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Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in
neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and
field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the
spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition
is presented with the order parameters quantified by the spin polarization and occupation number of
harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field
squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the
ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning.
Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic
trap mode, while it suppresses the spin and the field squeezing.

S
pin-orbit coupling (SOC) describes an intrinsic interaction between the spin and the momentum of a
particle. SOC plays a major role in condensed matter systems, such as spin and anomalous Hall effects1,2,
topological insulators and topological superconductors3. Recently it is found that SOC also plays a key role

in realizing spintronics4 and topological quantum computing5. However, the SOC physics in typical solid-state
materials is hard to observe because the strength of the SOC is generally much smaller than the Fermi velocity of
electrons. Quantum many-body systems of ultra-cold atom gases can be precisely controlled in experiments, and
would thus provide an ideal platform to explore novel SOC physics and device applications6. Recently, SOC with
equal Rashba and Dresselhaus strength has been realized in a neutral atomic Bose-Einstein condensate (BEC) by
dressing two atomic spin states with a pair of Raman lasers7. Moreover, such SOC strength is much stronger than
that in typical solid-state materials. With the strong strength of SOC, spins are not conserved during their motion
and rich exotic superfluid phenomena have been revealed8–31. For instance, new topological excitations and new
ground state phases have been observed in spin-orbit coupled Fermi gases and BEC, respectively32–38. Here we
study the spin and the field (bosonic) squeezing in the system of ultracold atoms in the trapped BEC with the equal
Rashba and Dresselhaus SOCs.

Spin squeezing39–42, arising from quantum correlations of collective spin systems, has potential applications in
quantum information processes, quantum metrology and atom interferometers43,44. It is also closely related to
quantum entanglement45–48. In the past few years, many efforts have been devoted to the generation of squeezing
in atomic systems. In recent experiments, it has been reported that spin squeezing can be generated in a ensemble
of atoms via atom-photon interactions or a BEC via atom collisions49–52.

In this work, we investigate properties of the ground state of a spin-orbit coupled BEC and show that both spin
and field squeezing can be induced by the SOC in the BEC. First, we map the spin-orbit coupled BEC to the well-
known quantum Dicke model and show that there exists a quantum phase transition (QPT) from a superradiant
(spin polarized) to normal (spin balanced) phase by tuning two Raman lasers with a current experimental setup of
National Institute of Standards and Technology (NIST). In the superradiant phase, macroscopic spin polarization
and occupation number of harmonic trap mode are presented. By contrast, in the normal phase, the values of spin
polarization and occupation number of harmonic trap mode become zero. The behaviors of spin and field
squeezing near the critical point are also explored. It is found that, at the critical point, the maximal spin squeezing
is achieved and a sudden transition occurs for the field squeezing, which can indicate the QPT. In addition, the
field squeezing is independent of the SOC strength in this phase. We also discuss the effects of the detuning on the
ground state of spin polarization and quasi-momentum, and show the results agree with those in recent experi-
ments18. The presence of the detuning suppresses the spin and field squeezing, while it enhances the occupation
number of harmonic trap mode.
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Results
Model and quantum phase transition. In a recent benchmark
experiment, the equal Rashba and Dresselhaus SOCs were realized
in the trapped BEC with 87Rb atoms7, as illustrated in Fig. 1(a), all
ultracold atoms are prepared in a two dimensional BEC in the xy
plane with a strong confinement along the z axis. Such a two
dimensional setup does not affect the essential physics, since the z
direction is decoupled with the SOC. With a large detuning D from
the excited state, the hyperfine ground state jF 5 1, mF 5 21æ and
jF 5 1, mF 5 0æ can be defined as effective spin-" and spin-#
respectively, which is shown in Fig.1 (b). In the dressed state basis

~:
�� E~ exp ik1rð Þ :j i
n

and ~;
�� E~ exp ik2rð Þ ;j i

o
with k1 and k2

denoting the wave vectors of the Raman lasers, equal Rashba and
Dresselhaus SOCs can be induced by two Raman lasers incident at a
p/4 angle from the x axis and the corresponding dynamics of single
particle of the BEC is governed by the following nonlinear Gross-
Pitaevskii (GP) equation

i�hLY=Lt~ p2
�

2mzV rð ÞzHszHI
� �

Y, ð1Þ

where Y 5 (y", Y#)T is the wavefunction on the dressed state basis

and satisfies the normalization condition
ð

dxdy Y:
�� ��2z Y;

�� ��2� �
~1,

p is the momentum, and V rð Þ~ m
2

v2
xx2zv2

yy2
� �

is the harmonic

trap potential with m being the mass of the ultracold atom and vx,y

denoting the trapping frequencies in the x, y axes. In addition, the
Hamiltonian Hs describing the equal Rashba and Dresselhaus SOCs is
given by

Hs~cpxszz�hVsxz
d

2
sz, ð2Þ

where sx and sz are the Pauli matrices, c~
ffiffiffi
2
p

p�h
.

mlð Þ describes the

SOC strength with l denoting the wave length of the Raman lasers, V
measures the Raman coupling strength, and d is the detuning from the
level splitting. The many-body interaction Hamiltonian is HI 5

diag(g""jY"j2 1 g"#jY#j2, g"#jY"j2 1 g##jY#j2), where g"" 5 g"# 5

4p�h2N c0zc2ð Þ= mazð Þ and g## 5 4p�h2Nc0= mazð Þ represent the
inter- and intra-spin collision interactions, respectively. Here, c0 and
c2 are the s-wave scattering lengths, N is the atom number, and

az~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�h=mvz

p
with the trapping frequency vz in the z axis.

In the present experiment, the s-wave scattering lengths have been
measured as c0 5 100.86aB and c2 5 20.46aB, where aB is the Bohr
radius. Then we can find g"" 5 g"# < g##. Introducing the harmonic

mode operators, a~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mvx=2�h

p
xzipx=mvxð Þ and b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mvy

�
2�h

q

yzipy

�
mvy

� �
, the Hamiltonian (1) for N particles can be mapped

to a Dicke type model16–18

HT~�hvyNb{bz�hvxNa{az�hVSxz
d

2
Sz

zc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�hvx

p
i a{{a
� �

Sz,

ð3Þ

where Sz~
XN

i
si,z=2 and Sx~

XN

i
si,x=2 are the collective spin

operators. Since the boson mode in the y direction does not interact
with the ultracold atom, the system can be reduced to

HT~�hvxNa{az�hVSxz
d

2
Sz

zc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�hvx

p
i a{{a
� �

Sz,

ð4Þ

When d 5 0, the Hamiltonian is equivalent to the standard Dicke
model53. Here, we shall note that if the repulsive interaction between
the different spin components is sufficiently strong, the mapping to
the Dicke model is invalid, which is due to the fact that the trapped
BEC is unstable when g:;? g::, g;;

	 

. In contrast, if there is no

interaction between the trapped BEC, there will be no correlation
between the ultracold atoms and all of the ultracold atoms will occupy

both Kmin~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2{V2�4c2

q
in the momentum space. Then, the

single spatial mode approximation which we have used is not valid.
For the system with Hamiltonian (4), there is a quantum phase

transition between the normal phase and the superradiant phase by
changing the Raman coupling strengthV. By means of the mean field
coherent state approach, the critical point for the phase transition of
the system can be obtained. We assume the wave function of the
ground state is given by jyæ 5 jhæ 5 jaæ, where jhæ is the spin coherent
state and jaæ is the spatial coherent state with a jaæ 5 a jaæ and a 5 u
1 iv. In the absence of the detuning term, i.e., d 5 0, the energy of the
system is (with the constant dropped)

E~N�hvx u2zv2
� �

{N�hkR

ffiffiffiffiffiffiffiffiffiffiffi
2�hvx

m

r
v cos h

z
V

2
N�h sin h:

ð5Þ

Minimizing the energy E with respect to h, the critical point is given by
Vc 5 4ER=�h, where ER~�h2k2

R

�
2m is the recoil energy. When V . Vc,

the system is in the spin-balanced normal phase, where the spin polar-
ization and the occupation number of harmonic trap mode are zero. In
the region V , Vc, the ground state has two degenerate local minima

with spin polarization Szh i~+
N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ V=Vcð Þ2

q
and the occupation

number of harmonic trap mode �np~
�hk2

R

2mvx
1{ V=Vcð Þ2
� �

. As is

shown in Fig. 2, the spin polarization ÆSzæ and rescaled occupation
number of harmonic trap mode Np~2mvx�np

�
�hk2

R

� �
as functions

of V are plotted in the resonance case (d 5 0). The direct numer-
ical results respect to Hamiltonian (4) agree well with those by the
mean field approximation. In the superradiant phase, the system
has a macroscopic occupation number of harmonic trap mode
and spin polarization which coincides well with the results in
the recent experiment18. In contrast, in the normal phase, there
are no occupation number of harmonic trap mode and spin polar-
ization. As a consequence, either the spin polarization or the
occupation number of harmonic trap mode can be considered
as an order parameter of QPT.

Spin and field squeezing. Now we discuss the applications of the
spin-orbit coupled BECs in quantum information science. Spin
squeezing has potential application in atom interferometers and
high precision atom clocks. It can also signify long-range quantum

Figure 1 | Illustration about the model and the level diagram. (a) The

experimental scheme for realizing the equal Rashba and Dresselhaus SOC

in the trapped BEC. (b) Level diagram: three hyperfine states | 21æ, | 0æ,
and | 1æ are coupled by the Raman lasers.
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correlations. Spin squeezing can be quantified by the following
parameter39

j2~
4 min DSn\ð Þ2

N
ð6Þ

with DSn\ð Þ2~ S2
n\

D E
{ Sn\h i2. The subscript nH refers to an

arbitrary axis perpendicular to the mean spin S. The inequality
j2 , 1 indicates the state is spin squeezed.

For the bosonic squeezing, it can be characterized by a parameter

f2~ min
h[ 0,2p½ Þ

DXhð Þ2, ð7Þ

where Xh 5 X cos h 1 P sin h with X 5 a 1 a{ and P 5 i(a{ 2 a). For
the special case, h 5 p/2, f2 5 (Dpx)2, it means the field squeezing of
the system corresponds to the momentum squeezing. For a quantum
state, the field squeezing factor can also be written as54–56

f2~1z2 a{a

 �

{2 ah ij j2{2 a2

 �

{ ah i2
�� ��: ð8Þ

As is shown in Fig. 3, the spin and field squeezing factors as functions
ofVwith d 5 0 are plotted. It is demonstrated that the spin squeezing
parameter attains its minimal value at the boundary between the
normal and superradiant phases. For the bosonic squeezing factor,
it decreases as V increases, which indicates the system exhibits a
bosonic squeezing when V ? 0.

For the above squeezing phenomenon, a natural question arises
as how the system exhibits the spin and field squeezing. In
Hamiltonian (4), we can not directly find the spin-spin interaction.
In fact, both the spin and field squeezing can be induced by SOC. To
demonstrate these arguments clearly, we employ a unitary trans-
formation U 5 exp(iG(a{ 1 a)Sz) with G~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc2= N2�hvxð Þ

p
to

rewrite Hamiltonian (4) as HU 5 U{HTU17. After a straightforward
calculation, we can obtain

HU~�hvxNa{a{4ER
�

NS2
z

z�hVSx cos G a{za
� �� �

{�hVSy sin G a{za
� �� �

:

ð9Þ

For such a Hamiltonian, we can clearly see that the system shows
the spin-spin interaction and nonlinear terms of harmonic trap
mode from the terms S2

z and �hVSx cos[G(a{ 1 a)] 2 �hVSy

sin[G(a{ 1 a)], respectively. Thus we can argue that the spin-orbit
coupling induces the spin and field squeezing.

To derive an analytical result of spin squeezing factor, we need to
reduce the terms �hVSx cos[G(a{ 1 a)] 2 �hVSy sin[G(a{ 1 a)]. For a

large number of atom, we have max V, c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mvx=�h

p� �
=vxN and

thus a{a

 �

=N . In fact the occupation number Æa{aæ of harmonic trap
mode is inversely proportional to vxN16, which indicates the negligible
term �hVSy sin[G(a{ 1 a)] , 0 and the term
�hVSx cos G a{za

� �� �
^�hVSx . Then the Hamiltonian HU can be

reduced to HS
U~{4ER

�
NS2

zz�hVSx , which corresponds to the
Lipkin-Meshkov-Glick model. Treating the quantum effects as small
fluctuations, an approximate result of j2 can be obtained by using the
Holstein-Primakoff transformation in the limit of large atom number.
Introducing the Holstein-Primakoff transformation ~Sz~N

�
2{b{b

and ~S ~
ffiffiffiffi
N
p

b{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{b{b=N

q
~ ~Sz

� �{
and using the Bogoliubov

transformation57,58, the Hamiltonian HS
U can be diagonalized and

the spin squeezing parameter can be obtained as (see method)

j2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ V=Vcð Þ2

q
, VvVc,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{Vc=V
p

, VwVc:

8<
: ð10Þ

In the region V . Vc, when V?Vc, j2^1. It is due to the fact that for
the large value of V, all the spins are polarized along the x axis. In fact,
V can be tuned from 1022 kHz to MHz in the current experiment,
thus the system always exhibits spin squeezing. As is shown in
Fig. 3(a), the numerical result agrees with the approximation analytical
result in Eq. (10).

To obtain the result of the bosonic squeezing, we can reduce the
Hamiltonian HU to an effective Hamiltonian (with the constant
terms neglected)

HB
U~�hvxNa

{
azu a{za

� �2 ð11Þ

with u~
�hV2

4Nvx
and

VER

Nvx
for V , Vc and . Vc, respectively. In the

above derivation, we have used Sx 5 {N�hV= 8ERð Þ and 2N/2 for V
, Vc and . Vc, respectively. The Hamiltonian HB

U can be diagona-
lized by using the Bogoliubov transformation

~a~ cosh s a{ sinh s a{ ð12Þ

with tanh 2s~
{2u

N�hvxz2u
57,59. For the diagonalization of the

Hamiltonian, we can find the ground state in the bosonic vacuum,

Figure 2 | Quantum phase transition in terms of spin polarization and occupation number. (a) Spin polarization and (b) occupation number of

harmonic trap mode as a function of V. The red squares are analytical results for the mean field and blue lines are the numerical results from the

Hamiltonian (4). The parameters are chosen as m 5 1.44 3 10225 kg, l 5 804.1 nm, vx 5 2p 3 50 Hz, and N 5 4 3 103.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8006 | DOI: 10.1038/srep08006 3



i.e. ~a{~a

 �

~0, in terms of which the corresponding field squeezing
parameter is given by

f2~

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z V2

Nvxð Þ2
q , VvVc,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z 4�hVER

N�hvxð Þ2
q , VwVc:

8>>>>><
>>>>>:

ð13Þ

We note that in the superradiant phase, f2 is independent of the SOC
strength c which can be tuned through a fast and coherent modu-
lation of Raman coupling16. As is shown in Fig. 3(b), f2 is plotted with
different effective SOC strengths. We find the numerical results of
Hamiltonian (4) coincide well with the analytical ones in Eq. (13).

Effect of detuning to spin and field squeezing. We proceed to
consider the effect of the detuning on the spin polarization and the
quasi-momentum. In a recent experiment, the spin polarization
and quasi-momentum have been measured by linearly swept
the detuning with different V18. It has been observed that the
phenomenon of QPT vanishes and the BEC is always in the

superradiant phase for a finite detuning. As is shown in Fig. 4(a),
we investigate the ground state of the spin polarization and the quasi-
momentum withV5 3ER. We find that the spin polarization and the
quasi-momentum exhibit a step jump at d 5 0 as the detuning d
increases. When d , 0, most of the atoms are in the state j"æ, as d
increases and d . 0, most of the ultracold atoms stay at the state j#æ.
These numerical results coincide well with the experiment result18.

The occupation number of harmonic trap mode Np is also studied
for the finite detuning. As is shown in Fig. 4(b), Np is plotted as a
function of the detuning. We can find that Np increases as the detun-
ing jdj increases, which means the presence of detuning increases the
occupation number of harmonic trap mode. For the spin and field
squeezing, shown in Fig. 4(c) and (d), j2 and f2 increase as the value
of jdj increases, which indicates the presence of detuning suppresses
the spin and field squeezing.

Discussion
We have investigated the spin-orbit coupled BEC via spin and field
squeezing. By mapping the system to the well-known quantum Dicke
model, we show that the quantum phase transition of superradiant
(spin polarized)-normal (spin balanced) can be induced by tuning

Figure 3 | Quantum phase transition in terms of spin and field squeezing parameters. (a) Spin squeezing parameter j2 and (b) bosonic squeezing factor

f2 as functions of V. The red square denotes the analytical result in Eqs. (10) and (13), whereas the blue lines reflects the direct numerical results of

Hamiltonian (4). The parameters are the same as those in Fig. 2.

Figure 4 | Effect of the detuning. (a) Spin polarization (blue line) and quasi-momentum (red line with circles) (b) occupation number of harmonic

trap mode Np, (c) spin, and (d) field squeezing parameter as a function of Raman detuning d with V 5 3ER. The parameters are chosen as m 5 1.44 3

10225 kg, l 5 804.1 nm, vx 5 2p 3 100 Hz, and N 5 2 3 103.
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two Raman lasers with a current experimental setup of NIST.
Crossing from the normal phase to the superradiant phase, mac-
roscopic spin polarization and occupation number of harmonic
trap mode emerge at the critical point. Therefore, the spin polar-
ization and occupation number of harmonic trap mode can be
treated as the order parameters revealing the quantum criticality.
We further consider the behaviors of spin and field squeezing near
the critical point and find that the spin and field squeezings reveal
the quantum phase transition in different manners. At the critical
point, the maximal spin squeezing (with the minimal squeezing
factor) occurs and the field squeezing experiences a sudden trans-
ition. In addition, the field squeezing is independent of the SOC
strength in the in the superradiant phase. Finally, the effects of the
detuning on the ground state of spin polarization and quasi-
momentum are studied. The presence of the detuning suppresses
the spin and field squeezing, while it enhances the occupation
number of harmonic trap mode.

Methods
Here we employ the Holstein-Primakoff and Bogoliubov transformations to derive
the result of spin squeezing. In the Sec. II, we obtain a reduced Hamiltonian
HS

U ~{4ER
�

NS2
zz�hVSx . For simplicity, we rewrite the form of HS

U as
~HS

U ~{1
�

NS2
x{�hVSz=4ER which indicates the spin direction along as z axis.

Rotating the z axis to the semiclassical magnetization, we obtain57,58

Sx

Sy

Sz

0
B@

1
CA~

cos h0 0 sin h0

0 1 0

{ sin h0 0 cos h0

0
B@

1
CA

~Sx

~Sy

~Sz

0
B@

1
CA, ð14Þ

where h0 5 0 for �hV=4ER . 1 and h0 5 arccos(�hV=4ER) for �hV=4ERƒ1. Then the
corresponding transformed Hamiltonian reads (with the constant terms dropped)

~H0SU ~{
�hV
2Er

m~Sz{
2
N

1{m2
� �

~S2
zzm2 ~S

2
{~Sz

� ��
2

h i

z
�hV
4ER

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{m2
p

~Szz~S{

� �
{

m2

2N
~S2

zz~S2
{

� �

{
m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{m2
p

N
~Sz

~Szz~Sz~Szz~S{
~Szz~Sz~S{

� �
,

ð15Þ

where m 5 cos h0. Introducing the Holstein-Primakoff representation

~Sz~N=2{b{b,

~S{~
ffiffiffiffi
N
p

b{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{b{b=N

q
,

~S{z~
ffiffiffiffi
N
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{b{b=Nb
q

,

ð16Þ

where b{ and b satisfy the relation [b, b{] 5 1. Then we obtain the Hamiltonian
(neglecting the constant terms)

~H’’SU ~ 1zm�hV
�

4ER{3m2
�

2
� �

b{b

{m2 b{2zb2
� ��

4
ð17Þ

up to the 0th order of N. Using the Bogoliubov transformation

~b{~ cosh h=2ð Þb{z sin h=2ð Þb, ð18Þ

the Hamiltonian ~H’’SU can be diagonalized with

tanh h~
m2

2zm�hV=2ER{3m2
: ð19Þ

When �hV=4ER . 1, m 5 1, and we can obtain

S2
x


 �
~

N
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hV

�hV{4ER

s
,

S2
y

D E
~

N
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hV{4ER

�hV

r
:

ð20Þ

Then the corresponding spin squeezing parameter is given by

j2~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{Vc=V

p
: ð21Þ

When �hV=4ERƒ1, m 5 h, we have

S2
x


 �
~

N2z2Nð Þ 1{ �hV=4ERð Þ2
� �

4

z
N2{ 2{ �hV=4ERð Þ2

� �
1{ �hV=4ERð Þ2
� �

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ �hV=4ERð Þ2

q :
ð22Þ

Then we obtain

j2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ V=Vcð Þ2

q
: ð23Þ
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