1	Synthesis of MoS ₂ /g-C ₃ N ₄ as a Solar Light-Responsive						
2	Photocatalyst for Organic Degradation						
3	Wen-chao Peng and Xiao-yan Li*						
4	Environmental Engineering Research Centre, Department of Civil Engineering,						
5	The University of Hong Kong, Pokfulam, Hong Kong SAR, China						
6	(*Corresponding author: phone: 852 2859-2659; fax: 852 2859-5337; e-mail: xlia@hkucc.hku.hk)						
7							

8 Abstract

9 Photocatalytic degradation of organic contaminants is an attractive chemical process 10 owing to its potential for using solar light for environmental applications. In this study, a novel molybdenum disulfide (MoS₂) and graphitic carbon nitride (g-C₃N₄) composite 11 12 photocatalyst was synthesized using a low temperature hydrothermal method. MoS₂ nanoparticles formed on g-C3N4 nanosheets in the composite and this MoS2 incorporation 13 greatly enhanced the photocatalytic activity of $g-C_3N_4$. The photocatalyst was tested for the 14 15 degradation of methyl orange (MO) under simulated solar light. Composite 3.0wt% MoS₂/g-C₃N₄ showed the highest photocatalytic activity for MO decomposition. MoS₂ nanoparticles 16 increased the interfacial charge transfer and thus prevented the recombination of photo-17 generated electron-hole pairs. The new MoS₂/g-C₃N₄ photocatalyst material also displayed 18 good stability during the photo-reactions and the recycled catalyst showed little reduction in 19 activity during repeated test runs. The novel MoS₂/g-C₃N₄ composite is therefore shown as a 20 promising catalyst for photocatalytic degradation of organic pollutants using solar energy. 21

22 Key words: Decoloration, graphitic carbon nitride (g-C₃N₄), molybdenum disulfide (MoS₂),

23 photocatalysis, methyl orange, organic degradation

24 **1. Introduction**

25 Much attention has been focused on the photocatalytic strategy for the removal of environmental contaminants, as solar energy is an inexhaustible and environmentally friendly 26 energy resource.¹ A large number of semiconductor materials, such as metal oxides and metal 27 sulfides (e.g. TiO₂, WO₃, CdS, ZnS and ZnO), have been developed as active catalysts for 28 photocatalysis of organic pollutants.² Efforts have been made in recent years to use non-metal 29 materials in the synthesis of new photocatalysts with improved reactivity and stability.³ Wang 30 31 et al. reported a novel polymeric photocatalyst, graphitic carbon nitride $(g-C_3N_4)$ that exhibits excellent photocatalytic hydrogen production using solar energy.⁴ The metal-free $g-C_3N_4$ 32 photocatalyst possesses a good electronic property as well as a high thermal and chemical 33 stability, making it a valuable material for photocatalytic applications.^{1, 5, 6} However, the 34 photocatalytic efficiency of bare g-C₃N₄ is still limited due to the high rate of recombination 35 of the photo-generated electron-hole pairs.⁷ For further improvement, co-catalyst materials, 36 including noble metals, semiconductors and carbon allotropes, have been combined with g-37 C_3N_4 to fabricate new composite photocatalysts.^{1,7-14} 38

It is well known that loading precious metals, such as Pt and Au, effectively enhances the 39 activity of photocatalysts. However, these metals are rare and expensive to apply. 40 Molybdenum disulfide (MoS_2) is an emerging photocatalytic cocatalyst material that may be 41 used as a substitute for noble metals in synthesizing photocatalysts. As an indirect-gap 42 semiconductor, MoS₂ has a rather narrow band gap (1.29 eV), and its conduction band (CB) 43 and valence band (VB) edge potentials (-0.1 and +2.0 eV) are more positive than most 44 photosensitive semiconductors.^{8, 9} The difference between the CB edge potentials of a 45 semiconductor and MoS₂ allows electron transfer from the semiconductor to MoS₂, which 46 would make the CB electrons more mobile and hence promote the separation of electron-hole 47 pairs on the semiconductor.^{8, 10} Metal oxides and metal sulfates show improved 48

49 photocatalytic activity when MoS_2 is added as a synergistic cocatalyst.^{11, 12} Recently, a g-50 C_3N_4 -MoS_2 composite was synthesized by mixing g-C_3N_4 and MoS_2 together, which was 51 found to be effective for photocatalytic H₂ generation.¹⁰ In this study, we prepared the g-52 C_3N_4 -MoS₂ composites using a facial low temperature hydrothermal method to deposit MoS₂ 53 as nanoparticles on the g-C₃N₄ sheets. The resulting composite catalyst exhibited a high 54 photocatalytic activity and good stability for the degradation of methyl orange under 55 simulated solar light.

56

57 **2. Experimental**

58 2.1 Synthesis of g-C₃N₄ from thiourea

Ten grams of thiourea powder was put into an alumina crucible with a cover that was placed in a tube furnace. The chemical was heated to 550 °C at a heating rate of 10 °C /min and kept at this temperature for 2 h in air. The air exhaust released during the thermal treatment was absorbed by a dilute NaOH solution (0.05 M). The resulting yellow powder collected was $g-C_3N_4$.¹³

64 2.2 Synthesis of g-C₃N₄ supported MoS₂ nanoparticles

Half a gram prepared g-C₃N₄ was dispersed with sonication in 100 mL DI water with
ammonium molybdate ((NH₄)₆Mo₇O₂₄·4H₂O) and Na₂S·4H₂O. The mixture was stirred for 2
h to obtain a homogeneous solution. Ten mL 35% HCl solution was added and the solution
was heated to 90 °C. After 30 min, 1 g NH₂OH·HCl was added and the solution was kept at
this temperature for another 4 h to grow MoS₂ on g-C₃N₄.¹⁴ The composite, g-C₃N₄-MoS₂,
was washed thoroughly with DI water and then dried in an oven at 60°C for 12 h.

71 **2.3 Photocatalytic degradation of methyl orange**

72 Methyl orange (MO), one of important classes of commercial dyes, was selected as a model chemical compound for photocatalytic experiments. Given the short life of its excited-73 state and its high stability under visible and near UV irradiation, MO has often been used as a 74 75 model dye for testing photo-redox reactions that result in color reduction. For a typical MO decomposition test, 50 mg of the photocatalyst powder was first dispersed in 50 mL of water 76 in a quartz photo-tube by sonication, followed by the addition of MO to an initial 77 78 concentration of 20 mg/L. Before exposure to light, the suspension was stirred in the dark for 10 h to allow adsorption of MO by the catalyst. Photocatalysis of MO was performed in an 79 80 XPA-7 photo-reactor (Xujiang Electromechanical Plant, Nanjing, China) with a 500 W xenon lamp for the simulated solar (SS) light. During the photocatalytic test, 3 mL of the solution 81 82 was sampled from the photo-tube at regular time intervals to measure the MO concentration. 83 Each sample was filtered and its absorbance (ABS) was measured by a UV-visible spectrophotometer (UV-vis lambda 25, Perkin Elmer) at 463 nm to determine the MO 84 concentration in the solution. 85

86 2.4 Material characterization

The crystal forms of the photocatalysts were analyzed from their X-ray diffraction (XRD) 87 patterns using a Bruker D8 Advance X-ray powder diffractometer. The morphology of the 88 89 catalysts was examined by transmission electron microscopy (TEM) (Philips Tecnai G220 S-90 TWIN, Amsterdam, the Netherlands). Fourier transform infrared spectroscopy (FT-IR) (Perkin Elmer, FT-IR Spectrophoeometer Spectrum One B) was used to characterize the 91 92 functional groups of different catalysts. The chemical states of MoS₂ nanoparticles were detected by X-ray photo-emission spectroscopy (XPS) (PHI 5600 Multi-Technique XPS 93 System, Physical Electronics). The UV-vis diffusive reflectance spectra (DRS) of the 94 catalyst powders were recorded by a spectrophotometer (Hitachi U-3010). The surface area 95 96 and pore structure of catalyst powder samples was determined by a Beckman Coulter 97 SA3100 surface area analyzer from the nitrogen adsorption-desorption isotherm at liquid
98 nitrogen temperature (77 K).

99

100 **3. Results and Discussion**

101 **3.1 Characterization of the photocatalysts**

The commonly used precursors for $g-C_3N_4$ are nitrogen rich compounds with a prebonded triple or double C–N core structure, such as cyanamide and dicyandiamide, which are unstable, highly explosive and toxic. In this study, a low cost, non-toxic chemical, thiourea, was used as the raw material to produce $g-C_3N_4$. The process is simple and easy to perform and can be completed in 2 h at 550 °C in the air atmosphere. MoS₂ nanoparticles were formed and deposited on $g-C_3N_4$ by the reduction of molybdate with NH₂OH·HCl at 90 °C. The reaction mechanisms for this process can be described as follows:

109
$$(NH_4)_6 Mo_7 O_{24} + Na_2 S \xrightarrow{HCI} (NH_4)_2 MoS_4 \xrightarrow{NH_2OH \cdot HCI} MoS_2$$

The composite sample was first characterized by XPS to verify its chemical composition. As shown in Fig. S1a, the Mo3d spectrum exhibits two peaks at 229.4 eV (Mo3d_{5/2}) and 232.4 eV (Mo3d_{3/2}), indicating a +4 oxidation state for Mo in the composite. The peak at 163.2 eV in Fig. S1b can be attributed to S2p of S²⁻. These binding energies are all close to the reported values for MoS₂.^{10, 15-17}

Fig. 1 presents the XRD patterns of the $g-C_3N_4$ and $g-C_3N_4-MoS_2$ samples. The $g-C_3N_4$ spectra show a strong peak at 27.4° corresponding to the tight inter-layer stacking distance (0.325 nm) of the aromatic planes in $g-C_3N_4$. The other pronounced peak at 13.11° corresponds to an in-plane structural repeating motif with a repeated distance of 0.675 nm. Pure MoS₂ nanoparticles were prepared using the same method as described for the 120 composite, without the addition of $g-C_3N_4$. As shown in Fig. 1, the XRD profile for pure 121 MoS₂ displayed low and broad diffraction peaks. The pattern of broad peaks was likely 122 caused by the combination of small-size particles, disorder in crystallinity and strains in the 123 crystallites.¹⁶ The XRD pattern for $g-C_3N_4$ -MoS₂ is nearly the same as that for $g-C_3N_4$, due to 124 the small percentage of MoS₂ and its low diffraction intensity. The FT-IR spectra also show 125 little difference between pure $g-C_3N_4$ and $g-C_3N_4$ -MoS₂ (Fig. S2).

126

Fig. 1.

127 The optical absorption property of g-C₃N₄-MoS₂ composites with various MoS₂ contents 128 was analyzed. According to the DRS in Fig. 2, pure g-C₃N₄ displays absorption from UV through the visible range up to 460 nm, which can be ascribed to the band gap of $g-C_3N_4$ (2.7 129 eV). In the UV (≤400 nm) region, the composites' absorption abilities follows the order g-130 $C_3N_4-0.03MoS_2 > g-C_3N_4-0.05MoS_2 > g-C_3N_4-0.01MoS_2 > g-C_3N_4$. Generally, in the low 131 energy visible region, the DRS intensity strengthened with an increase of the MoS₂ content in 132 133 the g-C₃N₄-MoS₂ composite. The differences in optical adsorption agree well with the colors of the catalyst powders, presented in Fig. 2, which range from yellow to brown. The DRS 134 features suggest that MoS₂ doping can enhance the response of the catalyst composite 135 136 towards solar light.

137

Fig. 2.

The TEM image of $g-C_3N_4$ in Fig. 3a shows a clear nanosheet structure similar to graphene. The nanosheets are very thin and transparent to the electron beam. The TEM image of pure MoS₂ in Fig. 3b shows aggregated nanoparticles in a wide size distribution. At a higher magnification in Fig. 3c, a relatively weak crystallinity and strain of the MoS₂ in the crystallites can be observed. The characteristic crystal lattice of MoS₂ (0.62 nm) can be identified at the edge of the nanoparticles. The morphology and microstructure of the g-C₃N₄- MoS₂ composite are shown in detail in the TEM image in Fig. 3d. MoS₂ nanoparticles on the g-C₃N₄ surface can be seen at the edge of the composite, and the MoS₂ deposition does not appear to disrupt the g-C₃N₄ nanosheets.

147

Fig. 3.

The specific surface area and pore volume of the catalyst samples were measured using nitrogen adsorption (Fig. S3). The g-C₃N₄-MoS₂ composites have a larger surface area than g-C₃N₄ (17.5 m²/g), but there is little difference between the composites with different MoS₂ loading percentages. The N₂ adsorption-desorption isotherms in Fig. S3a indicate that g-C₃N₄-0.03MoS₂ has a greater N₂ adsorption capability than pure g-C₃N₄. The diameter of the main pores increased with the MoS₂ content, from 18 nm for g-C₃N₄ to 30 nm for g-C₃N₄-0.03MoS₂ (Fig. S3b), which is likely to be the cause of the composite's increased surface area.

155 **3.2 Photocatalytic decomposition of methyl orange**

The photocatalytic activity of the different catalysts was tested by the decoloring or 156 decomposition of 20 mg/L MO under simulated solar light. Prior to the photo-tests, the 157 changes in MO concentration caused by the adsorption of the catalyst materials were 158 determined in the dark. The adsorption capability of g-C₃N₄ clearly increased with MoS₂ 159 160 deposition (Fig. S4). This is attributable to the increases in the surface area and pore size of the composites (Fig. S3). After adsorption, the equilibrium MO concentrations were used as 161 162 the initial concentrations for the subsequent photocatalysis tests (Fig. 4). Composite g-C₃N₄- MoS_2 exhibited a much greater photocatalytic activity than bare g-C₃N₄ for MO destruction. 163 164 The photocatalytic efficiency for MO decoloration under SS light follows the order g-C₃N₄- $0.03MoS_2 > g-C_3N_4 - 0.05MoS_2 > g-C_3N_4 - 0.01MoS_2 > g-C_3N_4$. Integration of 1% MoS₂ into g-165 166 C_3N_4 greatly increased its photocatalytic activity. Increase of the MoS₂ doping ratio to 3% further increased the activity of the photocatalyst. However, when the MoS₂ ratio increased to 167

168 5%, the photo-activity of the catalyst decreased according to the MO degradation tests. The 169 half-time ($T_{1/2}$) of MO decoloring by the photocatalysts can be determined from the MO 170 reduction curves. Under SS light, the $T_{1/2}$ of MO for bare g-C₃N₄ was 1253 min, whereas the 171 $T_{1/2}$ for g-C₃N₄-0.03MoS₂ was only 213 min.

172

Fig. 4.

An unsuccessful attempt was made to further increase the activity of the photocatalyst by annealing the $g-C_3N_4-0.03MoS_2$ composite at different temperatures. The photo-activity of the catalyst actually decreased after the annealing treatment; even at the maximum annealing temperature of 400 °C (g-C₃N₄ becomes unstable at 400 °C or higher). Detailed experiment and results are reported in the Supporting Information (Fig. S5).

The stability of the $g-C_3N_4-0.03MoS_2$ composite as a photocatalyst was evaluated by repeating the MO decoloration tests. As shown in Fig. S6, the adsorption capacity of $g-C_3N_4$ -0.03MoS₂ decreased after the first use, but little further decrease was observed in the following test runs. The photo-activity of the catalyst was stable, as indicated by the repeated MO decoloring tests (Fig. 5). No significant deactivation was found for the recycled photocatalyst after four runs.

184

Fig. 5.

185 **3.3 Photocatalytic MO degradation mechanisms by g-C₃N₄-MoS₂**

The mechanisms of photocatalytic MO degradation by the $g-C_3N_4$ -MoS₂ composite are illustrated in Fig. 6. MO molecules are readily adsorbed via conjugation by the s-triazine rings (C₃N₃) of $g-C_3N_4$, which is beneficial to the subsequent MO decomposition. Under SS light, irradiation of photosensitive $g-C_3N_4$ leads to electron excitation and electron-hole pair formation. The CB and VB edge potentials of polymeric $g-C_3N_4$ are reported at -1.13 and +1.57 eV ⁸. In comparison, the CB and VB edge potentials of MoS₂ are more positive, at -0.1 192 and +2.0 eV. The difference between the CB edge potentials of $g-C_3N_4$ and MoS_2 allows electron transfer from the CB of $g-C_3N_4$ to the CB of MoS₂, which is favorable to the 193 separation of electron-hole pairs on $g-C_3N_4$.^{8, 10} Therefore, MoS₂ nanoparticles on the $g-C_3N_4$ 194 195 sheets apparently act as electron collectors, similarly to noble metals, conducting photogenerated electrons from the main photocatalyst and thus preventing the electrons from 196 recombining with the holes. Moreover, the presence of MoS₂ could provide more active sites 197 for MO adsorption and degradation. The electrons would eventually be accepted by dissolved 198 oxygen in the aqueous phase to facilitate the electron-hole separation. The holes can directly 199 oxidize MO molecules adsorbed on the catalyst surface, resulting in color reduction. 200 Moreover, the holes react with water (or hydroxyl) to form hydroxyl free radicals (•OH), 201 which are a strong oxidant for MO decomposition ^{2, 18,2, 18} The MO degradation in water 202 results in decoloration of the solution and formation of CO₂ and intermediate products, such 203 as phenolic compounds and carboxylic acids. The major reaction steps during the 204 photocatalytic process may be described by the following equations (1-6): 205

206
$$g-C_3N_4 + hv \rightarrow g-C_3N_4 (e^- + h^+)$$
 (1)

207
$$g-C_3N_4(e) + MoS_2 \rightarrow g-C_3N_4 + MoS_2(e)$$
 (2)

208
$$MoS_2(e^-) + 1/2O_2 \rightarrow MoS_2 + O_2^-$$
 (3)

209
$$g-C_3N_4(h^+) + MO \rightarrow CO_2 + H_2O + other products$$
 (4)

210
$$g-C_3N_4(h^+) + OH^- \rightarrow g-C_3N_4 + \cdot OH$$
 (5)

$$\bullet OH + MO \rightarrow CO_2 + H_2O + other \text{ products}$$
(6)

- 212
- 213

Fig. 6.

214

215

4. Conclusions

Novel g-C₃N₄-MoS₂ composite photocatalysts were prepared using a facile, low 217 temperature hydrothermal method, with MoS₂ formed as nanoparticles on the g-C₃N₄ 218 nanosheets. The composite catalysts exhibited much greater photocatalytic activity than pure 219 220 g-C₃N₄ for the decoloration and degradation of methyl orange under simulated solar light, and the 3.0wt% MoS₂/g-C₃N₄ composite had the greatest activity. An annealing process 221 failed to further increase the activity of the photocatalysts. The enhanced photocatalytic 222 223 activity can be attributed to the synergetic function of MoS₂ in the composite catalyst. The presence of MoS₂ nanoparticles apparently increased the interfacial charge transfer and thus 224 reduced electron-hole recombination. The photocatalyst also displayed good stability during 225 the photo-reactions and no obvious deactivation was found for the recycled catalyst after four 226 test runs. The $MoS_2/g-C_3N_4$ composite is thus a promising photocatalyst with a high 227 228 reactivity and stability for photocatalytic degradation of organic pollutants using solar energy.

229

230 Acknowledgements

This research was supported by grants HKU714112E from the Research Grants Council (RGC) and SEG_HKU10 from the University Grants Committee (UGC) of the Government of Hong Kong SAR. The technical assistance of Mr. Keith C.H. Wong is highly appreciated.

234

235 **References**

- 236 1. W. Liu, M. L. Wang, C. X. Xu and S. F. Chen, *Chem Eng J*, 2012, **209**, 386-393.
- 237 2. Q. J. Xiang, J. G. Yu and M. Jaroniec, *Chem Soc Rev*, 2012, **41**, 782-796.
- 238 3. G. Liu, P. Niu, L. C. Yin and H. M. Cheng, *J Am Chem Soc*, 2012, **134**, 9070-9073.

- 239 4. X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen
 240 and M. Antonietti, *Nat Mater*, 2009, 8, 76-80.
- 5. Y. Wang, X. C. Wang and M. Antonietti, *Angew Chem Int Edit*, 2012, **51**, 68-89.
- 242 6. Y. Zheng, J. Liu, J. Liang, M. Jaroniec and S. Z. Qiao, *Energ Environ Sci*, 2012, 5,
 243 6717-6731.
- 244 7. G. Z. Liao, S. Chen, X. Quan, H. T. Yu and H. M. Zhao, *J Mater Chem*, 2012, 22, 2721-2726.
- 246 8. L. Ge, C. Han and J. Liu, *Applied Catalysis B: Environmental*, 2011, **108**, 100-107.
- 247 9. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, *Phys Rev Lett*, 2010, **105**.
- 248 10. L. Ge, C. C. Han, X. L. Xiao and L. L. Guo, *Int J Hydrogen Energ*, 2013, 38, 6960249 6969.
- 250 11. K. H. Hu, X. G. Hu, Y. F. Xu and J. D. Sun, J Mater Sci, 2010, 45, 2640-2648.
- 251 12. X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang and C. Li, *J Am Chem*252 Soc, 2008, 130, 7176-+.
- 13. F. Dong, Y. J. Sun, L. W. Wu, M. Fu and Z. B. Wu, *Catal Sci Technol*, 2012, 2, 13321335.
- 255 14. Y. M. Tian, J. Z. Zhao, W. Y. Fu, Y. H. Liu, Y. Z. Zhu and Z. C. Wang, *Mater Lett*,
 256 2005, **59**, 3452-3455.
- 257 15. H. T. Lin, X. Y. Chen, H. L. Li, M. Yang and Y. X. Qi, *Mater Lett*, 2010, 64, 1748258 1750.
- 259 16. X. L. Li and Y. D. Li, *J Phys Chem B*, 2004, **108**, 13893-13900.
- 260 17. X. M. Shuai and W. Z. Shen, J Phys Chem C, 2011, 115, 6415-6422.
- 261 18. J. C. Liu, H. W. Bai, Y. J. Wang, Z. Y. Liu, X. W. Zhang and D. D. Sun, *Adv Funct Mater*, 2010, **20**, 4175-4181.

263

264 **Figure Captures**

265

Fig. 1. XRD patterns of pure MoS_2 , pure $g-C_3N_4$ and the $g-C_3N_4$ -MoS ₂ composition	266	Fig. 1. XRD	patterns of	pure MoS ₂ ,	pure $g-C_3N_4$ a	and the g-C	C_3N_4 -MoS ₂	composite
---	-----	-------------	-------------	-------------------------	-------------------	-------------	----------------------------	-----------

- Fig. 2. UV-vis diffusive reflectance spectra of $g-C_3N_4$ and $g-C_3N_4$ -MoS₂ composites.
- Fig. 3. (a) TEM image of pure $g-C_3N_4$, (b) TEM images of pure MoS₂, (c) HR-TEM images of pure MoS₂ and (d) TEM image of $g-C_3N_4$ -MoS₂ composite.
- Fig. 4. Degradation of MO under simulated solar light by pure $g-C_3N_4$ and the $g-C_3N_4$ -MoS₂ composites.
- Fig. 5. Photocatalytic MO degradation by the recycled photocatalysts in repeated test runs.
- Fig. 6. Schematics of the mechanisms of photocatalytic MO degradation by the g-C₃N₄-MoS₂
 composite under SS light.

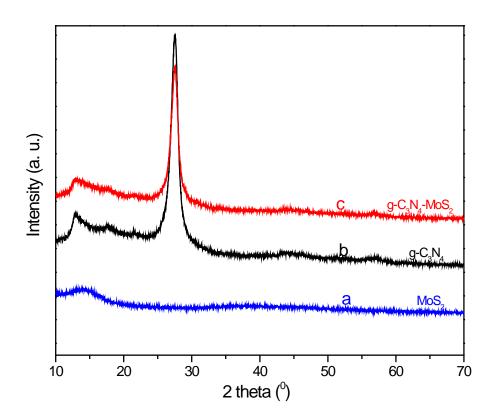


Fig. 1. XRD patterns of pure MoS_2 , pure $g-C_3N_4$ and the $g-C_3N_4$ -MoS₂ composite

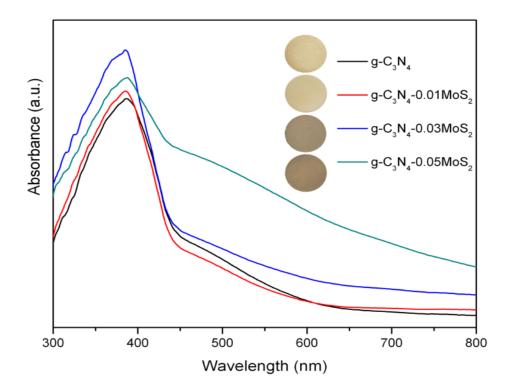


Fig. 2. UV-vis diffusive reflectance spectra of $g-C_3N_4$ and $g-C_3N_4$ -MoS₂ composites.

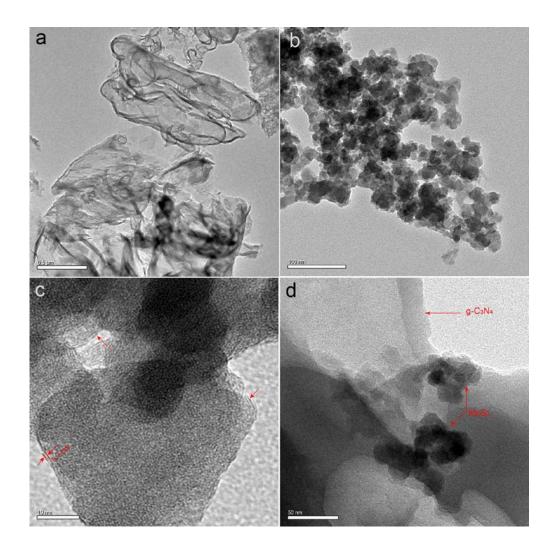


Fig. 3. (a) TEM image of pure $g-C_3N_4$, (b) TEM images of pure MoS_2 , (c) HR-TEM images of pure MoS_2 and (d) TEM image of $g-C_3N_4$ -MoS₂ composite.

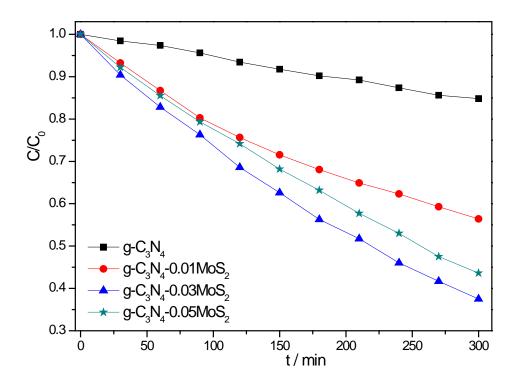


Fig. 4. Degradation of MO under simulated solar light by pure $g-C_3N_4$ and the $g-C_3N_4$ -MoS₂ composites.

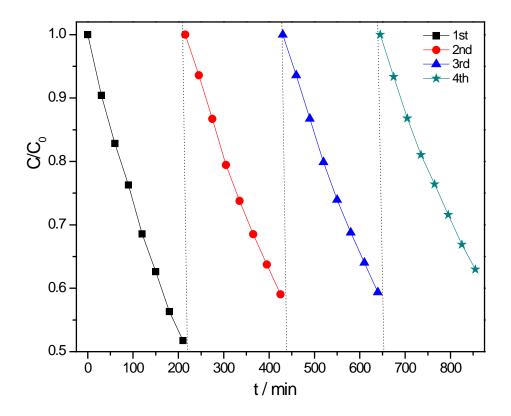


Fig. 5. Photocatalytic MO degradation by the recycled photocatalysts in repeated test runs.

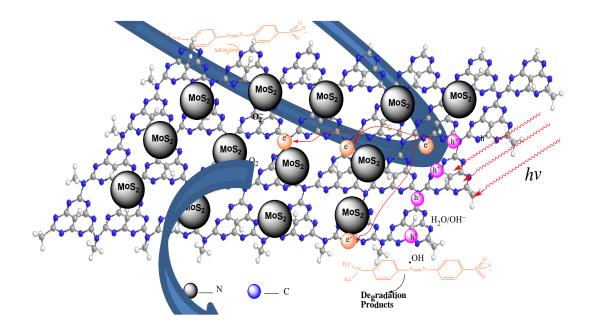


Fig. 6. Schematics of the mechanisms of photocatalytic MO degradation by the $g-C_3N_4-MoS_2$ composite under SS light.

Supporting Information

Synthesis of MoS₂/g-C₃N₄ as a Solar Light-Responsive Photocatalyst for Organic Degradation

Wen-chao Peng and Xiao-yan Li*

Environmental Engineering Research Centre, Department of Civil Engineering,

The University of Hong Kong, Pokfulam, Hong Kong SAR, China

(*Corresponding author: phone: 852 2859-2659; fax: 852 2859-5337; e-mail: xlia@hkucc.hku.hk)

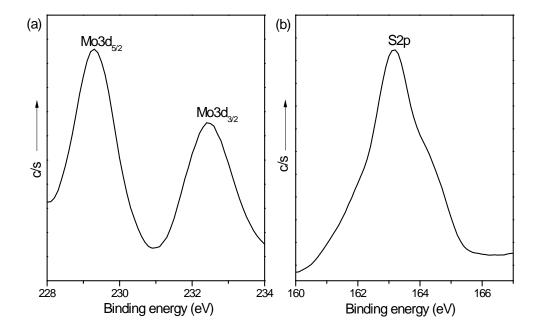


Fig. S1. XPS spectra of MoS_2 nanoparticles deposited on $g-C_3N_4$: (a) Mo (3d) spectrum and (b) S (2p) spectrum.

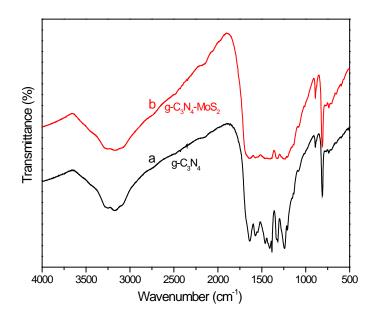


Fig. S2. FT-IR profiles of pure g-C₃N₄ and the g-C₃N₄-MoS₂ composite.

The FT-IR spectrum of pure g-C₃N₄ clearly shows several peaks at the frequency characteristic of the vibrational modes related to the chemical bonding between carbon and nitrogen. The adsorption peak at 810 cm⁻¹ corresponds to the breathing mode of the triazine units. Several strong bands in the 1240-1645 cm⁻¹ region can be attributed to the stretching modes of C-N heterocyclics (e.g. 1321 cm⁻¹ C-N stretching and 1641 C=N cm⁻¹ stretching). The broad absorption band at ~3200 cm⁻¹ can be assigned to the stretching modes of secondary and primary amines and their intermolecular hydrogen-bonding interactions. No major differences can be seen between the pure g-C₃N₄ and the g-C₃N₄-MoS₂ composite spectra. Therefore, MoS₂ doping did not change the functional groups of g-C₃N₄ and no new chemical bonds were generated during this process. However, the intensity of the peaks (1100-1750 cm⁻¹) for the g-C₃N₄-MoS₂ composite is relatively lower than those of pure g-C₃N₄. This was likely caused by the layer of MoS₂ on the g-C₃N₄.

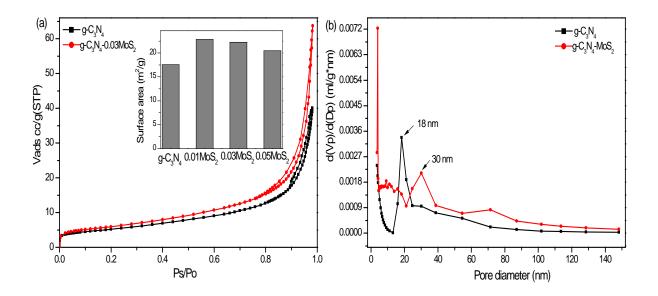


Fig. S3. (a) N_2 adsorption-desorption isotherms at 77 K and (b) pore size distributions of $g-C_3N_4$ and $g-C_3N_4$ -MoS₂.

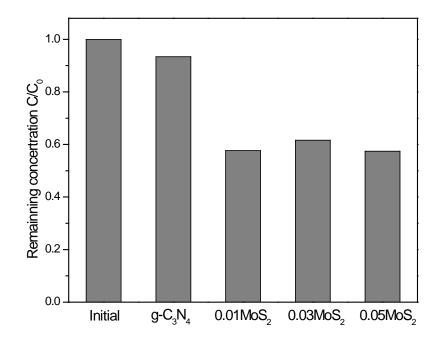


Fig. S4. Change in MO concentration after adsorption by the different catalyst materials $(g-C_3N_4 \text{ and its composites with different amounts of MoS}_2)$

Thermal treatment of MoS₂/g-C₃N₄

The g-C₃N₄-0.03MoS₂ composite was placed in a crucible that was placed in a tube furnace. An N₂ flow (50 mL/min) was applied for 2 h to remove air from the furnace. The temperature was increased at a rate of 5 °C/min to the required temperature (200, 300 or 400 °C) and then maintained at that temperature for 2 h. A temperature higher than 400 °C will break the structure of g-C₃N₄, so this was set as the upper temperature limit. The furnace was cooled down naturally to room temperature to complete the annealing process.

The materials obtained were characterized by XRD and the results are shown in Fig. S5a. No major differences can be seen between the different samples. The catalysts were tested for photocatalytic MO degradation under the same conditions. Fig. S5b shows that their adsorption capacity decreased after the annealing treatment. In addition, the photo-activity of the thermally treated catalyst did not show any increase for MO degradation (Fig. S5c). The annealing process therefore did not enhance the photocatalytic activity of $g-C_3N_4-0.03MoS_2$.

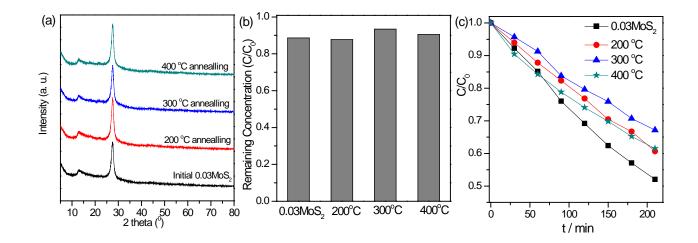


Fig. S5 (a) XRD patterns of $g-C_3N_4-0.03MoS_2$ annealed at different temperatures in the N_2 atmosphere, (b) the adsorption capability of the different catalyst materials and (c) photocatalytic degradation of MO by the different photocatalysts.

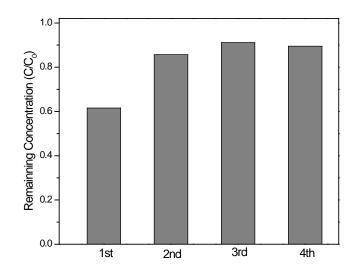


Fig. S6. The adsorption capacity of the recycled catalyst materials