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Differential phase shift quantum key distribution systems have a high potential for achieving high speed key
generation. However, its unconditional security proof is still missing, even though it has been proposed for
many years. Here, we prove its security against collective attacks with a weak coherent light source in the
noiseless case �i.e., no bit error�. The only assumptions are that quantum theory is correct, the devices are
perfect and trusted and the key size is infinite. Our proof works on threshold detectors. We compute the lower
bound of the secret key generation rate using the information-theoretical security proof method. Our final result
shows that the lower bound of the secret key generation rate per pulse is linearly proportional to the channel
transmission probability if Bob’s detection counts obey the binomial distribution.
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I. INTRODUCTION

Quantum key distribution �QKD� allows two distant par-
ties to share secret keys that are unconditionally secure. Until
now, there have been several kinds of QKD protocols. The
traditional Bennett-Brassard 1984 �BB84� protocol is one
based on qubits, in which Alice sends Bob a sequence of
qubits to establish a secret key �1�. On the other hand, there
are other non-qubit-based protocols, such as the continuous
variable QKD scheme �2–4�. In these two protocols, regard-
less of whether qubit states or continuous states are used,
each state �or state pair� received by Bob directly gives rise
to one bit value. In contrast, in differential phase shift �DPS�
QKD, information is encoded in the difference between each
two adjacent quantum states �5–7�. Of the above protocols,
the last one is designed to achieve high speed communica-
tion. In Ref. �8�, Diamanti et al. have realized DPSQKD with
a modulation frequency of 1 GHz.

DPSQKD is well suited for coherent-state sources as in-
formation is encoded in the relative phases of coherent states.
Coherent-state sources can also be used with other protocols,
for example, the BB84 protocol with phase-randomized co-
herent states �9� whose performance is substantially im-
proved by the decoy-state method �10–17�, the BB84 proto-
col with phase-nonrandomized coherent states �18�, and the
Bennett 1992 �B92� protocol with strong reference pulses
�19–21� �see also Ref. �22��.

The unconditional security of the BB84 protocol is well
discussed �e.g., Ref. �9,23–27��. For the CVQKD protocols,
its security against collective attack is also well discussed
�3,4,28�. However, for DPSQKD, we only know that it is
secure against several specific attacks, e.g., the beam split-
ting attack and the intercept and resending attack �8,29�.
Presently, we do not know whether it is secure against any
quantum Eve even in the noiseless case. On the other hand,
specific attacks on DPSQKD have been proposed to evaluate
upper bounds on the secret key generation rates of DPSQKD
�30–34�.

In this paper, we prove the security of DPSQKD against
collective attacks �35� with a weak coherent light source in
the noiseless case. The security in this case follows from a
key result that we will prove in this paper, namely, that Eve’s
state is independent of the positions of Bob’s detected sig-
nals. This result makes sense since the fact that there is no bit
error restricts what Eve can do to Bob’s signals. In particular,
she has to ensure that Bob receives all signals with equal
intensities, since signals with different intensities will result
in bit errors with nonzero probability. Our final result on the
lower bound on the key generation rate is a function of the
estimated parameters of the channel �see Eq. �56��. In order
to understand this result further, we compute this bound by
considering a channel that produces a binomial distribution
in Bob’s detection statistics. Specifically, we show that the
lower bound of the secret key generation rate per pulse is
linearly proportional to the channel transmission probability
�see Eq. �65��.

The only assumptions used in the proof are that quantum
theory is correct, the key size is infinite and the devices are
perfect and trusted. Our proof works on threshold detectors,
which are the detectors commonly used in practice. Further-
more, we do not require quantum nondemolition �QND�
measurements. Even though we consider collective attacks in
this paper, we speculate that it is possible for us to extend our
security proof to the most general attack, namely, the coher-
ent attack. An intuitive justification tells us that Eve cannot
get more information from coherent attacks than that from
collective attacks as the key size goes to infinity �36,37�. For
the finite dimension case, there is a exponential de Finetti
theorem that can strictly give this result �38,39�. However,
for DPSQKD, the states sent by Alice are weak coherent
states and thus in theory the dimension of Bob’s received
states may be infinite. Thus, the current de Finetti theorem
cannot be directly applied. On the other hand, there are three
potential ways to solve this problem. Since in practice the
states sent by Alice are weak coherent states and the prob-
ability that Bob gets a large photon number is extremely
small, it is possible to prove that Alice and Bob’s states can
be well approximated by states that have a finite support.
Then the current de Finetti theorem can be applied. The sec-*zfhan@ustc.edu.cn
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ond way is to extend the current exponential de Finetti theo-
rem to the infinite dimensional case. We can see a hope of
this in Ref. �40�. The third way is to extend the current de
Finetti theorem to the case with finite number of measure-
ment results, since we know that in DPSQKD, Bob’s mea-
surement results are finite. The work in Ref. �40� also shows
that this way may be viable.

We note that there is also a recent proof �41� on the DPS
protocol. Their proof assumes a single-photon source and
requires QND measurements, whereas our proof allows a
more general weak coherent light source and does not re-
quire QND measurements. On the other hand, their proof can
handle the noisy case and applies to the most general attack,
whereas ours can only handle noiseless collective attacks.

In the following analysis, we map the traditional DPS
protocol into a big-state protocol and give the security proof
for this big-state protocol. In doing so, we prove a key result
of our paper, which is that Eve’s state is independent of the
positions of Bob’s detected signals. With this result and some
properties of the mutual information, we can upper bound
Eve’s information about Alice’s bit string. Finally, we evalu-
ate the key rate assuming a typical setting in which the de-
tection statistics follows the binomial distribution. The secu-
rity proof method we employ is the information-theoretical
one by Renner et al. �37,38�.

II. EQUIVALENT PROTOCOLS

A. Protocol 1: original protocol

Quantum Phase.
�1� Alice sends a sequence of coherent states, each with

amplitude �, but with a randomly selected phase ��� or
�−�� to Bob. Then she records each state with a binary vari-
able xi, by setting xi=0 if the ith state is �−�� and xi=1 if the
ith state is ���.

�2� Using the Mach-Zehnder �MZ� interferometers shown
in Fig. 1, Bob measures the phase difference between every
two adjacent states. Bob stores his measurement result into
binary variables yi and zi. While measuring the phase differ-
ence of the ith and �i−1�-th state, if Bob gets a photon count,
he sets zi=1 and if not, he sets zi=0. Also, if i=kN+1
�k=0,1 ,2 ,3 , . . . �, Bob sets zi=0. If zi=1 and the measure-
ment results indicates that the phase difference is zero, he
sets yi=0; otherwise, if it indicates a nonzero phase differ-
ence, he sets yi=1. If zi=0, Bob sets yi=0.

Classical phase.
�3� After Bob receives each set of N states, he announces

all zi’s for these N states.

�4� Alice generates another variable li=xi � xi−1 for i�1.
�5� After many rounds of such communications, Alice and

Bob randomly publish some of li and yi corresponding to zi
=1 to test the bit error rate �BER� between them.

�6� Alice and Bob generate new binary variables ui
A and

ui
B, respectively. Alice sets ui

A= li ·zi. Bob sets ui
B=yizi.

�7� Alice and Bob estimate the mutual information be-
tween the binary strings u�A and u�B conditioned on Bob’s
announcement.

�8� Alice announces the error correction information of
binary string u�A and Bob uses it to reconcile his string u�B to
the corresponding string u�A.

�9� Alice and Bob perform privacy amplification on their
common binary string u�A to generate the final secret key.

Instead of steps 6–9, Alice and Bob can simply discard
the li and yi that correspond to zi=0, and perform error cor-
rection and privacy amplification on the remaining sifted
bits. This protocol is then equivalent to the original
DPSQKD protocol �5,7�. In this protocol, Bob measures the
phase difference between every two adjacent pulses. Thus, it
may not be a good idea to try to map them into single bits
and then discuss the security. Here, our basic idea is to re-
gard N states as one big state and to discuss the security of
this big state. In the following, we will introduce three pro-
tocols that map the above protocol into a big state protocol,
in which Alice sends Bob a big state and Bob measures it
with N equipments. The security of these three protocols are
weaker than the above one. Thus, if the security of these
inferior protocols are proved, then the security of the above
protocol is proved.

B. Protocol 2

In step 1, according to the binary string x�
= �xkN+1 ,xkN+2 , . . . ,x�k+1�N�, Alice generates a state ��x�

N�
= � i=kN+1

�k+1�N ��−1�xi+1�� and sends it to Bob through N fibers. In
the quantum channel, there is a quantum memory �QM� sys-
tem that separates ��x�

N� into an N-state sequence and sends
each state to Bob one by one through one fiber �see Fig. 2�.
Steps 2–9 remain the same.

There is no difference between protocol 1 and protocol 2
at Bob’s side. The only difference between them is that in
protocol 1 Alice sends Bob each coherent state one by one
and in protocol 2 Alice sends them all together. The QM
system that separates the big state into an N-state sequence
can be realized by storing the big state and sending each state
one by one. In protocol 2, the QM system can be controlled

FIG. 1. Illustration of the protocol 1, where the PM denotes the
phase modulator.

FIG. 2. Illustration of protocol 2, where the QM system is a
quantum memory that stores the N received states and sends them
out one by one.
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by Eve. However, it can be seen that if the QM system is put
at Alice’s side and cannot be controlled by Eve, protocol 2 is
equivalent to protocol 1. Therefore, the security of protocol 2
is weaker than that of protocol 1. Therefore the secret key
rate of protocol 1 is no less than that of protocol 2.

C. Protocol 3

As shown in Fig. 3 in step 2 of protocol 2, Bob stores the
received pulses in another QM system. After receiving N
pluses, Bob reads out the stored N signals one by one
through N fibers and measures their phase differences via
MZ systems which should be equivalent to the measure-
ments in protocol 1 �these MZ systems can be realized by the
detection equipments shown in Fig. 4�.

It can be seen that if the QM system is at Bob’s side and
cannot be controlled by Eve, then protocol 3 is the same as
protocol 2. Since in protocol 3 this QM system can be con-
trolled by Eve, the security of protocol 3 is no stronger than
that of protocol 2.

D. Protocol 4

In step 1, Alice generates a state ��x�
N�= � i=kN+1

�k+1�N

��−1�xi+1�� and sends it to Bob through N fibers. In step 2,
while receiving this big state, Bob measures the phase dif-
ference between each two adjacent states at the same time
with the equipment shown in Fig. 4. Steps 3–9 remains the
same as in protocol 1.

It can be seen that the only difference between protocol 3
and protocol 4 is that in protocol 3 Bob measures each phase
difference one by one, but in protocol 4 Bob measures them
all together. Since different detectors just measure different
field quadratures, the measurement operators that describe
these detectors commute with each other. Therefore, there is
no difference between measuring the phase difference one by
one and measuring them all together. Thus, protocol 4 is
equivalent to protocol 3.

Since protocol 4 is inferior to protocol 1, in the following
we will prove the security of protocol 4 first. Then the secu-
rity of protocol 1 follows.

III. SECURITY DISCUSSION

Here we only discuss the security against the collective
attack under the infinite-key-length case. It means that Alice
sends Bob infinite number of the quantum state ��x�

N�. We
remark that we do not place any restriction on the block

length N, which can be finite. Under the collective attack
scenario Eve attacks each state individually with the same
superoperator and the state Alice and Bob share is a state that
can be written as a product state. This means that after Alice
sends Bob M big states, the state Alice, Bob, and Eve share
can be written as ��ABE

N ��M, where �ABE
N is evolved from

��x�
N�. Then it is enough for us to only discuss the possible

attacks to a single state ��x�
N� �38�. We also assume that quan-

tum theory is correct, the device can be trusted and Bob’s
detectors are ideal �42�. In the following we assume that x�, y�,

z�, l�, u�A, and u�B are the binary strings Alice and Bob obtain
from one state ��x�

N�, with x� = �x1 ,x2 , . . . ,xN�, y�

= �y1 ,y2 , . . . ,yN�, and similar for the others. Let X� , Y� , Z� , L� ,

U� A and U� B denote the variables that can take the values x�, y�,

z�, l�, u�A, and u�B, respectively. Let Xi, Yi, Zi, Li, Ui
A, and Ui

B

denote the variables that can take the values xi, yi, zi, li, ui
A,

and ui
B, respectively. In Refs. �37,43�, it has been shown that

under the infinite-key-length case the secret key rate is given
by the difference between mutual informations. In the above

protocols, U� A and U� B are the final variables that are used to
distill the secret keys. Then for protocol 4, the secret key rate
per big state is given by

FIG. 3. Illustration of protocol 3, where Bob’s measurement
equipment is not shown in detail.

FIG. 4. Illustration of protocol 4, where the delayer generates
the time delay that makes the two pulses meet at the beam splitter
before the detector.
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G � I�U� A:U� B�Z� � − S�U� A:E�Z� � , �1�

where I and S denote the Shannon mutual information �44�
and the Von Neuemann mutual information �45�, respec-

tively. Here the I�U� A :U� B �Z� � and S�U� A :E �Z� � are, respec-
tively, given by

I�U� A:U� B�Z� � = �
z�

P�z��I�U� A:U� B�Z� = z�� ,

S�U� A:E�Z� � = �
z�

P�z��S�U� A:E�Z� = z�� . �2�

Before discussing the properties of these two mutual in-
formations, we introduce the following notations. We intro-
duce vectors w�z�� and c��z�� in relation to Bob’s counting re-
sults. Let w�z�� denote the weight of z�, which gives the total
number of 1 in z�. Let ci�z�� denotes the position of the ith 1 in
the string z�.

From step 6, we see that ui
A= lizi. Since if zi=0 we have

ui
A=0, u�A can be given by u�A

= �0, . . . , lc1�z�� , . . . ,0 , . . . , lcw�z���z�� , . . . ,0�. For a given z�, we can

change the order of elements and write u�A as u�A

= �lc1�z�� , lc2�z�� , . . . , lcw�z���z�� ,0 , . . . ,0�. For convenience, we in-

troduce l�z� and y�z�, which are given by

l�z� = �lc1�z��,lc2�z��, . . . ,lcw�z���z��� ,

y�z� = �yc1�z��,yc2�z��, . . . ,ycw�z���z��� . �3�

Then for a given z�, u�A can simply be given by

u�A = �l�z�,0�� ,

where 0� is the zero vector of length N−w�z��. Now we intro-

duce random variables L� z� and Y� z� of length w�z�� that take on

values l�z� and y�z�:

L� z� = �Lc1�z��,Lc2�z��, . . . ,Lcw�z���z��� ,

Y� z� = �Yc1�z��,Yc2�z��, . . . ,Ycw�z���z��� . �4�

Then for a given z�, U� A can be given by

U� A = �L� z�,0�� �5�

and similarly we have

u�B = �y�z�,0�� ,

U� B = �Y� z�,0�� . �6�

Now we can rewrite the mutual information given by Eq.
�2� as follows:

I�U� A:U� B�Z� � = �
z�

P�z��I�L� z� � 0�:Y� z� � 0� �Z� = z��

= �
z�

P�z���H�L� z� � 0� �Z� = z��

+ H�Y� z� � 0� �Z� = z�� − H�L� z� � 0� ,Y� z� � 0� �Z� = z���

= �
z�

P�z��I�L� z�:Y� z��Z� = z�� , �7�

where H�¯� is Shannon entropy �44�, in the second line we
have applied the results given by Eqs. �5� and �6�, in the third
and fourth lines we have used the definition of the Shannon
mutual information �44� and in the fifth line we have used
the formula H�AB �C�=H�A �BC�+H�B �C�, and the fact that
the entropy of a given vector is zero and

H�·�Z� =z� ,0��=H�·�Z� =z�� �0� is generated from z��. In the same
way, we have

S�U� A:E�Z� � = �
z�

P�z��S�L� z�:E�Z� = z�� . �8�

Then from Eqs. �7� and �8�, the final secret key rate per N
pulses is given by

G � �
z�

P�z���I�L� z�:Y� z��Z� = z�� − S�L� z�:E�Z� = z��� . �9�

If Alice and Bob just discard all li and yi corresponding to
zi=0, and perform error correction and privacy amplification
to the sifted key, according to Ref. �37� the secret key in this
case is also given by Eq. �9�. Therefore, instead of steps 6–9,
Alice and Bob can simply introduce such post-selection step.

IV. SECURITY PROOF

Before giving the security proof of the DPS protocol, we
will show the main idea of our security proof. In the DPS
protocol, what Alice sends to Bob are two weak coherent
states. Since these two states are nonorthogonal Eve in prin-
ciple cannot always distinguish them and cannot always
know the phase difference between two adjacent pulses. The
mutual information per pulse between Alice and Eve is thus
less than 1. Bob uses the MZ system to measure the phase
difference between two adjacent pulses. This system can let
Bob definitely know the deterministic phase difference be-
tween the two pulses with certain probability �Bob can defi-
nitely know the phase difference if he gets a count.�. Finally
Alice and Bob only keep the measurement results of the
phase differences that Bob has good knowledge of. The point
is that either Bob knows that Eve has obtained good infor-
mation on a pulse pair �in which case he has not gotten a
photon count and this result is discarded� or Bob knows
more about this result than Eve does �in which case Alice
and Bob proceed to distill a secret key by applying error
correction and privacy amplification to many of such result�.
In the following, we will rigorously prove this when there is
no bit error. First, we prove that under the no-bit-error case
Eve’s state is uncorrelated with the permutation of z�, which
means that Eve’s state is independent with the position of
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Bob’s detections. Then we show that Eve’s average informa-
tion about the sifted keys is only determined by the total
number of Bob’s detections. Since the maximum total infor-
mation Eve gets from Alice is restricted by Alice’s modula-
tion, through several properties of the mutual information,
we can give an upper bound to Eve’s information on the
sifted data. Then the security of the DPS protocol under the
no-bit-error case is proved.

Here, we only limit our analysis to the no-bit-error case.
For a collective attack, it is enough to only discuss the attack
for a single communication �37�. Therefore, in the following
we only discuss the possible attacks for a single state ��x�

N�.
Before giving the security proof, we introduce the following
notations. As shown in Fig. 4, the annihilation operator of the
input fields on the ith path at Bob’s side is denoted by ai. The
vacuum inject mode on the beam splitter corresponding to
the ith fiber at Bob’s side is denoted by bi. The output modes
to the detectors that detect the phase difference between the
ith signal and �i−1�-th signal are described by di

0 and di
1,

with 0 and 1 describing the lower and upper detectors, re-
spectively �see Fig. 4�. In the following, we denote the de-
tectors that correspond to the modes di

0 and di
1 by DETi

0 and
DETi

1.
We assume that Bob and Eve’s conditional states condi-

tioned on Alice’s modulation is �EB
N,x�. Now we will prove that

if there is no bit error, the reduced state �E
N,x�,z�, which denotes

Eve’s conditional state after Bob’s announcement of detected
signals, is independent of the permutation of z�. With this
result and several properties of the entropy, we can give a
lower bound to Eq. �1�.

A. Permutation invariance of Eve’s state to z�

In this subsection we give the description of Bob’s mea-
surement first. Then we prove a requirement implied by the
no-bit-error condition. Finally we prove that Eve’s state is
invariant under the permutation of z�.

From Fig. 4, we can see that the output modes di
0 and di

1

can, respectively, be given by

di
1 =

1

2
�ai − ai−1� +

i

2
�bi + bi−1� ,

di
0 =

i

2
�ai + ai−1� +

1

2
�bi−1 − bi� . �10�

To simplify Eq. �10� we introduce d̃i
j and vi

j:

d̃i
1 =

1

2
�ai − ai−1� ,

d̃i
0 =

1

2
�ai + ai−1� , �11�

and

vaci
1 =

i

2
�bi + bi−1� ,

vaci
0 =

− i

2
�bi−1 − bi� . �12�

Since the phase factor i can be absorbed into the annihi-
lation operators, the output modes di

0 and di
1 can simply be

given by

di
1 = d̃i

1 + vacj
1,

di
0 = d̃i

0 + vacj
0. �13�

In our security analysis we can safely assume that Eve
holds the purification of �EB

N,x�. This means that we can safely
assume that �EB

N,x� is a pure state �37�. Let ��EB
N,x�� denote the

pure conditional state Bob and Eve share. According to the
Schmidt decomposition �see, e.g., Ref. �45��, ��EB

N,x�� can be
decomposed into several orthogonal states

��EB
N,x�� = �

k

ck
x���E,k

N,x����B,k
N,x�� . �14�

For convenience, in the following we denote the l� generated

from x� by l�x�.
The no-bit-error condition can be described as follows. If

there is no phase difference between the ith and �i−1�-th
states, in principle, the DETi

1 detector should not generate a
count; and if there is phase difference, the DETi

0 detector
should not click. It can be seen that this condition actually

requires that the output mode d̃i
l̄i
x�

of �EB
N,x� corresponds to the

vacuum state, i.e., di
l̄i
x�

��EB
N,x���vac�=0, where l̄i

x� = li
x�

� 1 and
�vac� describes the vacuum state injected through the bi
mode. Since in Eq. �13�, the annihilation operator vaci

j �j
=0,1� acts on the vacuum state, we can simply discard the
vacuum mode. Then the no-bit-error condition can be rewrit-
ten as

d̃i
l̄i
x�

��EB
N,x�� = 0. �15�

From Eqs. �14� and �11�, we know that Eq. �15� is equal
to

�ai + �− 1�li
x�+1ai−1���B,k

N,x�� = 0, �16�

for arbitrary i�1 and k. Equation �16� gives the no-bit-error
condition. This analysis can be summarized by the following
lemma.

Lemma 1. If there is no bit error between Alice and Bob,
Bob’s state satisfies

ai��B,k
N,x�� = �− 1�li

x�
ai−1��B,k

N,x�� . �17�

Since d̃i
li = 1

2 �ai+ �−1�liai−1�, from Eq. �17�, we get

d̃i
li
x�

��B,k
N,x�� = ai��B,k

N,x�� . �18�

Eqs. �15� and �18� give us the relationship between the input
modes and the output modes of the MZ system under the
no-bit-error case. With this lemma we can prove the permu-
tation invariance of Eve’s state to z� finally.

Combining Eqs. �17� and �18� and the result that li
x� =xi

� xi−1, we have
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�− 1�xid̃i
li
x�

��B,k
N,x�� = �− 1�xi�d̃

i�

l
i�
x�

��B,k
N,x�� �19�

for arbitrary i, i� and k. It can be seen that Eq. �19� can be
generalized to

�− 1�xi1+xi2
+. . .+xiqd̃

i1

li1
x�

d̃
i2

li2
x�

. . . d̃
iq

liq
x�

��B,k
N,x��

= �− 1�xi1�+xi2�
+. . .+xiq�d̃

i1�

l
i1�
x�

d̃
i2�

l
i2�
x�

. . . d̃
iq�

l
iq�
x�

��B,k
N,x�� �20�

for arbitrary integer ip�1, ip��1, k and q, where the sub-
scription p=1, . . . ,q �p comes from ip�.

Bob’s measurement is a projection. The detector DETi
j

maps the received state into the photon number space
��vac�	vac�, �1�	1�,…
. This projection subspace of DETi

j can
be given by

Mapi
j = �Miv

j =
1

v!
�di

j+�v�vac�	vac��di
j�v, �v = 0,1, . . . � ,

�21�

where v denotes the number of photons received by the de-
tector DETi

j.
Since di

j is composed by an operator acting on the re-
ceived state and an operator acting on the vacuum state, from
Eqs. �13�, �20�, and �21�, it can be seen that for arbitrary
integer i, i�, v, and k we always have

	vac�	�B,k
N,x��Miv

li
x�

��B,k
N,x���vac� = 	vac�	�B,k

N,x��M
i�v

l
i�
x�

��B,k
N,x���vac�

�22�

where �vac� denotes the vacuum state injected through the bi
j

mode and this equality holds for v=0 because the modulus
of the projection to the vacuum state plus that to other states
equals to 1. Since �vac� is always a vacuum state, in the
following we just leave it out in our expression for conve-
nience. Equation �22� can be expended to the multidetection
case as follows:

	�B,k
N,x��M

i1v1

li1
x�

¯ M
iqvq

liq
x�

��B,k
N,x�� = 	�B,k

N,x��M
i1�v1

l
i1�
x�

¯ M
iq�vq

l
iq�
x�

��B,k
N,x�� ,

�23�

where we have introduced subscripts 1, 2, …, and q to enu-
merate different operators and have omitted the vacuum state
part.

From Eqs. �14� and �23� it can be obtained that

	�EB
N,x��M

i1v1

li1
x�

¯ M
iqvq

liq
x�

��EB
N,x�� = 	�EB

N,x��M
i1�v1

l
i1�
x�

¯ M
iq�vq

l
iq�
x�

��EB
N,x�� .

�24�

Also from Eqs. �15� and �21� it can be seen that if j� li
x� and

v�0 we always have

	�B,k
N,x��Miv

j ��B,k
N,x�� = 0. �25�

With the above results, we can evaluate Eve’s conditional
state conditioned on Bob’s announcement. We know that if
Bob maps his state into the subspace M = ���	�� �for conve-

nience we denote it by �� then Eve’s state will collapse to the
state

�E
N,x�,� =

trBM�EB
N,x�M+

trEBM�EB
N,x�M+

, �26�

where �EB
N,x� is the state Eve and Bob share before Bob’s mea-

surement �45�. In our security analysis we can consider the
worst case �favoring Eve�, in which the state �EB

N,x� is pure and
described by ��EB

N,x��. For the pure state case, Eq. �26� be-
comes

��E
N,x�,�� = �

k

ck
x�
	�B,k

N,x��M��B,k
N,x����E,k

N,x��

	�EB

N,x��M��EB
N,x��

, �27�

where we have used Eq. �14� and the results that M =M+

=MM+.
Bob’s announcement z� corresponds to several possible or-

thogonal subspaces given by

�Sz�,v��0
j� = Mc1�z��,v1

j1 Mc2�z��,v2

j2
¯ Mcw�z���z��,vw�z��

jw�z��

� �vac�	vac��jq = 0,1;vq � 0
 , �28�

where j�= �j1 , j2 , . . . , jw�z��
, v� = �v1 ,v2 , . . . ,vw�z��
, v� �0 means
all of its element vq is larger than zero, the element Mcq�z��,vq

jq

corresponds to the measurement result that detector DETcq�z��
jq

receives vq photons and �vac�	vac� denotes other detectors
have not received any photon. The set of all operators

Sz�,v��0
j� ’s only spans a subspace. From Fig. 4 we can see that

one mode coming from the first pulse and one mode coming
from the Nth pulse are not detected by Bob �or the measure-
ment results of them are discarded by Bob�. Therefore we
need to also consider Bob’s undetected subspace. We assume
Bob’s undetected subspace �or the measurement results of
which are discarded� is spanned by the orthogonal basis

��R1� , �R2� , . . . 
. Then all Sz�,v��0
j� ’s and �Ri�’s make up a com-

plete set of projections for Bob. An announcement z� corre-
sponds to several measurement results. Each result corre-
sponds to a collapsed state of Eve. Then an announcement z�
collapses Eve’s state into a mixed state made up by several
pure state. For convenience, we let Ri denote the projector

�Ri�	Ri�. Then Sz�,v��0
j� is orthogonal to Ri. From Eqs. �3� and

�25� we know that for a given x�, z�, if j�� l�z�
x�, it is always

satisfied that 	�B,k
N,x��Sz�,v��0

j� ��B,k
N,x��=0 and 	�B,k

N,x��Sz�,v��0
j� Ri��B,k

N,x��
=0, where the second equality comes from the fact that

Sz�,v��0
j� is orthogonal to Ri. Then after we generalized Eq. �27�

to the multioperator and multimeasurement-result case, we
know that if Bob’s announcement is z�, then Eve’s conditional
state becomes
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�E
N,x�,z� = �

v��0,i

	�EB
N,x��S

z�,v��0

l�z�
x�

Ri��EB
N,x��

P�z��x��

� Proj��
k

ck
x�
	�B,k

N,x��S
z�,v��0

l�z�
x�

Ri��B,k
N,x����E,k

N,x��


	�EB
N,x��S

z�,v��0

l�z�
x�

Ri��EB
N,x�� � ,

�29�

where Proj����� denotes the state ���	��,

P�z��x�� = �
v��0

	�EB
N,x��S

z�,v��0

l�z�
x�

��EB
N,x�� �30�

describes the conditional probability of announcement z� for a

given x�, 	�EB
N,x��S

z�,v��0

l�z�
x�

��EB
N,x�� gives the probability of the mea-

surement result corresponding to the operator S
z�,v��0

l�z�
x�

and we

have used the result that if j�� l�z�
x�, then 	�EB

N,x��Sz�,v��0
j� Ri��EB

N,x��
=0.

It can be seen that for the detector DETi
j the projector to

the vacuum state �vac�	vac� can also be written as Mi0
j . Then

from Eqs. �23� and �28�, it can be seen that if w�z��=w�z���,
then

	�B,k
N,x��S

z�,v��0

l�z�
x�

��B,k
N,x�� = 	�B,k

N,x��S
z��,v��0

l�
z��
x�

��B,k
N,x�� ,

	�B,k
N,x��S

z�,v��0

l�z�
x�

Ri��B,k
N,x�� = 	�B,k

N,x��S
z��,v��0

l�
z��
x�

Ri��B,k
N,x�� , �31�

where we have used results that the output mode dj
l̄i
x�

is a

vacuum state and Sz�,v��0
j� is orthogonal to Ri.

We know that P�z� ,x��= P�z� �x��P�x��, P�x� �z��= P�z� ,x�� / P�z��,
and P�z��=�x�P�z� ,x��, so from Eqs. �14�, �30�, and �31� it can
be obtained that

P�z��x�� = P�z���x�� ,

P�z�,x�� = P�z��,x�� ,

P�z�� = P�z��� ,

P�x��z�� = P�x��z��� �32�

for w�z��=w�z���. By combining Eqs. �24� and �29�–�32� we
obtain our final result.

Lemma 2. If there is no bit error and w�z��=w�z���, we
always have

�E
N,x�,z� = �E

N,x�,z��,

�E
N,z� = �E

N,z��. �33�

The second equation in the Eq. �33� is derived from Eq. �32�
and the fact that �E

N,z�=�x�P�x� �z���E
N,x�,z�. Equation �33� shows

that Eve’s conditional state is only determined by the total
number of Bob’s detections and is independent of the posi-
tions of the detections. This means that only the weight of z�

matters, and we can use this instead of z�. In the following we
introduce �E

N,x�,t to denote the same conditional state that Eve
holds for any z� with weight t, i.e.,

t = w�z�� ,

�E
N,x�,t = �E

N,x�,z�. �34�

Here �E
N,x�,t can be regarded as Eve’s conditional state while

Bob only announces the total number of his detections. With
this new notation, we can simplify the expression of the mu-
tual information discussed in the following.

B. Discussion of Eve’s information

Since Eve’s state is invariant under the permutation of z�, it
is possible that Eve’s information about Alice’s bit string can
also be bounded by a term that only depends on Bob’s total
detection count �the weight of z��. In this subsection we upper
bound Eve’s information about Alice’s bit string by a term
that is only conditioned on Bob’s total detection count by
applying the super subadditivity result proved in Appendix
A. Then we give restrictions on Eve’s information by using
the fact that the maximum information Eve can get on Al-
ice’s bit string should be no larger than the Holevo quantity
�45� of the states sent by Alice and the fact that the condi-
tional mutual information should be no larger than the en-
tropy of Alice’s modulation. With these restrictions it is pos-
sible for us to give an upper bound to Eve’s information
about Alice’s bit string.

First we define

F�w� ª �
z�

P�z��W = w�S�L� z�:E�Z� = z�� , �35�

where we have introduced a variable W that can take the
value of w�z�� and P�z� �W=w� denotes the probability of z�
when w�z��=w.

From Eq. �8� we know that Eve’s information about Al-
ice’s bit string can be rewritten as

S�U� A:E�Z� � = �
w=1

N−1

P�w�F�w� . �36�

Now we will see that the F�w� is no larger than a term that
only depends on the total count w.

According to the definition of Von Neumann mutual in-
formation �45�, the mutual information between Alice and
Eve conditioned on Bob’s announcement z� can be given by

S�L� z�:E�Z� = z�� = S��E
N,z�� − �

l�z�

P�l�z��z��S��E
N,l�z�,z�� , �37�

where P�l�z� �z�� is the probability that L� z� takes the value of l�z�

while Z� =z�,
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�E
N,l�z�,z� = �

x��	�l�z��

P�x��l�z�,z���E
N,x�,z�,

	�l�z�� is the collection of all x�’s that satisfy xci�z�� � xci�z��−1

= �lz��i and P�x� � l�z� ,z�� is the probability that X� takes the value

of x� while L� z�= l�z� and Z� =z�.
Also From Eq. �32� we know that the conditional prob-

ability P�x� �z�� is actually only conditioned on the weight of z�,

so we can introduce P(x� �w�z��) to denote P�x� �z��. Since l�z� is

part of l� and l� is generated from x�, the conditional probability

P�l�z� �z�� is also only conditioned on the weight of z�. Therefore

we can also write P�l�z� �z�� as P(l�z� �w�z��) and P�x� � l�z� ,z�� as

P(x� � l�z� ,w�z��), where P�x� � l�z� ,z��= P�x� , l�z� �z�� / P�l�z� �z��, and

P(l�z� �w�z��) denotes the probability that L� z� takes the value of l�z�

while W=w�z��. Then from lemma 2 we know that �E
N,l�z�,z� can

be written as �E
N,l�z�,w�z��. Here, that the conditional probabili-

ties, P(l�z� �w�z��) and P(x� � l�z� ,w�z��), and the conditional state

�E
N,l�z�,w�z�� are conditioned on the weight of z� means that they

are conditioned on Bob’s announcement of the total number
of his detection count rather than the actual detection posi-
tions.

Now we can use lemma 2 to simplify S�L� z� :E �Z� =z�� and

thus F�w�. From lemma 2 and Eq. �34� we know that �E
N,l�z�,z�

and �E
N,z� in Eq. �37� can be replaced by �E

N,l�z�,w�z�� and �E
N,w�z��.

Then S�L� z� :E �Z� =z�� becomes

S�L� z�:E�Z� = z�� = S��E
N,w�z��� − �

l�z�

P�l�z��z��S��E
N,l�z�,w�z���

= S„L� z�:E�W = w�z��… , �38�

where we have used the definition of the conditional Von
Neumann mutual information which says

S�L� z�:E�W = w� = S��E
N,w� − �

l�z�

P�l�z��w�S��E
N,l�z�,w� �39�

and the result P�l�z� �w�= P�l�rowz �z�� for w=w�z��. Here

S�L� z� :E �W=w� is actually Eve’s information about L� z� while
Bob only announces the total number of his counts. It can be

seen that Eve’s information about certain L� z� does not change
if Bob publishes detailed position of his detection or only the
total number of his detection.

We know that the mutual information S(L� z� :E �W=w�z��)
can also be given by

S„L� z�:E�W = w�z��… = H„L� z��W = w�z��… − S„L� z��E,W = w�z��…


 w�z�� − S„L� z��E,W = w�z��… , �40�

where we have used the fact that H(L� z� �W=w�z��)
w�z��.
Then by inserting Eqs. �38� and �40� to the expression of

F�w� given by Eq. �35� we can immediately get

F�w� 
 w − �
z�

P�z��W = w�S�L� z��E,W = w� , �41�

where we have used the fact that �z�P�z� �W=w�=1. In the
following it can be seen that the last term in Eq. �41� can be
lower bounded by a term depending on Bob’s total count

The probability P�z� �W=w� for w�z��=w in Eq. �41� can be
given by

P�z��W = w� =
P�z��

�z���w�z���=wP�z���
=

1

�z���w�z���=w1
=

1

CN−1
w ,

�42�

where in the second line we have used the Eq. �32�, and
CN−1

w =�z���w�z���=w1 denotes the number of permutations of w
in N−1.

Since L� z� can be regarded as w�z�� selection from L� , which
is composed of N−1 elements, by using super-subadditivity
of entropy �which is proved in the Appendix�, we have

�
z��w�z��=w

S�L� z��E,W = w� �
wCN−1

w

N − 1
S�L� �E,W = w� . �43�

Then by combining Eqs. �41�–�43�, we can obtain

F�w� 
 w −
w

N − 1
S�L� �E,W = w� . �44�

Finally, from Eqs. �36� and �44� we know that Eve’s in-
formation about Alice’s bit string satisfies

S�U� A:E�Z� � = �
w=1

N−1

P�w�Fw 
 �
w=1

N−1

P�w�w

−
1

N − 1 �
w=1

N−1

P�w�wS�L� �E,W = w� , �45�

where we sum over w in the range of 1 to N−1, because the
maximum value of w is N−1 and Alice and Bob discard the
result while there is no detection.

Equation �45� gives us an upper bound on Eve’s informa-
tion about Alice’s state, when there is no bit error. This upper
bound no longer depends on Bob’s counting positions de-
noted by z�. Now the remaining problem is to find some prac-
tical restrictions, so that the upper bound of Eve’s informa-
tion can be calculated.

Since all possible w is within 0 and N−1, it can be seen
that

�
w=0

N−1

P�w�S�L� �E,W = w� = S�L� �E,W� . �46�

In the following we will see that if S�L� �E ,W� can be lower

bounded, then S�U� A :E �Z� � can be upper bounded.
According to the definition of mutual information,

S�L� �E ,W� can be expressed as
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S�L� �E,W� = H�L� � − S�L� :E,W� = N − 1 − S�L� :E,W� ,

�47�

where H�L� �=N−1, and S�L� :E ,W� is the mutual information

between L� and the combination of Eve and system W.

Since L� is generated from X and li=xci
� xci−1, given x1

and l�, we can completely reconstruct x�. Therefore, we have

S�L� ,X1:E,W� = S�X� :E,W� . �48�

Because discarding a subsystem never increases the mutual
information �45�, Eq. �48� leads to

S�L� :E,W� 
 S�X� :E,W� . �49�

The term S�X� :E ,W� is the mutual information between Alice
and the combination of Eve and system W. The system E, W
can be regarded as a system locally generated from the origi-
nal state, �A

�N=�x�P�x�� ��x�
N�	�x�

N�, sent out by Alice. Since
local operations cannot increase the mutual information, the

maximum mutual information S�X� :E ,W� should not be big-
ger than the maximum information one can obtain from the
original state �A

�N, which is upper bounded by the Holevo
quantity of �A

�N �45�. The Holevo quantity of �A
�N is given by

NS�A�, where

S�A� = h�1

2
�1 − �	− ������� �50�

is the entropy of a single state �A= 1
2 �−��	−��+ 1

2 ���	�� and
h�x�=−x log2 x− �1−x�log2�1−x� is the binary Shannon en-
tropy function �44,45�. Now we know that

S�L� :E,W� 
 NS�A� . �51�

Then from Eqs. �46�, �47�, and �51�, we can derive the final
constraint on Eve’s conditional entropy, which is given by

�
w=1

N−1

P�w�S�L� �E,W = w� � �N − 1��1 − P�w = 0��

− NS�A� ¬ K . �52�

where we have used the fact that S�L� �E ,W=0�
S�L� �=N
−1, and K denotes the first term in the second line.

Equation �52� gives one constraint on S�L� �E ,W=w�.
There is also another trivial constraint on S�L� �E ,W=w�,
which is

S�L� �E,W = w� 
 S�L� � = N − 1. �53�

Then the remaining problem is to upper bound Eve’s infor-
mation �or to lower bound the secret key rate� under the
constraints given by Eqs. �52� and �53�.

C. Lower bound of the secret key rate

In this part we will give the lower bound of the secret key
rate based on the above analysis. From Eq. �7� it can be seen
that if there is no bit error, the mutual information between
Alice and Bob is

I�U� A:U� B�Z� � = �
z�

P�z���H�L� z��Z� = z�� − H�L� z��Y� z�,Z� = z���

= �
z�

P�z��H�L� z��Z� = z�� ,

where we have used the fact that if there is no bit error

�H�L� z� �Y� z� ,Z� =z���=0. After the channel estimation Alice and
Bob can compute this mutual information. It can be seen that

if for all z� s, L� z� is evenly distributed, this mutual information

becomes maximized, and I�U� A :U� B �Z� �=�z�P�z��w�z��. For sim-
plification, in the following we introduce a term � to denote
the difference between Bob’s actual information and the
maximal information he can get, in principle,

� = �
w

P�w�w − I�U� A:U� B�Z� � . �54�

Then from Eqs. �7�, �45�, and �54�, we know that if there is
no bit error the secret key rate per N pulses satisfies

G �
1

N − 1 �
w=1

N−1

P�w�wS�L� �E,W = w� − � , �55�

where P�w� and � are known after the channel estimation.
It can be seen that under the constraints of Eqs. �52� and

�53�, the lower bound of the secret key rate given by Eq. �55�
reaches its minimum when S�L� �E ,W=w�=0 for large values

of w and S�L� �E ,W=w�=N−1 for small values of w while
satisfying Eq. �52� at the same time. Then the final lower
bound on the secret key rate per N pulses is given by

G � �
w=1

w0

P�w�w − � , �56�

where the w0 is the solution to the equations

�
w=1

w0

P�w��N − 1� 
 K ,

�
w=1

w0+1

P�w��N − 1� � K , �57�

where K is defined in the Eq. �52�. This formula for the key
generation rate in Eq. �56� is applicable to any N any distri-
bution in Bob’s detection statistics. In the next section, we
will consider a particular distribution as an example.

V. SECRET KEY RATE UNDER THE BINOMIAL
DISTRIBUTION CASE

We illustrate how to compute the key generation rate in
Eq. �56� derived in the previous section for a channel that
produces a binomial distribution in Bob’s detection statistics.
We show that in this case the secret key generation rate per
pulse is linearly proportional to the channel transmission
probability �see Eq. �65��.

Consider the specific case where Bob’s total count obeys
the binomial distribution, �=0 and N→�. Under this case
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P�w� = CN−1
w rw�1 − r�N−w−1, �58�

where r denotes the detection rate per pulse.
For the N→� case, the binomial distribution tends to the

Gaussian distribution with the same mean and variance as
P�w�. For convenience of discussion of the N→� case, here
we introduce 
 denote the ratio of w over N−1:


 =
w

N − 1
.

Under the case that N→�, the 
 can be regarded as a real
number. Then instead of dealing with the Gaussian approxi-
mation of P�w� we can deal with an approximation for P�
�,
which denotes the distribution of 
. The Gaussian approxi-
mation of P�
� can be directly given by

P�
� �
N − 1


2��N − 1�r�1 − r�
exp�−

�N − 1��r − 
�2

2r�1 − r� �
�59�

which has the same mean and variance as P�
�.
The lower bound of the secret key rate given by Eq. �56�

can be approximated by

G � �N − 1��
0


0

d
P�
�
 , �60�

where the 
0=w0 / �N−1�, which can be given by the solution
to the equation

�
0


0

d
P�
� =
K

N − 1
. �61�

Here Eq. �61� is obtained by putting 
 into Eq. �57�.
It can be seen that when N→�, we have P�w=0�=0 and

N
N−1 =1. Then Eq. �61� becomes

�
0


0

d
P�
� = 1 − S�A� . �62�

To find a solution to Eqs. �60� and �62�, we introduce
another function F�
�:

F�
� = �P�
�, while 
 
 
0

0 while 
 � 
0.
� �63�

Then it can be seen that when N→�,

�
−�

�

d
F�
� = 1 − S�A� ,

F�
� = 0 for 
 � r ,

where the expression in the second line can be seen from the
fact that limN→�

N

2�Nr�1−r�exp�− N�r−
�2

2r�1−r� �=0 for 
�r.
We see that F�
� is actually a delta function satisfying

F�
�= �1−S�A����
−r�. From Eqs. �60� and �63�, we can
finally get the secret key rate for the binomial distribution
and N→� case. It is given by

G � �N − 1��
−�

�

d
F�
�
 = �N − 1�r�1 − S�A�� . �64�

When given that the amplitude of coherent state is � and
the total transmission probability is �, then the secret key
rate per pulse can be given by

g � ����2�1 − h�1

2
�1 − e−4���2��� , �65�

where we have used Eq. �50�, the result that �	−� ����=e−4���2

and the factor N−1 is canceled since this is a key rate per
pulse. From this result it can be seen that the lower bound of
the secret key rate per pulse is linearly proportional to the
channel transmission probability. It can be calculated that
when �=0.338, the right part in the Eq. �65� is maximized
and is given by 0.0357�. Note that our result is consistent
with the upper bounds on the key rate given in Refs. �30,33�.
From Ref. �11�, one can easily find that the key generation
rate per tranmistted pulse of BB84 in the noiseless case
scales at a higher rate than that of DPSQKD. However, the
overall secret key generation rate is also determined by the
modulation rate, and we remark that it is possible that
DPSQKD can outperform BB84 in the modulation rate, since
DPSQKD only requires one binary phase modulation at Al-
ice’s side, while BB84 requires a quaternary modulator at
Alice’s side and a binary or quaternary modulator at Bob’s
sides �46� �the binary modulation is easier to realize than the
quaternary one.�.

VI. CONCLUSION

We prove the security for DPSQKD with a weak-coherent
light source against collective attacks in the noiseless case.
The only assumption we employ are that the quantum theory
is true, the device is trusted and the key size is infinite. The
key point that guarantees this scheme to be secure is that
Eve’s state is independent of the positions of Bob’s detec-
tions, so that after the post-selection, in which Alice and Bob
discard the data that Bob did not receive a signal for, Bob
knows Alice’s sifted data better than Eve does. In addition,
we consider a specific case where the total number of Bob’s
count obeys the binomial distribution. In this case, we derive
the lower bound of the secret key rate per pulse and it is
linearly proportional to the channel transmission probability.
This result definitely suggests that DPSQKD has a high po-
tential for high speed communication, since it is easy to en-
gineer DPSQKD to operate at a high modulation rate. Al-
though we have only proved the security of DPSQKD for the
noiseless case, we hope that our work can offer some in-
sights into the security of DPSQKD and may serve as a
stepping stone for proving the security for the noisy case.
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APPENDIX: SUPER SUBADDITIVITY
FOR THE MULTISYSTEM CASE

Theorem 1. Suppose �n= �A1 , . . . ,An
 is a collection of n
systems and �m

n is a collection of all possible m selections
from n cases. Then it is always true for arbitrary n and m

n that

�
i���m

n

S�Ai1
,Ai2

, . . . ,Aim
�E� � Cn−1

m−1S�A1,A2, . . . ,An�E� ,

�A1�

where i�= �i1 , i2 , . . . , im�, E is another system, and Cn
m

= n!
m!�n−m�! . This theorem is a generalization of the following

lemma for subadditivity of Von Neuemann entropy �see, e.g.,
Ref. �45��.

Lemma 1. For three quantum systems A1, A2, and E,
S�A1 �E�+S�A2 �E��S�A1 ,A2 �E�.

Proof of theorem 1. We will use induction to prove the
theorem. First, notice that for m=n, this theorem is always
true. In the following we will prove that for n and m=1 this
theorem holds, which will be called first proof �FP� in the
following. Then we prove if for n and m and m−1 �m�1�
the above theorem is correct, then for n+1 and m it is also
correct, which will be called second proof �SP�. Thirdly, we
will prove that if for n−1 and m=n−2 �n�2� the above
theorem is true then for n and m+1 it is also valid, which
will be called third proof �TP�. Since for n=2 and m=1, the
above theorem is true, then it is also true for n=3 and m
=2 by applying the TP.

This theorem is true for n=3 and m=2 and n=3 and
m=1. Then by applying the SP, we know that it is also valid
for n=4 and m=2 and consequently for all of n and m=2.
After we continuously do such induction we can see that if
FP, SP and TP is correct then for all n�m the above theorem
holds.

Now we prove the FP first. Observe that for arbitrary n
and m=1, Eq. �A1� holds by repeated applications of lemma
1, i.e.,

�
i=1

n

S�Ai�E� � S�A1,A2, . . . ,An�E� �A2�

holds. Now we will prove the SP, which is claims that if for
n and m and m−1 the above theorem holds, then for n+1
and m it also holds.

We assume that �n+1= �A1 , . . . ,An ,An+1
= �A1 , . . . ,An ,B
.
Here we use B to denote An+1.

In the following we use �m
n to denote the collection of all

possible m selections in n samples. First we have

T = �
i���m

n+1

S�Ai1
,Ai2

, . . . ,Aim
�E�

= �
i���m

n

S�Ai1
,Ai2

, . . . ,Aim
�E�

+ �
i���m−1

n

S�Ai1
,Ai2

, . . . ,Aim−1
,B�E� = C + D , �A3�

where i�= �i1 , i2 , . . . , im� denotes a possible m selection in n
cases and we introduced T, C, and D to denote the terms
given in the first, second and third line, respectively. If the
theorem is valid for n and m, then we have

C �
mCn

m

n
S�A1,A2, . . . ,An�E� . �A4�

Now, D can also be given by

D = �
i���m−1

n

S�Ai1
,Ai2

, . . . ,Aim−1
�BE� + Cn

m−1S�B�E�

= D1 + Cn
m−1S�B�E� , �A5�

where we have applied the fact that S�A �EB�+S�B �E�
=S�AB �E� and �i���m−1

n =Cn
m−1. Also, if the above theorem is

correct for n and m−1, we have

D1 �
�m − 1�Cn

m−1

n
S�A1,A2, . . . ,An�BE� . �A6�

Here,

Cn
m =

n!

m!�n − m�!
. �A7�

Then if we put Eqs. �A4�–�A7� into Eq. �A3� we can imme-
diately get

T �
n!�n − m + 1�m
nm!�n − m + 1�!

�S�A1,A2, . . . ,An�E� + S�B�E��

+
n!m�m − 1�

nm!�n − m + 1�!
�S�A1,A2, . . . ,An�BE� + S�B�E�� .

�A8�

Since the above theorem is correct for n=2 and m=1, we
have

S�A1,A2, . . . ,An�E� + S�B�E� � S�A1,A2, . . . ,An,B�E� .

�A9�

Then if we put Eq. �A9� into Eq. �A8� and apply the
results that S�A �EB�+S�B �E�=S�AB �E� and

n!m�m − 1�
nm!�n − m + 1�!

=
mCn+1

m

n + 1
,

we can obtain

SECURITY PROOF OF DIFFERENTIAL PHASE SHIFT … PHYSICAL REVIEW A 78, 042330 �2008�

042330-11



T �
mCn+1

m

n + 1
S�A1,A2, . . . ,An,B�E�

which says that if for n and m and m−1, the above theorem
is correct then for n+1 and m it is also correct. Now the SP
is proved.

Now, we will prove the TP, that is if for n−1 and m=n
−2 �n�2� the above theorem is true then for n and m+1 it is
also true. We assume that �n= �A1 , . . . ,An−1 ,B
. Here we use
B to denote An. Then we have that

S = �
i���m+1

n

S�Ai1,Ai2, . . . ,Aim
,Aim+1

�E� = S�A1,A2, . . . ,An−1�E�

+ �
i���m

n−1

S�Ai1
,Ai2

, . . . ,Aim
,B�E� = S1 + S2, �A10�

where the S, S1, and S2 are introduced to denote the expres-
sion in the first, second, and third line, respectively, and in
the second line we have used the requirement that m=n−2.

Since S�A �EB�+S�B �E�=S�AB �E�, and �i���m
n−1 =Cn−1

m ,

S2 = �
i���m

n−1

S�Ai1,Ai2, . . . ,Aim
�BE� + Cn−1

m S�B�E�

�
mCn−1

m

n − 1
S�A1,A1, . . . ,An−1�BE� + Cn−1

m S�B�E�

= m�S�A1,A1, . . . ,An−1�BE� + S�B�E�� + S�B�E�

= mS�A1,A1, . . . ,An−1,B�E� + S�B�E� , �A11�

where we have applied the assumption that for n−1 and m
the above theorem is correct and the fact that Cn−1

m =n−1 for
m=n−2.

Now we put Eq. �A11� in to Eq. �A10� we can obtain that

S � mS�A1,A1, . . . ,An−1,B�E� + S�A1,A2, . . . ,An−1�E� + S�B�E�

� �m + 1�S�A1,A1, . . . ,An−1,B�E�

=
�m + 1�Cn

m+1

n
S�A1,A2, . . . ,An−1,An�E� ,

where in the third line we have used the subadditivity for
n=2 and m=1 case. Now the TP is proved. Since the as-
sumptions FP, SP and TP hold and the initial conditions are
satisfied, it is proved that for all n�m the above theorem
holds. �

�1� C. H. Bennett and G. Brassard, in Proceedings of the IEEE
International Conference on Computers, Systems, and Signal
Processing �IEEE Press, New York, 1984�, pp. 175–179.

�2� F. Grosshans, G. van Assche, J. Wenger, R. Brouri, N. Cerf,
and P. Grangier, Nature �London� 421, 238 �2003�.

�3� M. Heid and N. Lütkenhaus, Phys. Rev. A 73, 052316 �2006�.
�4� Yi-Bo Zhao, Matthias Heid, Johannes Rigas, and Norbert Lüt-

kenhaus, e-print arXiv:0807.3751.
�5� K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. Lett. 89,

037902 �2002�.
�6� K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. A 68,

022317 �2003�.
�7� H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer,

K. Inoue, and Y. Yamamoto, New J. Phys. 7, 232 �2005�.
�8� E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y.

Yamamoto, Opt. Express 14, 13073 �2006�.
�9� D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, Quan-

tum Inf. Comput. 5, 325 �2004�.
�10� W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 �2003�.
�11� H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504

�2005�.
�12� X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A 72, 012326

�2005�.
�13� X.-B. Wang, Phys. Rev. Lett. 94, 230503 �2005�.
�14� X.-B. Wang, Phys. Rev. A 72, 012322 �2005�.
�15� J. W. Harrington, J. M. Ettinger, R. J. Hughes, and J. E. Nor-

dholt, e-print arXiv:quant-ph/0503002.
�16� Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, Phys. Rev. Lett.

96, 070502 �2006�.
�17� Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, in Proceedings

of IEEE International Symposium on Information Theory

(ISIT) 2006 �IEEE Press, New York, 2006�, pp. 2094–2098.
�18� H.-K. Lo and J. Preskill, Quantum Inf. Comput. 8, 431 �2007�.
�19� C. H. Bennett, Phys. Rev. Lett. 68, 3121 �1992�.
�20� M. Koashi, Phys. Rev. Lett. 93, 120501 �2004�.
�21� K. Tamaki, N. Lütkenhaus, M. Koashi, and Jamie Batuwan-

tudawe, e-print arXiv:quant-ph/0607082.
�22� K. Tamaki, Phys. Rev. A 77, 032341 �2008�.
�23� D. Mayers, J. ACM 48, 351 �2001�, ,preliminary version in D.

Mayers, Advances in Crytology–Proceedings of Crypto ’96,
Vol. 1109 of Lecture Notes in Computer Science, edited by N.
Koblitz �Springer-Verlag, New York, 1996�, pp. 343–357.

�24� E. Biham, M. Boyer, P. O. Boykin, T. Mor, and V. Roy-
chowdhury, in Proceedings of the Thirty-second Annual ACM
Symposium on Theory of Computing �ACM Press, New York,
2000�, pp. 715–724.

�25� H.-K. Lo and H. F. Chau, Science 283, 2050 �1999�.
�26� P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 �2000�.
�27� H. Inamori, N. Lütkenhaus, and D. Mayers, Eur. Phys. J. D 41,

599 �2007�.
�28� R. García-Patrón and N. J. Cerf, Phys. Rev. Lett. 97, 190503

�2006�.
�29� E. Waks, H. Takesue, and Y. Yamamoto, e-print arXiv:quant-

ph/0508112.
�30� M. Curty, L.-L. Zhang, H.-K. Lo, and N. Lütkenhaus, Quan-

tum Inf. Comput. 7, 665 �2007�.
�31� T. Tsurumaru, Phys. Rev. A 75, 062319 �2007�.
�32� M. Curty, K. Tamaki, and T. Moroder, Phys. Rev. A 77,

052321 �2008�.
�33� C. Branciard, N. Gisin, and V. Scarani, New J. Phys. 10,

013031 �2008�.
�34� H. Gomez-Sousa and M. Curty, e-print arXiv:0806.0858.

ZHAO et al. PHYSICAL REVIEW A 78, 042330 �2008�

042330-12



�35� Generally, Eve’s attack can be separated into three classes:
individual attacks, collective attacks and coherent attacks
�36,37�. In individual attacks, Eve attacks each signal system
separately with the same method and later measures her quan-
tum state right after the sifting step. In collective attacks, Eve
attacks each signal system separately with the same method
but can perform arbitrary measurement after all of the steps,
including the reconciliation, privacy amplification and the en-
cryption. Coherent attacks are the most general attacks, where
Eve can attack all of the signals together and perform the mea-
surement at the end of the protocol.

�36� V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,
N. Lütkenhaus, and M. Peev, e-print arXiv:0802.4155.

�37� R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72, 012332
�2005�.

�38� R. Renner, e-print arXiv:quant-ph/0512258.

�39� R. Renner, Nat. Phys. 3, 645 �2007�.
�40� M. Christandl and B. Toner, e-print arXiv:0712.0916.
�41� K. Wen, K. Tamaki, and Y. Yamamoto, e-print

arXiv:0806.2684.
�42� Here we mean that all of Bob’s detectors are the same with

perfect efficiency and there is no dead time associated with
them.

�43� I. Devetak and A. Winter, Proc. R. Soc. London, Ser. A 461,
207 �2005�.

�44� C. Shannon, Bell Syst. Tech. J. 27, 379 �1948�.
�45� M. A. Neilson and I. L. Chuang, Quantum Computing and

Quantum Information �Cambridge University Press, Cam-
bridge, UK, 2000�, Chaps. 11 and 12.

�46� C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, e-print
arXiv:0802.3788.

SECURITY PROOF OF DIFFERENTIAL PHASE SHIFT … PHYSICAL REVIEW A 78, 042330 �2008�

042330-13


