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The controlled flow of spin and valley pseudospin is key to future electronics exploiting these internal
degrees of freedom of carriers. Here, we discover a universal possibility for generating spin and valley
currents by electric bias or temperature gradient only, which arises from the anisotropy of Fermi pockets in
crystalline solids. We find spin and valley currents to the second order in the electric field as well as their
thermoelectric counterparts, i.e., the nonlinear spin and valley Seebeck effects. These second-order
nonlinear responses allow two unprecedented possibilities to generate pure spin and valley flows without
net charge current: (i) by an ac bias or (ii) by an arbitrary inhomogeneous temperature distribution. As
examples, we predict appreciable nonlinear spin and valley currents in two-dimensional (2D) crystals
including graphene, monolayer and trilayer transition-metal dichalcogenides, and monolayer gallium
selenide. Our finding points to a new route towards electrical and thermal generations of spin and valley
currents for spintronic and valleytronic applications based on 2D quantum materials.
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The discovery of atomically thin two-dimensional (2D)
crystals has opened up new realms in physics, material
science, and engineering [1,2]. The library of 2D crystals
now consists of versatile members including graphene and
its derivatives, oxides, and transition-metal dichalcogenides
(TMDs), offering a variety of appealing material systems,
from gapless to direct-gap semiconductors, and from metal
to wide-gap insulators [1–3]. A rather common feature of
these 2D crystals is the presence of the conduction and
valence-band edges at degenerate extrema in momentum
space, usually referred to as valleys. The Fermi surface then
consists of well-separated pockets at the valleys, which
constitute an effective internal degree of freedom of the
carrier. The exploitation of the valley pseudospin as well as
spin in electronics may significantly extend the device
functionalities [4–9]. The recent discoveries of valley
physics and spin-valley coupled effects in 2D TMDs have
significantly boosted their potential in spintronic and
valleytronic applications [10–18].
The generation and control of spin and valley pseudospin

currents are at the heart of spintronics and valleytronics
[19]. There has been a variety of approaches based on the
detail characteristics of different systems, for example, the
spin injection or pumping from proximity ferromagnets
[20,21] and the various optical injection methods that rely
on optical selection rules [22–24]. In time-reversal sym-
metric systems, the spin Hall effect from spin-orbit cou-
pling [25–28] and the valley Hall effect from inversion
symmetry breaking [6,13] have also been explored, with
the possibility of implementation in 2D crystals [18,29,30].
The spin or valley Hall current, however, is always

accompanied by the longitudinal charge current that is
orders of magnitude larger, and such a major cause of
dissipation cannot be removed as it has the same linear
dependence on the field as the Hall currents.
Here, we discover a new origin of valley and spin

currents from the anisotropy of Fermi pockets, a universal
feature of crystalline solids. Such valley and spin currents
can be generated by the electric bias only and appear in the
second order to the electric field. The quadratic dependence
on field makes possible current rectification for generation
of dc spin and valley currents by ac electric field, with the
absence of net charge current. For several exemplary 2D
crystals including TMDs monolayers and trilayers, gra-
phene, and GaSe monolayer, we find appreciable nonlinear
spin and valley currents in their K, Γ, and Λ valleys. We
predict that, at p-n junction in monolayer TMDs [31–33],
the nonlinear valley current will result in unique circular
polarization pattern of electroluminescence depending on
the orientation of the junction relative to the crystalline
axis. We also predict the nonlinear valley and spin Seebeck
effects, where a temperature gradient can play the same role
as the electric field in giving rise to the valley and spin
currents. The quadratic dependence of the valley (spin)
thermopower on the temperature gradient implies a remark-
ably simple way to generate pure valley (spin) flow with
zero charge current by an inhomogeneous temperature
distribution.
We focus here on 2D crystals with mirror symmetry

in the out-of-plane (z) direction, where the Bloch states
must have their spin either parallel or antiparallel to the z
axis. Consider a spin-up Fermi pocket in valley A with
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dispersion EA;↑ðqÞ, q being the wave vector measured
from A. In an in-plane electric field E, fðq;EÞ is the
steady-state distribution function of carriers. Not concern-
ing the Hall effect, the current is then jA;↑ðEÞ ¼R
dqfA;↑ðq;EÞ∇qEA;↑ðqÞ. If EA;↑ðqÞ ≠ EA;↑ð−qÞ, the cur-

rent response can also lack the 180° rotational symmetry,
i.e., jA;↑ðEÞ ≠ −jA;↑ð−EÞ. In a time-reversal symmetric
system, this current will have a counterpart jĀ;↓ from a
spin-down pocket at valley Ā, the time reversal of A, where
EĀ;↓ðqÞ ¼ EA;↑ð−qÞ. The Boltzmann transport equation
under the relaxation time approximation then leads to
fĀ;↓ðq;EÞ¼fA;↑ð−q;−EÞ (Supplemental Material [34]).
These determine jĀ;↓ðEÞ ¼ −jA;↑ð−EÞ (Fig. 1). Thus,
under the condition of Fermi pocket anisotropy, the
currents contributed by the time-reversal pair of Fermi
pockets can have a finite difference: jA;↑ðEÞ−jĀ;↓ðEÞ≠0,
which is a valley current as well as a spin current.
We find that such spin and valley currents arise in the

second order of the electric field. In an electric field along
the x direction, without concerning the Hall effect, the
longitudinal and transverse components of jA;↑ can be
expanded as (see the Supplemental Material [34])

jxA;↑ðEÞ ¼ σxxA;↑Eþ σxxxA;↑E
2 þOðE3Þ;

jyA;↑ðEÞ ¼ σyxxA;↑E
2 þOðE3Þ: ð1Þ

As jĀ;↓ð−EÞ ¼ −jA;↑ðEÞ, we have σxxxA;↑ ¼ −σxxx
Ā;↓

,

σyxxA;↑ ¼ −σyxx
Ā;↓

, while σxxA;↑ ¼ σxx
Ā;↓

. The charge current is

jA;↑ðEÞ þ jĀ;↓ðEÞ ¼ 2x̂σxxA;↑EþOðE3Þ, an odd function
of the electric field, while the valley (spin) current is
jA;↑ðEÞ − jĀ;↓ðEÞ ¼ 2ðx̂σxxxA;↑ þ ŷσyxxA;↑ÞE2, an even func-
tion of the field. On application of an ac electric field

Ex ¼ E cosωt, the dc charge current is zero, and the valley
(spin) current becomes

jA;↑ − jĀ;↓ ¼ ðx̂σxxxA;↑ þ ŷσyxxA;↑ÞE2ð1þ cos 2ωtÞ: ð2Þ

In addition to a second harmonic term, the valley (spin)
current has a dc component. We note that Eq. (2) implicitly
assumes ω−1 being larger than the momentum relaxation
time τ, as it is based on the steady state response in Eq. (1).
From the symmetry alone, we expect this rectification
effect can exist even beyond the regime of ωτ < 1.
Monolayer (ML) group-VIB TMDs provide an excellent

system to illustrate the different scenarios of the nonlinear
spin and valley currents (Fig. 2). The top valence band in
ML TMDs has local maxima at both Γ and K (K̄) points.
The lowest conduction band has two types of local minima:
the K (K̄) point and the low-symmetry Λ (Λ̄) points
between K (K̄) and Γ.
For the Fermi pockets at K (K̄), the anisotropy is the

trigonal warping [44,45], which breaks the 180° rotational
symmetry of the pockets. Both the conduction and the
valence bands are spin split in the K valleys [13,46]. If the
Fermi energy is between the split bands, we only have a
spin-up (-down) Fermi pocket at K (K̄). Valley current is
then the same as spin current. If the field is applied along a
zigzag direction, the valley (spin) current is either parallel
or antiparallel to the field because of the reflection
symmetry of the Fermi pocket [Fig. 2(a)]. For electric
field in the armchair direction, we find the valley (spin)
current perpendicular to the field [Figs. 2(d) and 2(e)].
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FIG. 1 (color online). (a), (b) Carrier distributions of a spin-up
Fermi pocket at valley A and a spin-down pocket at valley Ā, in an
electric field along þx (a) or −x (b) direction. The anisotropy of
the Fermi pocket results in a difference in the currents from A
and Ā, giving rise to a valley (spin) current quadratic in the field.
The horizontal red (blue) arrows correspond to the current from
the Fermi pocket A (Ā), with the arrow thickness denoting the
magnitude. (c) Such quadratic dependence in the field makes
possible the generation of dc valley and spin currents by ac
electric field, in the absence of net charge current.
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FIG. 2 (color online). (a) Hole pockets at K valleys, (b) at Γ
point, and (c) electron pockets at Λ valleys in monolayer TMDs.
Red (blue) denotes spin up (down). (d) Displacement of K
pockets by an electric field in the armchair direction, where the
thick red (blue) arrow corresponds to the current from the Fermi
pocket K (K̄). The valley (spin) current flows perpendicular to the
field. The thin red (blue) arrows illustrate the group velocity on
the displaced K (K̄) valley Fermi surface. (e) Dependence of the
spin valley current direction (orange arrow) on the relative angle θ
between the field (green arrow) and the crystalline axis.
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The trigonal warping also exists for the hole pocket
at Γ point. By the time-reversal symmetry, the warping is
opposite for the spin-up and spin-down pockets [Fig. 2(b)],
giving rise to a nonlinear spin current. At the six low-
symmetry Λ valleys in the conduction band [Fig. 2(c)], the
anisotropy leads to valley-dependent current response to
electric field as well as an overall spin current contributed
by all Λ and Λ̄ pockets. The direction of spin current from Γ
or Λ pockets as a function of field orientation is also similar
to that of the K pockets [Fig. 2(e) and Table I].
The magnitude of the nonlinear spin and valley currents

depends on the dispersion of the Fermi pockets and the
distribution function in electric field. For the latter, we
adopt the commonly used relaxation time approximation.
Consider, for example, the K valleys in ML TMDs, the
dispersion of either the electron or the hole near the Fermi
surface can be well fit by [44,45]

EKðqÞ ¼
ℏ2q2

2m� ð1þ βq cos 3θqÞ; ð3Þ

where q≡ ðq cos θq; q sin θqÞ, and β has weak dependence
on the Fermi energy (see the Supplemental Material [34]).
Neglecting the spin and valley relaxations, the spin and
valley currents are (cf. Supplemental Material [34])

js ¼ jv ¼
12π

ℏ
EFβjkdj2ðcos 2θ;− sin 2θÞ þOðjkdj4Þ;

ð4Þ

where EF is the Fermi energy measured from the band
edge, kd ¼ eτE=ℏ, E≡ ðE cos θ; E sin θÞ, and τ is the
momentum relaxation time. Clearly, the effect favors large
mobility. Taking the mobility value ∼1000 cm2V−1 s−1

measured at low temperature [47] (or ∼200 cm2V−1 s−1 at
room temperature [48,49]), we estimate the nonlinear
valley current starts to exceed the observed sizable valley
Hall current [13,18] at an electric field of ∼10 mV μm−1

(∼0.25 V μm−1) (Supplemental Material [34]).
The charge current normalized by e is jc ¼

½ð4πÞ=ℏ�EFkd þOðjkdj3Þ. The ratio of the spin and valley
currents to the charge current is

js=jc ¼ jv=jc ¼ 3βeτE=ℏ: ð5Þ
Interestingly, this ratio is independent of EF. We note that
Eq. (4) is for the situation where EF lies between the spin
split bands [cf. Fig. 2(a)]. This is always the case for
p-doped MLTMDs because of the giant spin splitting. For
n doping, if the higher spin split band is also occupied, it
will have a contribution also given by Eq. (4), but with
js ¼ −jv (Supplemental Material [34]). Equation (4) still
holds for the valley current, but the overall spin current can
then differ from the valley current, as listed in Table I.
For the Γ hole pockets in ML TMDs, the dispersion can

be described by Eq. (3) as well, which leads to the spin
current given by Eq. (4). The Λ electron pockets in ML
TMDs have a more complicated dispersion. Nevertheless,
the overall spin current from all Λ and Λ̄ pockets is still
given by Eq. (4) (Supplemental Material [34]). The degrees
of the anisotropy β for the K, Γ, and Λ pockets obtained by
fitting the ab initio bands are listed in Table I for MLMoS2;
β in MLs MoSe2, WS2, and WSe2 are found to have
comparable magnitudes (Supplemental Material [34]). In
MLTMDs, the Γ and Λ pockets only appear at very large p
and n doping, respectively. In trilayer TMDs, Γ and Λ can
be the valence and conduction band edges, respectively,
and we find nonlinear spin and valley currents given by
Eq. (4) as well [34]. Table I also lists the nonlinear spin
current in p-doped monolayer GaSe, where the Fermi
pockets are at the Λ points [50], and the result is similar to
the TMDs.
Graphene is an example with two representative

differences from the scenarios discussed above. First, the
bands are spin degenerate so that spin current must vanish.
Second, the band dispersion is linear to the leading order.
The conduction and valence bands dispersion at the K
and K̄ valleys are described by EKðqÞ ¼ �ℏvFq(1þ
βq cos 3θq þOðq2Þ). Such dispersion can lead to valley-
dependent tunneling at potential barriers [51,52].
Interestingly, we find that, in graphene, the nonlinear valley
current is still given by Eq. (4), and the ratio of the valley
current to charge current is given by Eq. (5) (Supplemental
Material [34]).
Equations (4) and (5) are derived for the low-temperature

regime EF ≫ kBT. Beyond this regime, the spin and valley

TABLE I. Spin current (js) and valley current (jv) in several hexagonal 2D crystals. The direction angles of the current (θs=v) and the
field (θ) are both defined with respect to a zigzag axis.

Monolayer MoS2 Trilayer MoS2 GaSe Graphene

K, h K, ea Λ, e Γ, h Λ, ea Γ, h Λ, ha K, e (h)

js (12π=ℏ) βEFk2d βΔk2d 3βEFk2d βEFk2d 3βΔk2d βEFk2d 3βΔk2d 0
jv (12π=ℏ) βEFk2d βð2EF − ΔÞk2d b b b βEFk2d
β (Å) −0.94 −0.49 0.33 −0.12 0.09 −0.01 −1.62 −0.36
θvðsÞ π − 2θ π − 2θ −2θ π − 2θ −2θ π − 2θ π − 2θ π − 2θ
aFor these cases we assume EF is larger than the small spin splitting Δ so that both spin bands are occupied at each valley.
bValley current is finite but lacks a unique definition.
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currents will depend on temperature. Nevertheless, Eq. (5)
for the valley to charge current ratio will still hold, as this
ratio is nearly independent of EF and, hence, the filling of
the states in equilibrium (Supplemental Material [34]).
The emerging monolayer and multilayer TMD p-n

junction devices [31–33] provide an ideal laboratory for
the exploration of nonlinear valley and spin currents. Under
forward bias, electrons (holes) from the K valleys in the n
(p) region will reach the junction and produce electrolu-
minescence (EL) through recombination. If the junction is
along the armchair direction, the valley (spin) current is
collinear to the charge current, and carriers accumulated in
the junction region are valley polarized. With the valley-
dependent optical selection rule [7,13–17], we expect that
the EL will have an overall circular polarization [Fig. 3(a)].
Given a reasonable forward bias E ∼ 10 V μm−1, the
EL polarization is estimated to be ∼20% (Supplemental
Material [34]), which changes sign when the p-n junction
flips [Fig. 3(a)]. This nonlocal valley transport effect is in
qualitative agreement with the polarized EL reported very
recently in thin flake WSe2 p-n junctions [53].
Our theory also predicts a unique spatial pattern of EL

polarization when the junction is not along the armchair
direction, which distinguishes it from other possible mech-
anisms for the polarized EL [13,53]. Consider a p-n
junction along the zigzag direction, where the valley (spin)
current is perpendicular to the charge current, and carriers
will accumulate with opposite valley polarizations at the
two sides where the EL will then have opposite circular
polarization. This spatial dependence clearly distinguishes
the nonlocal valley transport here from the effect of local
change in the population of recombining electrons and
holes by the electric field at depletion region proposed in
Ref. [53]. The effect is also distinct from the valley Hall
current [6,13,18]. When p-n junction flips sign, the EL

polarization on the two sides will change sign if it arises
from the valley Hall effect but will remain unchanged if it is
from the nonlinear valley current [Fig. 3(b)].
Similar to that in an electric field, we find the second-

order nonlinear response to a temperature gradient ∇T is a
pure valley (spin) current, while the linear response is a
charge current (Supplemental Material [34]). Taking the K
pockets in ML TMDs, for example, the direction of
nonlinear valley current is also given by Fig. 2(e), where
θ now represents the relative angle between the direction of
∇T (green arrows) and a zigzag axis. If T=j∇Tj is much
larger than the mean free path, we find the ratio between the
valley and charge currents (Supplemental Material [34])

jv=jc ¼
6

ℏ
αβkBj∇Tjτ; ð6Þ

where the dimensionless coefficient α is a function of
EF=kBT only, as shown in Fig. 4(a).
For EF ≫ kBT, we find α ≅ EF=kBT, and the valley

current is given by

jvð∇TÞ ¼ 8π3

ℏ3
EFβk2Bj∇Tj2τ2ðcos 2θ;− sin 2θÞ: ð7Þ

Interestingly, comparing this with Eq. (4), we find

�
1

kBj∇Tj
�

2

jvð∇TÞ ¼ 2π2

3

�
1

eE

�
2

jvðEÞ; ð8Þ

which holds true for the other cases of nonlinear spin and
valley currents discussed in Table I.
The quadratic dependence of valley and spin currents on

the temperature gradient makes possible the generation of
pure valley and spin flows. Consider an arbitrary inhomo-
geneous temperature distribution where the temperatures at
the two ends of the device are equal; the charge current is
then zero, but the valley (spin) current is finite [Fig. 4(b)].
This is an unprecedented simple way for generating pure
valley and spin flows.

(a) (b)

R -R 0 

FIG. 3 (color online). (a) Polarized EL from p-n junction along
armchair direction. The EL has an overall circular polarization
R ∼ jv=jc. Green (yellow) color denotes the hole (electron) doped
region, and red (blue) color denotes the σ− (σþ) circular
polarization. The hole has larger anisotropy and, hence, larger
nonlinear valley current, which determines the EL polarization.
(b) Spatial pattern of EL polarization from p-n junction along the
zigzag direction.
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FIG. 4 (color online). (a) The dimensionless coefficient α that
measures the ratio between the valley (spin) current and the
charge current by a temperature gradient [see Eq. (6)]. (b) Spin
and valley currents can be generated by an arbitrary inhomo-
geneous temperature distribution. The charge current vanishes as
long as the temperatures at the two ends of the device equal.
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