right of b,, ) maps to a point to the left of —— F (right

of —=L_). Since the imaginary part of m(z) is the same sign as the imaginary

TFvon
part of z, we see that C; is also oriented counterclockwise.
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T T
-1/(1-4¥n) =1/(1+¥n)

m
Figure 1: The graph of the transform z(m) = —— —I— 1131;;71 when 0 < y,, < 1.

When the spiked structure (1)) exists, by equation (Z3]), this time the com-
panion Stieltjes transform m = m,, of F¥»H» satisfies

—r (2.11)

n 1
FU"’H"(f)——;% (2)m(2)dz
n 1 f 1 Yn Yn b 1—&1 n’L
= - - = - m
p2mi Jo m +m p (14+m)(1+a;m) )

=1
2

X<é_(1finm) %i [1+1m) (Fom )dem)

where ~ is a positively oriented contour of z that encloses the support of F°»
and its limit F'S. From [Baik and Silverstein (2006), we know that under the
spiked structure (L)), the support of F°» consists of the support of M-P dis-
tribution: [ay, , by, ] plus small intervals near ¢(a;) = a; + 2% (i = 1,--- k).

Therefore, the contour v can be expressed as v, @(@i:l %i) (%i is denoted as
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the contour that encloses the point of ¢(a;)). Moreover, C is the image of v under
the mapping ([2.I1)), which can also be divided into C; plus Cq, (i =1,--- , k1),
with C,, enclosing _a%- and all the contours are non-overlapping and positively
oriented.

The term

k
YUn (1 —ai)n;
pg 1+ m)(1+4 a;m)

is of order O(2), so we can take the Taylor expansion of f around the value of
—|— Yo and the term

1+m?’
k 2
Yn 1 a;
N —
P ; {(1—|—m)2 (l—i—aim)?}

is also of order O(L). This gives rise to:

1 1 UYn 1 YnIM
Fyn-,Hn _ _rn _ — — d
() p2mi Jeo ( m + 1 —l—_)(m (1 +m)2) m
k
n 1 1 Yn  \Yn 1 a?
L = In ; i d
p 27 Jo ( m 1—|—m)p ;n [(1—|—m)2 (14 a;m)? m
k
n 1 | Yn  \Yn (1 —a;)n; 1 Y
Lo _ Sy In I — = g
+p2m’ Cf( m+1+m)p ;(1+m)(1+al )(m (1—i—m)2)m
1
+0(=3) - (2.13)

Then, we replace C appearing in equation (2.13)) by C; @(@gl C,,) as men-
tioned above, and thus we can calculate the value of (ZI3]) separately by calcu-
lating the integrals on the contour C; and each C,, (i = 1,--- ,kq). If there are
no distant spikes then we will have just C = C;.

The first term in equation (2I3) is equal to

- = - — — —=)d 2.14

p 27 ( +1+m)(m (1+m)2) = ( )

for the reason that the only poles: m = 0 and m = —1 are not enclosed in the
contours Cy, (1 =1,---, k).

Next, we consider these integrals on Cq, (i =1, , k1).
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The second term of equation [2I3]) with the contour being C,, is equal to

k
n 1 1 Un \YUn 1 a?
= _— : In ; — i d
Pl AR AR ;” {(1+m)2 1+ am)? |
k
Do ey i
p2min Je, m  1+m’ = (1+am)
1 f(_% + 11&)@”1
. = To dm
27ip Ca, (—+_¢

Lz

- [f(¢(ai)) - f/((b(ai))(ai - %)} ’

and the third term of equation (Z.I3]) with the contour being C,, is equal to

n 1 4 1 Yn Yn (1-04)7% 1 Ynm
Do Sy i i

-1 [ 1 Yn ni(1—a;) 1 Ynim
_= — _ = g
2ip C. f ( m + ) ( ) m

Snaf (0(a)) (- 25

Combining these two terms, we get the influence of the distant spikes, that is,
the integral on the contours J,_; ... Ky Cq,, which equals to:

k1
=Y mf (o) (2.15)
=1

So in the remaining part, we only need to consider the integral along the
contour C;. Consider the second term of (ZI3]) with the contour being C;:

p 2mi le( m+1+m)p ;nl[(l—kmp (l—l—aim)z]__

 2rip
M n 1 Yn myn 1

= —— - =)d
p 2m'p]£1f( m+1+m)((1+m)2 m) -

k
1 1 UYn M n;a’m
_ N _E — = \d
27@?2 i m+1+m)<myn . (1+aim)2> -

1 1 Un 1, Mmy, M 1 M b nia?m
$ e T s - T+ e -

o

(2.16)
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Combining Equations (210), (Z14), I5) and 2I6]), we get:

k
()=~ f gl ey Ay sy,

c 1+m myn P (14 a;m

1 f/(_l_'_ Yn )Z( (1 — ai)n; )(é_ Ynll iy

27ip Je, m 1+m P 1+m)(1+4 am (14 m)?
M il n; 1
+(1— ?)Gy"(f) +> ;f(fb(ai)) +0(5) -

Case of y, > 1:
We also present the mapping ([2.9) when y,, > 1 in Figure 2] below.

2(m)

T

T T
~1/(1+y%) 1/(¥a=1) -1/(1-V¥n)

m

Figure 2: The graph of the transform z(m) = — = —|— 117;11 when y,, > 1.

When y,, > 1 there will be mass 1 — 1/y,, at zero. Assume first that f
is analytic on an open interval containing 0 and by, and let ;1 be a contour
covering [ay, , by, ]. Then we have in place of (2.8),

GU(f) = (l—yin)f(()) 271m f(z)m(z)dz
1 1
=u—%ﬁ@—%%ﬁjwmww

—1
1 \/ n ’
so when changing variables the new contour C covers [¢,, d,] where ¢, < 0 is

This time the m value corresponding to a,, , namely is positive, and
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slightly to the right of ﬁ, and d,, > 0 is slightly to the left of %, This
interval includes the origin and not —1, and is oriented in a clockwise direction.

We present these two contours v; and C; in Figure

Contour of z when y, > 1 Contour of m when y, > 1
+
" €
= E
= * | * * *
= 0 £ -1 1 1
v =

Re(2) Re(m)

Figure 3: Contours of z and m when y, > 1.

We have in place of (210),

G =(1-—)f(0)— —— — - ———=)d
W)= (1= O = e § et T — s )im

Extend C; to the following contour. On the right side on the real line continue
C1 to a number large number r, then go on a circle C(r) with radius r in a
counterclockwise direction until it returns to the point r — ¢0, then go left till it
hits C;. This new contour covers pole —1 and not the origin, see Figure @l On

Contour of m when y,, > 1

)

Im(m)

Figure 4: The new contour of m when y,, > 1
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C(r) we have using the dominated convergence theorem

. i(r)f<——+ (g — ) dm

27y, m  14+m’™ m? (1+m)

(with m = re®?)

1 2m 1 " n_2
- 5 | fep -

2Ty m 14+m (1+m)
1=y,
b L) e
Therefore
G (f) n 1 ( 1_|_ Yn ) (1 Yn )d (2.17)
_onl 1 m m. .
Yn p 2mi m  14+m— m? (1+m)?"
where Cy just covers [—1, 1_;—\/1%]

When there are spikes the only distant ones are those for which a; > 1+ ,/y,.
We will get after the change of variable to m a contour which covers now [, d! ]

717 n

where ¢/, <0 is to the right of the largest of —% among the distant spikes (to
the rlght of 1+\/_ if there are no distant spikes), and d), > 0 is to the left
of ? and oriented clockwise. We can extend the contour as we did before

Vin
and get the same limit on the circle as when there are no spikes. Therefore We

get exactly (ZI2)) where now the contour C contains —1 and the largest of ——

among the distant spikes (contain if there are no distant spikes). Next

1+\ﬁ
we can follow the same proof as for the case 0 < y,, < 1, by slitting the contour
Cinto C =, @(@gl Ca; ), where now C; just contains the interval [—1, ﬁ]

and the contours C,, contain the influence of k; distant spikes a; > 1+ ,/yn: —%

(i = 1,---, k1), respectively. We thus obtain the same formula as in the case

0 <y, <Ll Therefore Theorem 1 follows where Cl contains just [—1 ,#y_]
and none of the —-- among the distant spikes (—-- are enclosed in the contour

C., as the case of O <yn <1).

Case of y, = 1:

For y, = 1 we have m(z) = m(z), and the contour defining G;(f) must
contain the interval [0, 4]. The contour in m contains [¢,, d,] where —1 < ¢, <0,
d, > 0 and again is oriented in the clockwise direction. Extending again this
contour we find the limit of the integral on the circle is zero for both G1(f)
and FLH=(f), and we get again Theorem 1 where C; is a contour containing
[—1,—2], and not the origin.

The proof of the theorem is complete. O

3. An application to the test of presence of spike eigenvalues

In [Bai et al. (IZO_O_Q), a corrected likelihood ratio statistic L* is proposed to
test the hypothesis

Hy: =1, vs. H: S#1I,.
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They prove that under Hy,
L* — pG i (g) = N(m(g),v(9)) ,
where
L* =trS, —log|S,| —p,
Gt (g) = 1 P

n

m(g) = =)

v(g) = —2log(1 —y) — 2y.

log(l - yn) )

At a significance level « (usually 0.05), the test will reject Hy when L* —
pGYHn(g) > m(g) + @71(1 — a)y/v(g) where ® is the standard normal cu-
mulative distribution function.

However, the power function of this test remains unknown because the dis-
tribution of L* under the general alternative hypothesis Hj is ill-defined. Let’s
consider this general test as a way to test the null hypothese Hy above against
an alternative hypothesis of the form:

H{ : ¥, has the spiked structure (LI]).

In other words, we want to test the absence against the presence of possible
spike eigenvalues in the population covariance matrix. The general asymptotic
expansion in Theorem [ helps to find the power function of the test.

More precisely, under the alternative H; and for f(xz) = 2 —logz — 1 used
in the statistic L*, the centering term F¥»fn (f) can be found to be

k k
1 M 1 1 1
1+-> nja———=>» n;jloga; — (1 — —)log(l —y,) +0(=) ,
INUEE RS 0 Dtoat1 ) + 00 )
thanks to the following formulas

k
1 M 1
Fymtn(p) =14 =) nja; — — +0(— 3.18
) =14 5 Do =+ 0() (3.18)
and
1 1 1
FyoHn(loga) = = an loga; — 1+ (1 — —)log(l —yn) + O(—) . (3.19)
p P Yn n

The details of derivation of these formulas are given in the Appendix [Al
Therefore we have obtained that under H7,

L* = pFvt(f) = N(m(g),v(g)) -
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It follows that the asymptotic power function of the test is
Zle ni(ai —-1- 10g ai)
V=2log(l—-y) -2y )

In the particular case where the spiked model has only one simple close spike,
ie. k=1, ky =0, ny =1, the above power function becomes

a; — 1 —logay )

Bla)=1- @(@_1(1 —a)—

V=2log(1 —y) — 2y
which is exactly the formula (5.6) found in |Onatski et al.| (2011). Note that

these authors have found this formula using a sophisticated tools of asymptotic
contiguity and Le Cam’s first and third lemmas, our derivation is in a sense
much more direct.

Bla)=1-® (@‘1(1 —a)—

Appendix A: Additional proofs of (3I8) and (3I19)

The likelihood ratio test works only when 0 < y, < 1, and when k; + 1 <
i < k, the corresponding a; satisfy |a; — 1| < /yn, which is equivalent to

—aii € [1_*—\/1%, H;;%]’ so poles of {m = —1}, {m = —a%_,i =k +1,--,k)}
and {m = ynl_l (pole of the function logz) should be included in C;. In all the

following, we write m to stand for m for convenience.

A.1. Proof of BI])
We have

K 'azm
o) = - ﬁ(_ley_")(M 3 T Yam, (A20)

27ip m o 1+m”yam = (1+ a;m)?
and its residual at m = —1 equals to
k
M oy, n;a?
— - = —t . A.21
p P ; (1—a;)? (821
k
2.4) = — ————)dm, A.22
2mip ?{1 ; (1+a;m)(1+m) <m (14 m)? ( )
and its residual at m = —1 equals to
k
1 1 0 m 2
= _i__l_iin—( )‘
p;[ " 2( ai )iy om2\1+a;m m_1:|
LS [ e (4.23)
= - —n+—1 . .
p- (1—a)?
=1
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Besides, the residual of (A20)+(A22) at m = —aii, i= (ki +1,--- k) can be
calculated as

1 Yn Qi
ETLZ (az + o — 1) . (A24)

@n = 1——+ an(al y"‘”l)Jro%). (A.25)

a; —

Combine (A2]), (A23), (A24) and (A25), we get:

k
1 M 1
n,Hn _ .
Frofihe) =143 2 me =+ 0l

=1

).

A.2. Proof of (319)
We first calculate (2.) and (26) by considering their residuals at m = —1.

;
-1 lo +1o — a2y,
) - . ]g g(¥= =) g(— P M Znaym
1

2ipYn m (14 a;m

-M — o —-1.1
= , ]{ log(——2—1) —dm
27ipYn Je, m+1 "m

_ 1 k 2
1 Py N Ypm
+2m'pyn jgcl og( m+1 ); (14 a;m)?
£ A+B. (A.26)
M m — —L
A = - 7{ log(i_l) -dlogm
2mipyn Je, m+1
1
M m—
= , log m - dlog(——¥2—1)
2Py, m+1
M UYn ]{ logm
= - . —dm
2TipYn Yo — 1 Jo, (m+1)(m — yn—l)
M
= ——log(l—1wyn), A.27
o ( ) (A.27)
1 - k na;m
B = yn_1 i g
27Tip?§ ( m+1 );(l—i-azm)2 m
Yn—1 1 1
= i Qg d
2mp2?£1 m+1 )na(1+al (1+aim)2) "
£ C-D (A.28)



Q. Wang, J. Silverstein and J. Yao/ 15

where

C = ynfl n;ag d
277sz7£ m+1 )l—l—aim "

1
= 2mpz]£ n; log( 71) dlog(1l + a;m)

1

= i log (1 im) - dl
MZ]ﬁln 08 (1+ aum) - dlog( )
n; log (1 + a;m)
- Z T _ydm
2mp yn—l e, (m+1)(m— =)

Yn—1
= %;nilog(l —a;) — %;nl

). (A29)

and

k
[z

1 proees |
D = __¥n d
27”1?;%@ mr1  Oramp™

k 1

1 n; m—-——
27rip;j{ 14+ a;m o8( m+1 )

ng
= dm
27mp -1) Z%Cl 1+a;m —L)(m+1)

uz
= - —a ). (A.30)
Z 1 + Py 11— a;
Combine (A226), (A27), (A28), (A29) and (A30), we get the residual of (23]
at m = —1:
M 1o
——log(l —yn) + — n;log(l —a;) — — n;
PYn P ; P z; Yn — 1)
1< 1
—— + — . A.31
p 1=1 1 yn p ; 1- @i ( )
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Then, we consider the part (Z.0) in the general formula influenced by the pole
m=—1:

e - -5 ff%—%ni"m)Z( ey Ly,

2mip Jeo po l+am 14+m’m (1+m)?

1 m(m + 1) a; 1 1 Ynm
= - — d

-1
A
e (E—F—-G+H
2mip(yn — 1) ;n +H),
where
E:]{ ai(m + 1) S I L
c (1—|—aim)(m—yn_l) Yn +a; — 1
2
A;Yn M L ai(yn — 1) a;
F:% :27T’L + 9
1
G=¢ —— =2mi,
C M=y
2
H = Ynllt dm = 2miy, .

¢ (m+1)2(m — )

Collecting these four terms, we have the residual of [26]) at m = —1:

1 1 a;
— — i A.32
p;(ai—l yn+ai_1)n (A.32)
Then we consider the influence of ([ZH)+(286) caused by the pole m = —aii,
1 =ki+1,---,k, which can be calculated similarly as
1 Ynli
—1 i+ —). A.33
pog(a+ai_1) (A.33)

Finally, using the known result that G¥»(logz) = (1 — —) log(1—yy,)— 1, which
has been calculated in Bai and Silverstein (2004), and combine (A31), (Imb
(A233) and (7)), we get

k

Fyrfn(loga) = panlogal— 1+ (1- y—)log(l —yn)—i—O( ) .
i=1
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