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Abstract: Recently, a new non-randomized parallel design is proposed by Tian (2013) for

surveys with sensitive topics. However, the sample size formulae associated with testing hy-

potheses for the parallel model are not yet available. As a crucial component in surveys, the

sample size formulae with the parallel design are developed in this paper by using the power

analysis method for both the one- and two-sample problems. We consider both the one- and

two-sample problems. The asymptotic power functions and the corresponding sample size for-

mulae for both the one- and two-sided tests based on the large-sample normal approximation

are derived. The performance is assessed through comparing the asymptotic power with the

exact power and reporting the ratio of the sample sizes with the parallel model and the design

of direct questioning. We numerically compare the sample sizes needed for the parallel design

with those required for the crosswise and triangular models. Two theoretical justifications are

also provided. An example from a survey on ‘sexual practices’ in San Francisco, Las Vegas and

Portland is used to illustrate the proposed methods.

Keywords: Crosswise model; Non-randomized response technique; Parallel model; Power func-

tion; Sample size formula; Triangular model.

1. Introduction

In medical, epidemiological, public health, political, psychological, behavioral and sociological

surveys, investigators would like to gather useful information on some sensitive topics or highly

private questions such as sex, AIDs, abortion, drug-taking, gambling, tax evasion and so on.

When such sensitive questions are asked directly, some respondents may refuse to answer or

even give false answers to protect their privacy. As a result, statistical inferences based on such

survey data might lead to inaccurate, unreliable or even wrong conclusions.

In order to alleviate the level of difficulty with the above-mentioned problems, Warner (1965)

developed a randomized response technique which facilitates investigators to collect relatively
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reliable information while protecting privacy of the interviewees. The aim is to estimate the

proportion of subjects with a sensitive attribute in a population. Later, some researchers

extended Warner’s model to other randomized response models (Mangat, 1994; Mangat and

Singh, 1990; Singh and Mangat, 1996).

However, a major obstacle for the wide application of these randomized response techniques

in survey practices is that some interviewees still provide untruthful answers. A possible reason

is that there is a lack of trust from the interviewees because these randomization devices are

totally controlled by interviewers. Thus, in order to avoid the usage of randomizing devices,

recently other authors developed a non-randomized response technique (Tian et al ., 2007, 2011;

Yu et al ., 2008; Tan et al ., 2009; Tang et al ., 2009). And they have demonstrated that these

non-randomized response models usually perform better than the corresponding randomized

response partners in terms of efficiency and degree of privacy protection.

More recently, Tian (2013) developed a so-called parallel design and numerically and theo-

retically showed that it is more efficient than the existing non-randomized crosswise and trian-

gular designs in certain situations. However, the sample size formulae associated with testing

hypotheses for the parallel model are not yet available. Since the sample size determination is

a crucial step in survey practices, the main objective of this article is to develop the sample

size formulae with the parallel design by using the power analysis method for both the one-

and two-sample problems.

The rest of this paper is organized as follows. In Section 2, we consider the situation of

one-sample problem and derive asymptotic power functions and the corresponding sample size

formulae for both one- and two-sided tests based on the large-sample normal approximation. In

Section 3, the performance is assessed through comparing the asymptotic power with the exact

power and reporting the ratio of the sample sizes with the parallel model and the design of

direct questioning. In Section 4, we numerically compare the sample sizes needed for the parallel

design with those required for the crosswise model. A theoretical justification is also provided.

Similar comparisons between the parallel design and the triangular design are numerically and

theoretically performed in Section 5. In section 6, we derive the sample size formula for the two-

sample problem. In Section 7, an example from a survey on ‘sexual practices’ in San Francisco,

Las Vegas and Portland is used to illustrate the proposed methods. A discussion is given in

Section 8 and all technical details are put in the Appendix.
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2. The Non-randomized Parallel Model

In this section, first we briefly introduce the survey design for the non-randomized parallel

model proposed by Tian (2013). Second we derive sample size formulae for both the one-sided

and two-sided tests based on the power analysis method.

2.1 The survey design for the parallel model

Suppose that Y is a Bernoulli random variable corresponding to a sensitive question QY (e.g.,

have you ever taken drugs?). Let Y = 1 if the answer to the question QY is ‘yes’ and Y = 0 if

the answer to the question QY is ‘no’. We are interested in estimating the unknown proportion

π = Pr{Y = 1}. To this end, we assume that there are two non-sensitive dichotomous variates

W and U such that W , U and Y are mutually independent and p = Pr{W = 1} and q =

Pr{U = 1} are known. For example, we may define W = 1 if the birthday of the respondent’s

mother is between 1 and 15 of a month and W = 0 otherwise. Similarly, we could define U = 1

if the respondent was born in the first half of a year and U = 0 otherwise. Thus, it is reasonable

to assume that p ≈ q ≈ 0.5. More discussions on the model assumptions and the choice of W

and U are given in Section 8 of Tian (2013).

Table 1 shows the survey scheme for the parallel model (Tian, 2013). The interviewer

may ask the interviewee to connect the two circles by a straight line if he/she belongs to

{U = 0, W = 0} or {Y = 0, W = 1}; otherwise connect the two squares. Note that

all {W = 0}, {W = 1}, {U = 0}, {U = 1} and {Y = 0} are non-sensitive classes, thus

{U = 1, W = 0} ∪ {Y = 1, W = 1} is also a non-sensitive subclass. Therefore, whether the

interviewee belongs to the sensitive class is not on record. The corresponding cell probabilities

are displayed at the right-hand side of Table 1.

[Insert Table 1 here]

2.2 Sample size formulae based on the power analysis method

Following Table 1, we define a Bernoulli random variable Y P as

Y P =

{
1, if the two squares are connected,

0, if the two circles are connected,
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where the superscript ‘P’ indicates the Bernoulli variable for the parallel model. Thus, the

probabilities of Y P = 1 and Y P = 0 are given by

Pr{Y P = 1} = q(1 − p) + πp and Pr{Y P = 0} = (1 − q)(1 − p) + (1 − π)p,

respectively.

Let Yobs = {yP
i : i = 1, . . . , n} denote the observed data for the n respondents, then the

likelihood function for π is

L
P
(π|Yobs) =

n∏

i=1

[
q(1 − p) + πp

]yP
i
[
(1 − q)(1 − p) + (1 − π)p

]1−yP
i

.

Consequently, the maximum likelihood estimate (MLE) of π is

π̂
P

=
ȳP − q(1 − p)

p
, (2.1)

where ȳP = (1/n)
∑n

i=1 yP
i . It is easy to verify that π̂

P
is an unbiased estimator of π and the

variance of π̂
P

is given by

Var(π̂
P
) =

δ(1 − δ)

np2
,

where δ =̂ q(1−p)+πp. According to the Central Limit Theorem, π̂
P

is asymptotically normally

distributed as n → ∞, i.e.,

π̂
P
− π√

Var(π̂
P
)

=
nπ̂

P
− nπ√

nδ(1 − δ)/p

.∼ N(0, 1). (2.2)

2.2.1 The one-sided test

In order to test whether the population proportion (π) with the sensitive characteristic is

identical to a pre-specified value (π0), the following hypotheses are often considered,

H0: π = π0 versus H1: π < π0. (2.3)

If the null hypothesis H0 is true, from (2.2), we have

nπ̂
P
− nπ0√

nδ0(1 − δ0)/p

.∼ N(0, 1), as n → ∞,

where δ0 =̂ q(1 − p) + π0p. Let zα denote the upper α-th quantile of the standard normal

distribution. When the event

E
P

=
{

nπ̂
P
≤ nπ0 − zα

√
nδ0(1 − δ0)

/
p
}

(2.4)

4



is observed, we should reject the null hypothesis H0 at the α level of significance. If H1 is true,

without loss of generality, we can assume that π = π1 with π1 < π0. Thus, the power of the

one-sided test can be calculated approximately by

Power (at π1) = Pr{rejecting H0|π = π1}

= Pr

{
nπ̂

P
− EH1

(nπ̂
P
)√

VarH1
(nπ̂

P
)

≤ nπ0 − zα

√
nδ0(1 − δ0)/p − nπ1√

nδ1(1 − δ1)/p

}

.
= Φ

(√
n(π0 − π1)p − zα

√
δ0(1 − δ0)√

δ1(1 − δ1)

)
, (2.5)

where δ1 =̂ q(1−p)+π1p and Φ(·) denotes the cumulative distribution function of the standard

normal distribution. For a given power, say, 1−β, the required sample size n
P

can be determined

by solving the following equation

√
n

P
(π0 − π1)p − zα

√
δ0(1 − δ0) = zβ

√
δ1(1 − δ1),

which yields

n
P

=

[
zα

√
δ0(1 − δ0) + zβ

√
δ1(1 − δ1)

(π0 − π1)p

]2

. (2.6)

2.2.2 The two-sided test

For a two-sided test, the two-sided hypotheses are specified by

H0: π = π0 versus H1: π 6= π0.

Given a significance level α, we only consider the equal-tailed rejection region. Note that the

relationship among the power, sample size and effect size is approximately given by

Power (at π1)
.
= Φ

(√
n|π0 − π1|p − zα/2

√
δ0(1 − δ0)√

δ1(1 − δ1)

)
.

In this case, the sample size is still given by (2.6) except for replacing the critical value zα with

zα/2.

3. Evaluation of Performance

3.1 Comparison of the asymptotic power with the exact power

The asymptotic power function for the one-sided test is given by (2.5). To derive the exact

power formula, we define a new random variable X
P

= nȳP =
∑n

i=1 yP
i . Then, we have
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X
P
∼ Binomial(n, δ) with δ = q(1 − p) + πp. The rejection region E

P
specified in (2.4) can be

rewritten as

E
P

=
{
X

P
: X

P
≤ nδ0 − zα

√
nδ0(1 − δ0)

}
.

The exact power (at π1) for any particular sample size n is determined by the following formula,

Exact power (at π1) =
∑

x∈E
P

Binomial (x|n, q(1 − p) + π1p)

=
∑

x∈E
P

(
n
x

)
δx
1 (1 − δ1)

n−x, (3.1)

where δ1 = q(1 − p) + π1p. To compare the accuracy of the approximate power formula given

by (2.5), in Figure 1, we plot the exact and asymptotic powers against the sample size n for

various combinations of (π0, π1) at p = q = 0.5 and α = 0.05. Figure 1 shows that, in general,

the asymptotic power function given by (2.5) is a satisfactory approximation to the exact power

defined by (3.1). Especially for large sample size n, the approximate power and the exact power

are nearly the same (see in Figure 1(iv)).

[Insert Figure 1 here]

3.2 Comparison with the design of direct questioning in sample sizes

For a given pair of (π0, π1), we note that n
P

is a decreasing function of p and an increasing

function of q. It is clear that the parallel design reduces to the design of direct questioning

(DDQ) when p = 1. Let n
D

denote the sample size of the DDQ. In (2.6), setting p = 1, we

obtain

n
D

=

[
zα

√
π0(1 − π0) + zβ

√
π1(1 − π1)

π0 − π1

]2

. (3.2)

Given 5% level of significance and 80% power, Table 2 reports the sample size n
P

defined by

(2.6) and the corresponding ratio n
P
/n

D
for various combinations of (π0, π1, q, p). For example,

when (π0, π1, q, p) = (0.40, 0.25, 1/3, 0.50), we have n
P
/n

D
= 4.03, indicating that the sample

size required for the parallel design is about four times of that required for the DDQ in order

to achieve the identical power for the one-sided test.

In Table 2, we choose the non-sensitive dichotomous variate W to be the respondent’s

birthday and U to be the birthday of the respondent’s mother. For example, p = 0.42 (i.e.,

5/12), 0.50 (i.e., 6/12) and 0.58 (i.e., 7/12) represent that we define W = 1 if the respondent

6



was born between January to May, January to June and January to July of a year, respectively.

Similarly, q = 1/3, 1/2 and 2/3 represent that we define U = 1 if the respondent’s mother was

born between the 1-st to the 10-th, the 1-st to the 15-th and the 1-st to the 20-th of a month,

respectively.

[Insert Table 2 here]

4. Comparison with the Crosswise Model

In this section, we first describe the crosswise model (Yu et al., 2008) and then derive the

sample size formula for the crosswise model based on the power analysis method. We next

numerically compare the sample size required for the crosswise design with that needed for the

parallel design. Finally, a theoretical justification is also provided.

4.1 The crosswise model

Let Y and W have the same definition as in Section 2.1, where p = Pr(W = 1) and π = Pr(Y =

1). The interviewer may design the questionnaire in the format as shown on the left-hand side of

Table 3 and asks the interviewee to put a tick in the upper circle (i.e., {Y = 0, W = 0}) if he/she

belongs to one of the two circles or put a tick in the upper square (i.e., {Y = 0, W = 1}) if

he/she belongs to one of the two squares. Note that both {Y = 0, W = 0} and {Y = 0, W = 1}
are non-sensitive. Thus, whether an interviewee belongs to the sensitive class (i.e., {Y = 1})
will not be revealed if a tick is put in the upper circle/square. Yu et al. (2008) called this the

crosswise model.

[Insert Table 3 here]

4.2 Sample size formula for the crosswise model

Let Yobs = {yC
i : i = 1, . . . , n} denote the observed data for the n respondents with yC

i = 1 if

the i-th respondent puts a tick in the upper circle and yC
i = 0 if the i-th respondent puts a tick

in the upper square. The likelihood function for π is

L
C
(π|Yobs) =

n∏

i=1

[
(1 − π)(1 − p) + πp

]yC
i
[
(1 − π)p + π(1 − p)

]1−yC
i
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so that the MLE of π and its variance are given by

π̂
C

=
ȳC − (1 − p)

2p − 1
and Var(π̂

C
) =

γ(1 − γ)

n(2p − 1)2
, (4.1)

respectively, where p 6= 0.5,

ȳC =
1

n

n∑

i=1

yC
i and γ =̂ (1 − π)(1 − p) + πp.

To derive the sample size formula for the crosswise model, we consider the same one-sided

hypotheses specified in (2.3). Similar to (2.5) and (2.6), we have

Power (at π1)
.
= Φ

(√
n(π0 − π1)|2p − 1| − zα

√
γ0(1 − γ0)√

γ1(1 − γ1)

)

and

n
C

=

[
zα

√
γ0(1 − γ0) + zβ

√
γ1(1 − γ1)

(π0 − π1)(2p − 1)

]2

, (4.2)

where γi =̂ (1 − πi)(1 − p) + πip, i = 0, 1 and π1 < π0.

4.3 Numerical comparisons

Intuitively, the optimal degree of privacy protection is attained at p = 0.5. When p is either

too small or too large, the privacy of respondents cannot be protected sufficiently. Therefore,

investigators should choose a p within some interval around p = 0.5 except for the point

p = 0.5 at which the MLE of π does not exist. In Table 4, we select several p’s within

[0.42, 0.5)∪(0.5, 0.65] and report the ratio n
C
/n

P
for testing H0: π = π0 versus H1: π = π1 < π0

with 5% level of significance and 80% power. From Table 4, we can see that when p is near 0.5,

the parallel model is far more efficient than the crosswise model. For example, when p = 0.49

or p = 0.51, the efficiency of the parallel model is about 601–909 or 651–1003 times of that of

the crosswise model.

[Insert Table 4 here]

4.4 A theoretical justification

The above observations are not surprising as we have the following theoretical results. Theorem

1 below identifies some conditions under which the parallel design is more efficient than the

crosswise design. The corresponding proof is given in the Appendix.
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Theorem 1 Let π, p, q ∈ (0, 1). For the parallel model and the crosswise model, we have

(i) When p = 1/3, the parallel model is always more efficient than the crosswise model in the

sense that n
P
≤ n

C
, if one of the following three conditions is satisfied:

(a) q = 1/2 and π ∈ (0, 1);

(b) q ∈ (0, min{1/2, 1 − π}) and π ∈ (0, 1);

(c) q ∈ (max{1/2, 1 − π}, 1) and π ∈ (0, 1).

(ii) When 1/3 < p < 1 and p 6= 1/2, the parallel model is always more efficient than the

crosswise model in the sense that n
P

≤ n
C
, if one of the following five conditions is

satisfied:

(a) q = 1/2 and π ∈ (0, 1);

(b) q > 1/2, p > 1/2 and π ∈ (0, 1 − q) ∪ (H(p, q), 1);

(c) q < 1/2, p < 1/2 and π ∈ (0, 1 − q) ∪ (min{1, H(p, q)}, 1);

(d) q > 1/2, p < 1/2 and π ∈ (0, max{0, H(p, q)}) ∪ (1 − q, 1);

(e) q < 1/2, p > 1/2 and π ∈ (0, H(p, q)) ∪ (1 − q, 1),

where H(p, q) is given by (9.1).

5. Comparison with the triangular model

5.1 The triangular model

Let Y and W have the same definition as in Section 2.1, where p = Pr(W = 1) and π = Pr(Y =

1). The interviewer may design the questionnaire in the format as shown on the left-hand side

of Table 5 and ask the interviewee to put a tick in the circle (i.e., {Y = 0, W = 0}) if he/she

belongs to this circle or put a tick in the upper square (i.e., {Y = 0, W = 1}) if he/she belongs

to one of the three squares. Note that both {Y = 0, W = 0} and {Y = 0, W = 1} are non-

sensitive. Thus, the sensitive class (i.e., {Y = 1}) is mixed with the non-sensitive subclass (i.e.,

{Y = 0, W = 1}). Yu et al. (2008) called this the triangular model.

[Insert Table 5 here]
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5.2 Sample size formula for the triangular model

Let Yobs = {yT
i : i = 1, . . . , n} denote the observed data for the n respondents with yT

i = 1 if

the i-th respondent put a tick in the upper square and yT
i = 0 if the i-th respondent put a tick

in the circle. The likelihood function for π is

L
T
(π|Yobs) =

n∏

i=1

[
π + (1 − π)p

]yT
i
[
(1 − π)(1 − p)

]1−yT
i

.

so that the MLE of π and its variance are given by

π̂
T

=
ȳT − p

1 − p
and Var(π̂

T
) =

λ(1 − λ)

n(1 − p)2
, (5.1)

respectively, where

ȳT =
1

n

n∑

i=1

yT
i and λ =̂ π + (1 − π)p.

To derive the sample size formula for the triangular model, we consider the same one-sided

hypotheses specified in (2.3). Similar to (2.5) and (2.6), we have

Power (at π1)
.
= Φ

(√
n(π0 − π1)(1 − p) − zα

√
λ0(1 − λ0)√

λ1(1 − λ1)

)
,

and

n
T

=

[
zα

√
λ0(1 − λ0) + zβ

√
λ1(1 − λ1)

(π0 − π1)(1 − p)

]2

, (5.2)

where λi =̂ πi + (1 − πi)p, i = 0, 1 and π1 < π0.

5.3 Numerical comparisons

In Table 6, we select several values of p within the interval [0.48, 0.72] and report the ratio

n
T
/n

P
for testing H0: π = π0 against H1: π = π1 < π0 with 5% level of significance and 80%

power. From Table 6, we can see that when p = 0.58 ≈ 7/12 or 0.72, the efficiency of the

parallel model is about 1–3 or 3–10 times of that of the triangular model. In particular, when

0.54 ≤ p ≤ 0.66 (which is the optimal range such that the privacy of respondents is protected

for the triangle model), the efficiency of the parallel design is about 1–6 times of that of the

triangular design.

[Insert Table 6 here]
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5.4 A theoretical justification

The above observations are further confirmed by the following theoretical result. Theorem

2 below identifies the conditions under which the parallel design is more efficient than the

triangular design. The corresponding proof is given in the Appendix.

Theorem 2 Let π, p, q ∈ (0, 1). For the parallel model and the triangular model, we have

(i) When p = 1/2, the parallel model is always more efficient than the triangular model (in

the sense that n
P
≤ n

C
) for any q ∈ (0, 1 − 2π] and π ∈ (0, 1/2).

(ii) When 1/2 < p < 1, the parallel model is always more efficient than the triangular model

(in the sense that n
P
≤ n

C
) for any q ∈ (0, 1) and 0 < π < (1 − p)(1 − q).

6. Sample Size Formula for the Two-sample Problem

In this section, we consider two independent surveys on the same sensitive question in two

different populations or regions (labeled as k = 1, 2) by using the parallel design. The purpose

here is to determine the sample sizes in each survey in order to compare the proportions (πk)

of subjects with the sensitive characteristic. For a fixed k, we define a binary random variable

Y P
k as follows:

Y P
k =

{
1, if the two squares are connected,
0, if the two circles are connected.

Let πk denote the proportion of subjects with the sensitive characteristic in population k (k =

1, 2), then we have

Pr{Y P
k = 1} = qk(1 − pk) + πkpk and Pr{Y P

k = 0} = (1 − qk)(1 − pk) + (1 − πk)pk,

where pk = Pr{Wk = 1} and qk = Pr{Uk = 1} (k = 1, 2) are assumed to be known but neither

p1 and p2 nor q1 and q2 are necessarily the same.

Suppose that there are a total of n1 + n2 individuals taking part in the survey, where n1

respondents participating in the survey are from the first population and n2 respondents are

from the second population. Let Yobs = {yP
ik: i = 1, . . . , nk; k = 1, 2} denote the observed

data. The likelihood function for π1 and π2 is given by

L(π0, π1|Yobs) =

2∏

k=1

nk∏

i=1

[
qk(1 − pk) + πkpk

]yP

ik
[
(1 − qk)(1 − pk) + (1 − πk)pk

]1−yP

ik

=

2∏

k=1

[
qk(1 − pk) + πkpk

]nkȳP

k
[
(1 − qk)(1 − pk) + (1 − πk)pk

]nk(1−ȳP

k
)

,
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where ȳP
k = (1/nk)

∑nk

i=1 yP
ik denote the average number of respondents connecting the two

squares in the k-th population. The resulting MLE of πk and its variance are given by

π̂k =
ȳP

k − qk(1 − pk)

pk

and Var(π̂k) =
∆k(1 − ∆k)

nkp
2
k

,

where ∆k =̂ qk(1 − pk) + πkpk. Thus,

V̂ar(π̂k) =
ȳP

k (1 − ȳP
k )

nkp2
k

is the MLE of Var(π̂k).

Now, we consider the following two-sided hypotheses

H0: π1 = π2 versus H1: π1 6= π2.

Let SE+ = [
∑2

k=1 Var(π̂k)]
1/2 and ŜE+ = [

∑2
k=1 V̂ar(π̂k)]

1/2 denote the MLE of SE+. Then the

null hypothesis H0 will be rejected at the α level of significance if

∣∣∣∣∣
π̂1 − π̂2

ŜE+

∣∣∣∣∣ > zα/2.

Under the alternative hypothesis H1, i.e., π1 − π2 6= 0, the power of the two-sided test is

approximately given by

Φ

(
|π1 − π2| − zα/2 · ŜE+

SE+

)
,

which can be further approximated by (Chow et al., 2003)

Φ

( |π1 − π2|
SE+

− zα/2

)
.

Consequently, to achieve a desired power of 1 − β, we need to solve the following equation:

|π1 − π2|
SE+

− zα/2 = zβ. (6.1)

Let ρ = n1/n2 be known. Then, from (6.1), we have

n1 = ρn2, and (6.2)

n2 =
(zα/2 + zβ)2

(π1 − π2)2

[
∆1(1 − ∆1)

ρp2
1

+
∆2(1 − ∆2)

p2
2

]
. (6.3)
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7. An Example

Monto (2001) reported a sexual practice study carried in three Western cities (San Francisco,

Las Vegas and Portland of Oregon) of the United States. In this investigation, there are

343 individuals graduating at most from some high school and 927 individuals receiving at

least some college training. In addition, it was also observed that 593 respondents have no

more than one sexual partner and 668 respondents have no less than two sexual partners.

The investigators would like to estimate the proportion of persons with more than one sexual

partners in a population.

We first define W = 1 if the birthday of the respondent is between May to December and

W = 0 if the birthday of the respondent is between January to April, and let p = Pr(W = 1) ≈
8/12 = 2/3. We then define U = 1 if the respondent receives at least some college training and

U = 0 if the respondent graduates at most from some high school, and let q = Pr(U = 1) =

927/(343 + 927) ≈ 0.73. Finally, we define Y = 1 if the respondent has at least two sexual

partners and Y = 0 otherwise. For the purpose of illustration, we assume that W , U and Y

are mutually independent although we have noted the possible association between U and Y .

With p = 2/3 and q = 0.73, the survey with the parallel design will yield 754 lines (i.e.,

nȳP =
∑n

i=1 yP
i = 927 × (1 − p) + 668 × p ≈ 754) connecting the two squares and 509 lines

(i.e., n − nȳP = 343 × (1 − p) + 593 × p ≈ 509, n = 1263) connecting the two circles. If

the crosswise design is employed, it can be observed that 643 ticks (i.e., nȳC =
∑n

i=1 yP
i =

593 × (1 − p) + 668 × p ≈ 643) will be put in the upper circle and 618 ticks (i.e., n − nȳC =

593 × p + 668 × (1 − p) ≈ 618, n = 1261) will be put in the upper square. Finally, the survey

with the triangular design will lead to 1063 ticks (i.e., nȳT =
∑n

i=1 yT
i = 593× p + 668 = 1063)

will be put in the circle and 198 ticks (i.e., n − nȳT = 593 × (1 − p) ≈ 198, n = 1261) will be

put in the upper square.

Table 7 reports MLEs of π based on (2.1), (4.1) and (5.1), estimated standard errors and

95% confidence intervals (CIs) of π for the three models. From Table 7, we can see that the

width of the 95% CI of π for the parallel model is the shortest among the three models.

[Insert Table 7 here]

To illustrate the proposed methods, we now determine the sample sizes required in order

to guarantee 80% power with 0.05 level of significance by using the one-sided test for testing
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π0 = 0.65 against π1 = 0.55. Using the sample size formulae (2.6), (4.2) and (5.2), we obtain

n
P

= 314, n
C

= 1382 and n
T

= 618, which are required sample sizes for the parallel, crosswise

and triangular designs, respectively.

Finally, we estimate how many subjects are required for comparing the proportions that

people having more than one sexual partners in a population between two regions with 80%

power and 0.05 level of significance using the two-sided test for testing π1 = π2 against π1 6= π2.

Assume that true proportions with sensitive character in the two regions are π1 = 0.68 and

π2 = 0.75, respectively. Using the parallel design with p1 = 0.55, p2 = 0.6, q1 = 0.5 and

q2 = 0.4, the sample sizes with ρ = 1 (equal allocation) are given by n1 = n2 = 2306 via

(6.2) and (6.3) while the desired sample sizes are n1 = n2 = 50054 for the crosswise model and

n1 = n2 = 2849 for the triangular model.

8. Discussion

In this paper, we derived the sample size formulae for the non-randomized parallel design based

on the power analysis method for both the one- and two-sample problems. We theoretically

compared the sample sizes needed for the parallel design with those required for the crosswise

and triangular designs (see Theorem 1 and Theorem 2). Numerical comparisons are shown in

Table 4 and Table 6, from which we can observe significant improvement in efficiency.

Unlike the non-randomized crosswise design, the parallel design can be applied to the situa-

tion where p = 0.5 at which the privacy can be highly protected. More importantly, the parallel

model can be applied to the case where both {Y = 0} and {Y = 1} are sensitive (cf. Table 1)

while the crosswise and triangular models require that {Y = 0} is non-sensitive. Therefore, we

recommend to use the parallel design in surveys with sensitive questions.

Recently, Liu and Tian (2013a) considered multi-category parallel models in the design of

surveys with sensitive questions, and Liu and Tian (2013b) proposed a variant of the parallel

model for sample surveys with sensitive characteristics. Sample size determination in the two

models is our possible research interest in the future.

9. Appendix

To prove Theorem 1, we first present a lemma.
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Lemma 1 Let 1/3 < p < 1, p 6= 1/2, 0 < q < 1 and q 6= 1/2. Define

H(p, q) =̂
p − q + pq

3p − 1
. (9.1)

We have the following conclusions:

(i) If (2p − 1)(2q − 1) > 0, then 1 − q < H(p, q).

(ii) If (2p − 1)(2q − 1) < 0, then 1 − q > H(p, q).

Proof. (i) If (2p − 1)(2q − 1) > 0, then we have 2p − 1 − 2q(2p − 1) < 0, or

(1 − q)(3p − 1) < p − q + pq.

Since p > 1/3, i.e., 3p − 1 > 0, we immediately obtain

1 − q <
p − q + pq

3p − 1
= H(p, q).

Similarly, we can prove (ii). 2

Proof of Theorem 1. From (2.6) and (4.2),we have

n
P

n
C

=

(
2p − 1

p

)2

·
[

zα

√
δ0(1 − δ0) + zβ

√
δ1(1 − δ1)

zα

√
γ0(1 − γ0) + zβ

√
γ1(1 − γ1)

]2

, (9.2)

where

δi = q(1 − p) + πip and γi = (1 − πi)(1 − p) + πip, i = 0, 1.

Note that when 1/3 ≤ p < 1 and p 6= 1/2, we always have

p2 ≥ (2p − 1)2,

i.e., the first term on the right-hand side of (9.2) is less than or equal to 1. To obtain n
P
≤ n

C
,

it suffices to show that δ(1 − δ) ≤ γ(1 − γ) or equivalently

[
q(1− p) + πp

][
(1− q)(1− p) + (1− π)p

]
≤
[
(1− π)(1− p) + πp

][
(1− π)p + π(1− p)

]
. (9.3)

After some simplifications, it can be showed that (9.3) is equivalent to

h
C
(π|p, q) =̂ (3p − 1)π2 + (1 − 4p + 2pq)π + (1 − q)(p − q + pq) ≥ 0. (9.4)

(i) When p = 1/3, (9.4) reduces to

(2q − 1)(q − 1 + π) ≥ 0. (9.5)

15



(a) If q = 1/2, then (9.5) is always true for any π ∈ (0, 1).

(b) If 0 < q < 1/2, then (9.5) is equivalent to q < 1 − π. Therefore, (9.5) is always true for

any 0 < q < min{1/2, 1 − π} and π ∈ (0, 1).

(c) If 1/2 < q < 1, then (9.5) is equivalent to q > 1 − π. Hence, (9.5) is always true for any

max{1/2, 1 − π} < q < 1 and π ∈ (0, 1).

(ii) When 1/3 < p < 1 and p 6= 1/2, we always have 3p− 1 > 0. Note that the discriminant

for the quadratic function h
C
(π|p, q) defined in (9.4) is given by

∆
C

= (1 − 4p + 2pq)2 − 4(3p − 1)(1 − q)(p − q + pq)

= (2p − 1)2(2q − 1)2.

(a) If q = 1/2, then ∆
C

= 0. Hence, h
C
(π|p, q) ≥ 0 (i.e., (9.4)) is true for all π ∈ (0, 1).

If q 6= 1/2, then ∆
C

> 0. Hence, h
C
(π|p, q) > 0 for any π ∈ (0, π

C,L
) ∪ (π

C,U
, 1), where

π
C,L

= max

{
0,

−(1 − 4p + 2pq) − |(2p − 1)(2q − 1)|
2(3p − 1)

}
(9.6)

and

π
C,U

= min

{
1,

−(1 − 4p + 2pq) + |(2p − 1)(2q − 1)|
2(3p − 1)

}
. (9.7)

(b) If q > 1/2 and p > 1/2, then (9.6) and (9.7) can be simplified as

π
C,L

= max

{
0,

−(1 − 4p + 2pq) − (2p − 1)(2q − 1)

2(3p − 1)

}

= max{0, 1 − q}

= 1 − q, and

π
C,U

= min

{
1,

−(1 − 4p + 2pq) + (2p − 1)(2q − 1)

2(3p − 1)

}

= min

{
1,

p − q + pq

3p − 1

}

=
p − q + pq

3p − 1
(9.8)

(9.1)
= H(p, q),

respectively, where (9.8) can be proved from

1

2
< p < 1 and q > 0 ⇒ q > 0 >

1 − 2p

1 − p

16



⇒ q − pq > 1 − 2p

⇒ 3p − 1 > p − q + pq

⇒ 1 >
p − q + pq

3p − 1
.

Finally, from Lemma 1(i), we have 1 − q < H(p, q); that is π
C,L

< π
C,U

.

(c) If q < 1/2 and p < 1/2, then (9.6) and (9.7) become

π
C,L

= 1 − q and π
C,U

= min{1, H(p, q)},

respectively. However, we now cannot simplify π
C,U

. On the one hand, from Lemma 1(i),

we have 1 − q < H(p, q). On the other hand, 1 − q < 1. Hence,

π
C,L

= 1 − q < min{1, H(p, q)} = π
C,U

.

(d) If q > 1/2 and p < 1/2, then (9.6) and (9.7) become

π
C,L

= max{0, H(p, q)} and π
C,U

= 1 − q,

respectively. However, we now cannot simplify π
C,L

. On the one hand, from Lemma 1(ii),

we have 1 − q > H(p, q). On the other hand, 1 − q > 0. Hence,

π
C,L

= max{0, H(p, q)} < 1 − q = π
C,U

.

(e) If q < 1/2 and p > 1/2, then (9.6) and (9.7) become

π
C,L

= max{0, H(p, q)} and π
C,U

= 1 − q,

respectively. Now, we have π
C,L

= H(p, q), which can be proved from

p >
1

2
> q > 0 ⇒ p − q > 0

⇒ p − q + pq > 0

⇒ p − q + pq

3p − 1
> 0 (as p > 1/3)

⇒ H(p, q) > 0.

On the one hand, from Lemma 1(ii), we have 1 − q > H(p, q). On the other hand,

1 − q > 0. Hence, π
C,L

= max{0, H(p, q)} < 1 − q = π
C,U

. 2
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Proof of Theorem 2. From (2.6) and (5.2),we have

n
P

n
T

=

(
1 − p

p

)2

·
(

zα

√
δ0(1 − δ0) + zβ

√
δ1(1 − δ1)

zα

√
λ0(1 − λ0) + zβ

√
λ1(1 − λ1)

)2

, (9.9)

where

δi = q(1 − p) + πip and λi = πi + (1 − πi)p, i = 0, 1.

Note that when 1/2 ≤ p < 1, we always have

p2 ≥ (1 − p)2,

i.e., the first term on the right-hand side of (9.9) is less than or equal to 1. To obtain n
P
≤ n

T
,

it suffices to show that δ(1 − δ) ≤ λ(1 − λ), or equivalently

[
q(1 − p) + πp

][
(1 − q)(1 − p) + (1 − π)p

]
≤
[
π + (1 − π)p

]
(1 − π)(1 − p). (9.10)

After some simplifications, we can show that (9.10) is equivalent to

h
T
(π|p, q) =̂ (2p− 1)π2 + [1− 2p− 2p(1− p)(1− q)]π + (1− p)(1− q)(p− q + pq) ≥ 0. (9.11)

(i) When p = 1/2, (9.11) reduces to

(1 − q)(−2π + 1 − q)/4 ≥ 0. (9.12)

Hence, for any q ∈ (0, 1 − 2π] and any π ∈ (0, 1/2), (9.12) is true.

(ii) When 1/2 < p < 1, we always have 2p − 1 > 0. Note that the discriminant for the

quadratic function h
T
(π|p, q) defined in (9.11) is given by

∆
T

= [(1 − 2p) − 2p(1 − p)(1 − q)]2 − 4(2p − 1)(1 − p)(1 − q)(p − q + pq)

= [p2 + (1 − p)2(1 − 2q)]2.

We can show that p2 + (1 − p)2(1 − 2q) > 0. In fact, from

1

2
< p < 1 and q < 1 ⇒ p2 > (1 − p)2 and q < 1

⇒ p2 + (1 − p)2

2(1 − p)2
> 1 > q

⇒ p2 + (1 − p)2 > 2q(1 − p)2

⇒ p2 + (1 − p)2(1 − 2q) > 0.
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In other words, ∆
T

> 0 for any q ∈ (0, 1). Hence, h
T
(π|p, q) > 0 for any q ∈ (0, 1) and

π ∈ (0, π
T,L

) ∪ (π
T,U

, 1), where

π
T,L

= max

{
0,

−[1 − 2p − 2p(1 − p)(1 − q)] − p2 − (1 − p)2(1 − 2q)

2(2p − 1)

}

= max{0, (1 − p)(1 − q)}

= (1 − p)(1 − q) < 1,

and

π
T,U

= min

{
1,

−[1 − 2p − 2p(1 − p)(1 − q)] + p2 + (1 − p)2(1 − 2q)

2(2p − 1)

}

= min

{
1,

p − q + pq

2p − 1

}
.

In the follows, we show that π
T,U

= 1. From

1

2
< p < 1 and q < 1 ⇒ 2p − 1 > 0 and (1 − p)(1 − q) > 0

⇒ 2p − 1 > 0 and 2p − 1 < p − q + pq

⇒ 1 <
p − q + pq

2p − 1
,

which implies π
T,U

= 1. In a summary, h
T
(π|p, q) > 0 for any q ∈ (0, 1) and 0 < π <

(1 − p)(1 − q). 2
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Table 1 The parallel model and the corresponding cell probabilities

Category W = 0 W = 1 Category W = 0 W = 1 Marginal

U = 0 © U = 0 (1 − q)(1 − p) 1 − q

U = 1 � U = 1 q(1 − p) q

Y = 0 © Y = 0 (1 − π)p 1 − π

Y = 1 � Y = 1 πp π

Marginal 1 − p p 1

Note: Please connect the two circles by a straight line if you belong to one of the two circles or connect
the two squares by a straight line if you belong to one of the two squares.
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Table 2 Sample size n
P

for testing H0: π = π0 versus H1: π = π1 < π0

with 5% level of significance and 80% power and the ratio n
P
/n

D

p = 1.00 p = 0.42 p = 0.50 p = 0.58π0 π1 q
n

D
n

P
n

P
/n

D
n

P
n

P
/n

D
n

P
n

P
/n

D

0.50 0.40 1/3 153 832 5.44 592 3.87 444 2.90
0.35 67 367 5.48 261 3.90 195 2.91
0.30 37 204 5.51 145 3.92 108 2.92

0.40 0.35 1/3 583 3206 5.50 2273 3.90 1697 2.91
0.30 142 793 5.58 561 3.95 418 2.94
0.25 61 348 5.70 246 4.03 183 3.00

0.30 0.25 1/3 501 3009 6.01 2108 4.21 1555 3.10
0.20 119 742 6.24 518 4.35 381 3.20
0.18 81 512 6.32 357 4.41 262 3.23

0.20 0.16 1/3 584 4333 7.42 2972 5.09 2142 3.67
0.13 181 1400 7.73 957 5.29 687 3.80
0.10 83 678 8.17 462 5.57 330 3.98

0.10 0.08 1/3 1303 15634 12.00 10372 7.96 7185 5.51
0.06 301 3874 12.87 2562 8.51 1767 5.87
0.04 121 1706 14.10 1124 9.29 772 6.38

0.50 0.40 1/2 153 875 5.72 617 4.03 458 2.99
0.35 67 388 5.79 273 4.07 203 3.03
0.30 37 217 5.86 153 4.14 113 3.05

0.40 0.35 1/2 583 3470 5.95 2438 4.18 1803 3.09
0.30 142 864 6.08 606 4.27 447 3.15
0.25 61 382 6.26 268 4.39 197 3.23

0.30 0.25 1/2 501 3388 6.76 2356 4.70 1721 3.43
0.20 119 841 7.07 583 4.90 425 3.57
0.18 81 583 7.20 404 4.99 293 3.62

0.20 0.16 1/2 584 5095 8.72 3483 5.96 2491 4.27
0.13 181 1655 9.14 1128 6.23 804 4.44
0.10 83 806 9.71 548 6.60 389 4.69

0.10 0.08 1/2 1303 19347 14.85 12898 9.90 8928 6.85
0.06 301 4814 15.99 3202 10.64 2210 7.34
0.04 121 2129 17.60 1413 11.68 972 8.03

0.50 0.40 2/3 153 851 5.56 606 3.96 454 2.97
0.35 67 380 5.67 270 4.03 202 3.01
0.30 37 214 5.78 152 4.11 114 3.08

0.40 0.35 2/3 583 3472 5.96 2466 4.23 1837 3.15
0.30 142 870 6.13 617 4.35 458 3.23
0.25 61 387 6.34 274 4.49 203 3.33

0.30 0.25 2/3 501 3504 6.99 2466 4.92 1814 3.62
0.20 119 875 7.35 615 5.17 451 3.79
0.18 81 608 7.51 426 5.26 312 3.85

0.20 0.16 2/3 584 5449 9.33 3780 6.47 2727 4.67
0.13 181 1776 9.81 1230 6.80 885 4.89
0.10 83 869 10.47 600 7.23 430 5.18

0.10 0.08 2/3 1303 21422 16.44 14564 11.18 10221 7.84
0.06 301 5345 17.76 3628 12.05 2539 8.44
0.04 121 2371 19.60 1606 13.27 1121 9.26

Note: n
D

denotes the sample size of the DDQ, given by (3.2).
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Table 3 The crosswise model and the corresponding cell probabilities

Category W = 0 W = 1 Category W = 0 W = 1 Marginal

Y = 0 © � Y = 0 (1 − π)(1 − p) (1 − π)p 1 − π

Y = 1 � © Y = 1 π(1 − p) πp π

Marginal 1 − p p 1

Note: Please put a tick in the upper circle if you belong to one of the two circles or put a tick in the
upper square if you belong to one of the two squares.
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Table 4 The ratio n
C
/n

P
for testing H0: π = π0 versus H1: π = π1 < π0

with 5% level of significance and 80% power

pπ0 π1 q
0.42 0.45 0.49 0.51 0.55 0.58 0.6 0.65

0.50 0.40 1/3 7.25 21.26 627.29 677.91 31.41 13.59 6.88 4.83
0.35 6.90 20.28 601.88 651.62 30.36 13.18 6.71 4.71
0.30 7.09 20.74 612.37 662.79 30.66 13.30 6.74 4.73

0.40 0.35 1/3 7.31 21.46 633.71 684.21 31.65 13.75 6.96 4.88
0.30 6.91 20.32 602.58 652.99 30.52 13.21 6.73 4.73
0.25 7.06 20.69 611.16 660.52 30.66 13.28 6.73 4.73

0.30 0.25 1/3 7.39 21.70 639.74 690.01 32.19 13.96 7.04 5.08
0.20 6.95 20.44 607.55 657.15 30.66 13.35 6.76 4.76
0.18 7.05 20.66 611.40 661.65 30.66 13.23 6.76 4.76

0.20 0.16 1/3 7.52 22.08 653.53 707.05 32.80 14.21 7.19 5.04
0.13 6.95 20.47 608.51 659.95 30.76 13.38 6.80 4.78
0.10 6.95 20.37 602.34 651.88 30.26 13.13 6.66 4.68

0.10 0.08 1/3 7.60 22.32 661.64 715.55 33.21 14.42 7.28 5.10
0.06 6.97 20.56 611.39 663.91 30.95 13.48 6.85 4.82
0.04 6.93 20.35 601.87 651.69 30.28 13.16 6.66 4.68

0.50 0.40 1/2 7.69 22.57 670.82 727.67 33.80 14.62 7.41 5.18
0.35 7.01 20.67 615.52 668.21 31.19 13.58 6.89 4.88
0.30 6.91 20.30 602.56 652.97 30.36 13.18 6.69 4.70

0.40 0.35 1/2 7.99 23.61 703.47 763.60 35.59 15.46 7,83 5.49
0.30 7.09 21.02 628.77 683.86 32.04 13.96 7.12 5.02
0.25 6.86 20.22 601.60 652.67 30.44 13.25 6.74 4.75

0.30 0.25 1/2 8.09 23.95 715,51 777.41 36.29 15.76 8.00 5.61
0.20 7.14 21.16 634.44 691.19 32.40 14.12 7.22 5.08
0.18 6.86 20.24 602.77 654.87 30.60 13.31 6.79 4.78

0.20 0.16 1/2 8.14 24.12 721.27 782.26 36.55 15.90 8.06 5.67
0.13 7.15 21.25 637.33 693.32 32.55 14.22 7.26 5.11
0.10 6.85 20.24 604.31 656.02 30.68 13.36 6.81 4.80

0.10 0.08 1/2 8.62 25.76 777.42 848.45 39.93 17.44 8.89 6.25
0.06 7.33 21.92 662.83 724.48 34.21 15.00 7.69 5.43
0.04 6.86 20.37 611.78 666.67 31.33 13.70 7.01 4.95

0.50 0.40 2/3 8.71 26.07 787.67 860.76 40.58 17.74 9.06 6.37
0.35 7.36 22.06 667.62 730.73 34.56 15.16 7.78 5.50
0.30 6.86 20.41 614.06 669.32 31.47 13.77 7.05 4.99

0.40 0.35 2/3 8.80 26.39 799.88 874.07 41.25 18.08 9.24 6.51
0.30 7.40 22.20 673.07 737.29 34.89 15.34 7.87 5.57
0.25 6.87 20.46 616.17 671.90 31.66 13.88 7.10 5.02

0.30 0.25 2/3 9.49 28.82 887.00 976.81 46.74 20.65 10.7 7.57
0.20 7.67 23.23 713.53 785.31 37.58 16.62 8.61 6.13
0.18 6.93 20.81 633.25 694.05 32.97 14.52 7.49 5.32

0.20 0.16 2/3 9.57 29.10 897.55 989.10 47.43 20.98 10.9 7.71
0.13 7.70 23.35 718.36 791.09 37.91 16.78 8.70 6.20
0.10 6.94 20.86 635.37 696.80 33.13 14.60 7.54 5.36

0.10 0.08 2/3 9.65 29.40 908.60 1002.9 48.17 21.33 11.1 7.88
0.06 7.73 23.47 723.08 797.22 38.23 16.94 8.81 6.28
0.04 6.95 20.91 637.59 699.97 33.30 14.69 7.59 5.40

24



Table 5 The triangular model and the corresponding cell probabilities

Category W = 0 W = 1 Category W = 0 W = 1 Marginal

Y = 0 © � Y = 0 (1 − π)(1 − p) (1 − π)p 1 − π

Y = 1 � � Y = 1 π(1 − p) πp π

Marginal 1 − p p 1

Note: Please put a tick in the circle if you belong to this circle or put a tick in the upper square if
you belong to one of the three squares.
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Table 6 The ratio n
T
/n

P
for testing H0: π = π0 versus H1: π = π1 < π0

with 5% level of significance and 80% power

pπ0 π1 q
0.48 0.50 0.54 0.58 0.62 0.66 0.70 0.72

0.50 0.40 1/3 0.71 0.82 1.06 1.37 1.77 2.30 2.99 3.44
0.35 0.73 0.84 1.09 1.42 1.83 2.37 3.10 3.55
0.30 0.75 0.86 1.12 1.46 1.89 2.46 3.21 3.69

0.40 0.35 1/3 0.81 0.93 1.22 1.59 2.06 2.69 3.53 4.06
0.30 0.83 0.95 1.25 1.63 2.13 2.79 3.67 4.21
0.25 0.85 0.98 1.28 1.68 2.21 2.89 3.79 4.38

0.30 0.25 1/3 0.93 1.08 1.43 1.90 2.50 3.31 4.40 5.08
0.20 0.96 1.11 1.48 1.96 2.60 3.45 4.58 5.31
0.18 0.96 1.12 1.50 1.99 2.63 3.51 4.68 5.42

0.20 0.16 1/3 1.07 1.25 1.70 2.30 3.10 4.18 5.67 6.62
0.13 1.09 1.28 1.74 2.35 3.18 4.30 5.86 6.86
0.10 1.11 1.30 1.77 2.42 3.27 4.45 6.07 7.12

0.10 0.08 1/3 1.25 1.48 2.07 2.88 4.00 5.57 7.82 9.30
0.06 1.26 1.50 2.10 2.93 4.09 5.72 8.05 9.60
0.04 1.28 1.52 2.13 2.99 4.19 5.87 8.31 9.93

0.50 0.40 1/2 0.68 0.78 1.02 1.33 1.73 2.25 2.94 3.37
0.35 0.70 0.80 1.04 1.36 1.77 2.31 3.01 3.47
0.30 0.71 0.82 1.07 1.40 1.82 2.38 3.13 3.59

0.40 0.35 1/2 0.75 0.87 1.14 1.49 1.95 2.56 3.38 3.89
0.30 0.76 0.88 1.16 1.53 2.01 2.63 3.49 4.02
0.25 0.78 0.90 1.19 1.56 2.05 2.72 3.59 4.17

0.30 0.25 1/2 0.83 0.97 1.29 1.71 2.28 3.03 4.05 4.71
0.20 0.85 0.98 1.32 1.76 2.34 3.13 4.19 4.89
0.18 0.85 0.99 1.33 1.78 2.37 3.17 4.26 4.97

0.20 0.16 1/2 0.91 1.07 1.46 1.98 2.68 3.64 4.98 5.85
0.13 0.92 1.08 1.48 2.01 2.73 3.72 5.11 6.01
0.10 0.93 1.09 1.50 2.05 2.79 3.81 5.25 6.18

0.10 0.08 1/2 1.00 1.19 1.66 2.31 3.22 4.52 6.38 7.63
0.06 1.01 1.20 1.68 2.34 3.28 4.60 6.52 7.81
0.04 1.01 1.21 1.70 2.37 3.33 4.69 6.68 8.01

0.50 0.40 2/3 0.70 0.80 1.03 1.34 1.74 2.25 2.94 3.37
0.35 0.71 0.81 1.05 1.37 1.77 2.31 3.01 3.45
0.30 0.72 0.82 1.07 1.39 1.82 2.35 3.09 3.54

0.40 0.35 2/3 0.75 0.86 1.12 1.46 1.91 2.50 3.30 3.80
0.30 0.75 0.87 1.14 1.49 1.95 2.56 3.38 3.91
0.25 0.76 0.88 1.15 1.52 1.99 2.62 3.46 4.01

0.30 0.25 2/3 0.80 0.92 1.23 1.63 2.15 2.86 3.84 4.46
0.20 0.81 0.93 1.24 1.65 2.21 2.94 3.95 4.61
0.18 0.81 0.94 1.25 1.67 2.22 2.97 4.00 4.66

0.20 0.16 2/3 0.85 0.99 1.34 1.81 2.44 3.32 4.54 5.34
0.13 0.85 0.99 1.35 1.83 2.48 3.37 4.64 5.45
0.10 0.86 1.00 1.36 1.85 2.52 3.43 4.73 5.60

0.10 0.08 2/3 0.89 1.05 1.46 2.02 2.81 3.92 5.53 6.62
0.06 0.89 1.06 1.47 2.04 2.84 3.91 5.63 6.74
0.04 0.90 1.06 1.48 2.06 2.87 4.03 5.73 6.87
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Table 7 MLEs of π, estimated standard errors and 95% CIs of π for three

models for the sexual practice data

Model π̂ ŜE(π̂) 95% CI of π Width of the 95% CI

Parallel model 0.53049 0.020703 [0.48991, 0.57106] 0.081155

Crosswise model 0.52974 0.042233 [0.44696, 0.61251] 0.165552

Triangular model 0.52895 0.030736 [0.46870, 0.58919] 0.120485
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Figure 1 Comparisons of the exact power (3.1) (denoted by solid line) with the asymptotic power
(2.5) (denoted by dashed line) against the sample size n for various combinations of (π0, π1) at p =
q = 0.5 and α = 0.05. (i) (π0, π1) = (0.50, 0.40); (ii) (π0, π1) = (0.30, 0.20); (iii) (π0, π1) = (0.20,
0.15); (iv) (π0, π1) = (0.10, 0.06).
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