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Abstract

A mathematical model based on the lubrication theory is presented for quasi-one-

dimensional electroosmotic flow of a power-law fluid through a slit microchannel with

undulating and non-uniformly charged walls. The channel height and the wall potential

may vary periodically with axial position, with a wavelength much longer than the

average channel height. Owing to the nonlinear rheology, the pressure gradient that is

internally induced to satisfy continuity of flow has to be found numerically. A trial-and-

error method is adopted to search for a flow rate that will give rise to an axial pressure

gradient distribution with a zero average over one wavelength of the channel. When the

flow behavior index is equal to the reciprocal of an integer, polynomial equations relating

the flow rate and the local pressure gradient can be deduced, which will greatly facilitate

the seeking of the solution by trial and error. Numerical results are also presented to

illustrate how the flow behavior index may qualitatively change the combined effect of

the geometric and electrokinetic wall patterns on the flow rate.
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1 Introduction

In microfluidics, a fluid is often transported in a microchannel by means of an applied electric

field. Such electrically driven flow, which draws upon the unbalanced charge distribution

in the electric double layer (EDL) formed near a charged surface, is commonly called the

electroosmotic (EO) flow. Since the pioneering work by Burgreen and Nakache [1] five decades

ago, EO flow in microchannels has been extensively studied, especially in the past twenty

years. These existing studies, whether theoretical or experimental, are mostly for EO flow of

Newtonian fluids. Effects of non-Newtonian behaviors on EO flow have not received much

attention until recently. The need for an in-depth understanding of non-Newtonian EO

flow stems from the fact that microfluidic applications often involve complex fluids such as

polymeric solutions and bio-fluids [2].

Das and Chakraborty [3] and Chakraborty [4] were among the first who presented theoret-

ical models for EO flow of non-Newtonian fluids in microchannels. These authors adopted the

power-law model to describe the non-Newtonian rheology. EO flows of other non-Newtonian

fluids, such as Bingham [5], viscoelastic [6], and viscoplastic [7, 8] materials, have also been

investigated. To this date, the most chosen rheological model for non-Newtonian EO flow has

been the power-law model; some typical works, among many others, are found in Refs. [9–15].

The power-law model, also known as the Ostwald-de Waele model, is a relatively simple two-

parameter model, by which the shear-thinning, Newtonian, or shear-thickening behaviors can

be conveniently represented by the flow behavior index being less than, equal to, or larger

than unity, respectively.

Some noticeable analytical solutions for EO flow of power-law fluids in microchannels have

been obtained by Yang and his collaborators [9, 11, 16, 17]. One remarkable finding by these

authors is an expression for the generalized Smoluchowski slip velocity for power-law fluids.

For EO flow under the Debye–Hückel approximation (i.e., very small electric potentials), they

also found closed-form analytical solutions for some particular values of the flow behavior

index n (namely, n = 1, 1/2 and 1/3), and approximate analytical solutions for an arbitrary

value of n. These and other analytical studies on EO flow of non-Newtonian fluids are,

however, limited to uniform channels of simple geometry (e.g., a uniform parallel-plate or
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circular channel) such that the flow is steady and unidirectional, with the velocity depending

on one transverse coordinate only. This is because, for such steady one-dimensional flow, the

shear stress distribution can be determined a priori, which will then allow the velocity to be

found straightforwardly by integration. For a flow behavior index n, the integrand has the

form of a certain function raised to the exponent of 1/n. If the function is an elementary

function and n is the inverse of an integer, a closed-form analytical expression can be obtained

for the velocity profile.

Non-uniformities are known to occur to microchannels. For example, the zeta potential,

or the electric potential at the shear plane in the EDL, may vary spatially by construction

or owing to unavoidable surface defects during fabrication. For Newtonian fluids, many have

studied EO flow in microchannels with non-uniformly charged walls [18–22]. The problem

is of practical importance because non-uniform wall charge may lead to secondary flow in

the form of flow separation and recirculation. The problem becomes more interesting when

non-uniform wall charge interacts with an undulating wall shape, as has been investigated

by Ajdari [23, 24]. He showed that the combined effect of periodic wall charge and shape

modulation is to generate net flow even if the walls are on average electro-neutral. Charge

modulation alone can only produce periodic convective cells, but will not generate net flow.

Net effects may happen only when the symmetry of forward–backward flow induced by equal

positive–negative charge distributions is broken by the superposition of a wavy wall. The net

flow can be in a direction as if it were uniformly negatively charged even when the average

wall charge is positive, and vice versa. Ghosal [25] also studied EO flow in channels where the

cross-section and surface charge may vary slowly in the axial direction. These existing models

are, however, for Newtonian fluids only. The desire for extending the work to non-Newtonian

fluids has motivated the present study.

In this paper, we aim to study EO flow of a power-law fluid in a non-uniform slit mi-

crochannel with periodic axial variations of wall charge and channel height. The objective

is to develop a model that enables us to examine the effects due to the power-law rheology

on the interaction between the two wall patterns (one electrokinetic and one geometric) in

controlling the flow through the channel. The flow is intrinsically two dimensional, and hence

the analytical approach mentioned above will no longer be applicable. We shall neverthe-
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less simplify the present model by means of the lubrication approximation, by which the

problem can be formulated in a quasi-one-dimensional manner, thereby avoiding solving the

momentum equations in full. The challenging part in the present problem is to determine

an unknown pressure distribution along the channel. The pressure as a function of the ax-

ial coordinate, which is internally induced so as to maintain a constant flow rate through

a channel with axial non-uniformities, has to be found numerically owing to the nonlinear

interaction between the hydrodynamic and electric forcings for a non-Newtonian fluid. This

distinguishes the present study from previous studies by the authors [26, 27], which also look

into EO flow of power-law fluid in a non-uniform channel, but are simplified by the use of

the Newtonian Helmholtz–Smoluchowski slip boundary condition on taking into account a

near-wall Newtonian depletion layer.

Our problem is defined in further detail in Sec. 2, where a mathematical formulation based

on the lubrication approximation and the Debye–Hückel approximation is presented. Highly

nonlinear equations are to be solved for the flow rate, which is a constant, and the pressure

gradient distribution, which is a periodic function of the axial coordinate. To this end, a trial-

and-error solution method is used, as described in Sec. 3. This method involves the searching

for a flow rate that leads to a pressure distribution where the net pressure change over one

wavelength is zero. For particular values of the flow behavior index n, namely equal to the

reciprocal of an integer, polynomial equations can be derived to relate the flow rate and the

local pressure gradient. When the integer is an even integer, the type of stress distribution has

to be identified on deriving these polynomial equations. The availability of these analytical

relationships will alleviate the numerical efforts involved in finding the solution. In Sec. 4,

some physical discussion is presented. We shall look into how the flow behavior index may

modify the combined effect of the wall undulation and the charge modulation on the EO

flow. We shall show that the dependence of the flow rate on the wall pattern parameters may

change with the flow behavior index, not only quantitatively, but also qualitatively.
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2 Mathematical formulation

Our problem is to consider steady electroosmotic (EO) flow of a power-law fluid through a slit

microchannel, of which the channel height as well as the wall potential may vary gradually and

periodically in the streamwise direction. Figure 1 shows a definition sketch of the problem,

where (x, y) are the axial and transverse coordinates, and the x-axis is along the centerline of

the channel. For simplicity, only flow that is symmetrical about the x-axis is considered: the

upper/lower walls are at y = ±h(x) and the wall potential at either wall is given by ζ = ζ(x),

both being periodic functions of x with the same wavelength L. The wavelength L, which

is the length scale for variations of velocity in the axial direction, is assumed to be much

longer than the mean channel height: L � h0. With this sharp contrast in length scales,

we further assume that the Reynolds number of the flow is so small that the lubrication

approximation [28, 29] can be applied here. The flow is therefore nearly one dimensional:

the axial velocity u is an order of magnitude larger than the transverse velocity v. Also, the

inertia of the flow can be ignored, and the change of u in the x-direction is much milder than

that in the y-direction.

In this work, the near-wall Newtonian depletion layer is assumed to be so thin that it

is completely covered by the EDL, and therefore its effect on the bulk flow can be ignored.

This will be valid when the thickness of the depletion layer, which is approximately the

radius of gyration of the molecules making up the nonlinear rheology, is of the order of

nanometers [30], while the thickness of the EDL, which depends on the bulk ion concentration,

is of the order of hundreds of nanometers. On ignoring the depletion layer, the fluid is taken

to be homogeneously non-Newtonian throughout the flow domain. The rheological behavior

exhibited by a power-law fluid under simple shear is as follows:

τ = µ

∣

∣

∣

∣

∣

du

dy

∣

∣

∣

∣

∣

n−1
du

dy
=











µ
(

du
dy

)n
for du

dy
> 0

−µ
(

−du
dy

)n
for du

dy
< 0

, (1)

where τ is the shear stress, µ is the flow consistency, and n is the power-law or flow behavior

index of the fluid. The shear-thinning, Newtonian, and shear-thickening behaviors are exhib-

ited when n < 1, = 1, > 1, respectively. On rearranging the terms, the equation above can
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be written as

du

dy
= µ−

1

n |τ |
1

n
−1 τ =











(

τ
µ

)
1

n for τ > 0

−
(

− τ
µ

)
1

n for τ < 0
. (2)

Ignoring gravity, the Cauchy momentum equation for the fluid flow under the lubrication

approximation [26] is

Px +
∂τ

∂y
+ ρeEx = 0, (3)

where Px = −dp/dx is the pressure gradient, ρe(y) is the free charge density in the electric

double layer (EDL) of the channel wall, and Ex is the applied axial electric field. Here, Ex =

constant is an externally applied electric field, while Px = Px(x) is an internally induced

pressure gradient. The pressure gradient, as a hydrodynamic forcing, is triggered by the need

to maintain a constant mass flux through the channel with axially varying channel height

and wall potential distribution. By symmetry about the centerline (y = 0), it suffices for us

to consider, from here onward, flow in the upper half of the channel: 0 ≤ y ≤ h(x).

The electric potential ψ(y), measured relative to the bulk solution phase, where ψ is zero,

is related to the charge density ρe by the Poisson equation:

d2ψ

dy2
= −

ρe

ε
, (4)

where ε is the dielectric permittivity of the liquid electrolyte.

With Eq. (4), Eq. (3) can be integrated to give the stress distribution

τ = −Pxy + εEx
dψ

dy
, (5)

where the symmetry conditions, τ = 0 and dψ/dy = 0 at y = 0, have been used.

For the flow considered in our problem, the ionic flux ji of every species due to electrical

forces, fluid convection and Brownian diffusion in the y-direction is given by the Nernst–

Planck relationship [31] as follows:

ji = −Di
dni

dy
−
zieniDi

kBT

dψ

dy
, (6)

where Di is the diffusion coefficient, ni is the ion distribution, z is the valency, e is the

fundamental charge, kB is Boltzmann’s constant, and T is the absolute temperature. The
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equation obtained above neglects convective transport (based on the assumption of a very

small ionic Péclet number) as there is virtually no flow in the transverse direction. As channel

walls are impermeable, there is no ionic flux such that ji ≡ 0, which gives the Boltzmann

distribution:

ni(y) = ni,∞ exp

(

−
zieψ

kBT

)

, (7)

where ni,∞ is the bulk concentration for the species i. Considering a symmetric (z : z)

electrolyte solution for simplicity, it holds that z+ = −z− = z and n+∞ = n−∞ = n∞. Given

that ρe = e
∑

i zini, the electric charge density can be further written as

ρe = −2zen∞ sinh

(

zeψ

kBT

)

. (8)

Putting Eq. (8) into Eq. (4) will form the well-known Poisson–Boltzmann equation. On

further assuming small potentials, zeψ/kBT � 1, the Poisson–Boltzmann equation can be

linearized to
d2ψ

dy2
= κ2ψ, (9)

where κ = (2z2e2n∞/εkBT )1/2 is termed the Debye parameter, the inverse of which is the

Debye shielding length of the EDL. The linearization of the Poisson–Boltzmann equation is

also known as the Debye–Hückel approximation.

Under the assumption that the EDL is much thinner than the channel height, i.e., κh� 1,

the boundary conditions for Eq. (9) can be stated as follows:

ψ = ζ at ȳ = 0, (10)

dψ

dȳ
= 0 at ȳ � 1, (11)

where ȳ = κ(h − y) is a stretched coordinate, and ζ = ζ(x) is the wall zeta potential.

Equations (9)–(11) have the following solution for the potential distribution:

ψ(ȳ) = ζe−ȳ or ψ(y) = ζe−κ(h−y). (12)

Owing to the exponential decay, the electric potential and its gradient are essentially zero

in the core of the channel. Substituting the expression above for ψ in Eq. (5), we now obtain

the stress distribution as

τ = −Pxy + εκExζe
−κ(h−y) in 0 ≤ y ≤ h(x), (13)
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To facilitate discussion, let us introduce the following normalized variables (distinguished

by an overhead caret):

x̂ = x/L,
(

ŷ, ĥ
)

= (y, h)/h0, û = u/u0,

κ̂ = κh0, ζ̂ = ζ/ζ0, (τ̂ , P̂x) = (τ, Pxh0)/τ0,











(14)

where h0 is half the average height of the channel, ζ0 is a characteristic value of the wall

potential, and u0 and τ0 are scalings for the axial velocity and shear stress given by

u0 =
n

κ

(

τ0
µ

)
1

n

, (15)

τ0 = −εκζ0Ex > 0. (16)

To generate flow in the positive x-direction, ζ0 and Ex must be of opposite signs, and hence

τ0 has to be a positive quantity. One may recognize that u0 is the generalized Smoluchowski

velocity for a power-law fluid, as was first derived by Zhao et al. [9].

In terms of the normalized variables, the stress distribution given in Eq. (13) becomes

τ̂ = −P̂xŷ − ζ̂e−κ̂(ĥ−ŷ) in 0 ≤ ŷ ≤ ĥ(x̂), (17)

while the power-law constitutive equation given in Eq. (2) becomes

dû

dŷ
=
κ̂

n
|τ̂ |

1

n
−1
τ̂ . (18)

The integration of the equation above, on using the no-slip condition at the wall û(ŷ = ĥ) = 0,

gives the velocity

û = −
κ̂

n

∫ ĥ

ŷ
|τ̂ |

1

n
−1 τ̂dŷ, (19)

where τ̂ is given by Eq. (17). The non-dimensional volume flow rate through the channel is

then given by

q̂ = −
κ̂

n

∫ ĥ

0

∫ ĥ

ŷ
|τ̂ |

1

n
−1 τ̂dŷdŷ, (20)

where q̂ is the flow rate normalized by 2u0h0. By continuity, q̂ is independent of the axial

coordinate x̂. Another condition is obtainable from the periodicity of the flow. In the absence

of applied pressure forcing, the net change in pressure over one wavelength of the channel is

zero. Therefore,

〈P̂x〉 ≡
∫ 1

0
P̂xdx̂ = p̂(0) − p̂(1) = 0, (21)

where the angle brackets denote axial averaging over one wavelength of the channel.

8



3 Solution methods

For given n, κ̂, ĥ(x̂) and ζ̂(x̂), the problem is solved when q̂ and P̂x(x̂) are found such that

Eqs. (20) and (21) are satisfied. For a general value of the power-law index n, this is a highly

nonlinear problem that can be solved numerically by a method of trial-and-error as follows.

First, the domain 0 ≤ x̂ ≤ 1 is subdivided into equal parts by a number of points x̂i. Second,

with a trial value of q̂, the pressure gradient at each point P̂x(x̂i) is then found from Eq.

(20). Third, with the obtained values of P̂x(x̂i), the pressure gradient over the domain is

numerically integrated to determine the error on satisfying Eq. (21). The error will then

inform the next trial value of q̂. These steps will be repeated until the error, which amounts

to a non-zero pressure difference in one wavelength, becomes sufficiently small. Since Eq.

(20) is nonlinear and involves a double integral, the finding of P̂x at each point also needs

some tedious trial-and-error computations. The searching of a solution satisfying Eqs. (20)

and (21) is in general time consuming. It may take a few hours of computer time to generate

one solution.

For some particular values of n, namely when n equals the reciprocal of an integer, the

problem can be solved much more easily. The cases for several such special values of n are

discussed below.

3.1 For n = 1 (Newtonian)

The problem can be solved analytically when n = 1. For this Newtonian limit, the velocity

profile is

ûn=1 =
κ̂P̂x

2

(

ĥ2 − ŷ2
)

+ ζ̂
[

1 − e−κ̂(ĥ−ŷ)
]

, (22)

the integration of which gives the flow rate

q̂n=1 =
κĥ3

3
P̂x + ζ̂

(

ĥ−
1

κ̂

)

. (23)

Rearranging terms, the pressure gradient is

P̂x =
3

κ̂ĥ3

(

q̂n=1 − ζ̂ĥ+ κ̂−1ζ̂
)

. (24)
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On applying Eq. (21), the flow rate is found to be

q̂n=1 =
〈ζ̂ĥ−2〉

〈ĥ−3〉
−

〈ζ̂ĥ−3〉

κ̂〈ĥ−3〉
, (25)

where the angle brackets denote averaging over one wavelength.

3.2 For n = 1/3, 1/5, · · ·

When n is the reciprocal of an odd integer, 1/n − 1 becomes an even integer, and hence

|τ̂ |1/n−1τ̂ = τ̂ 1/n irrespective of the sign of τ̂ . The integrals in Eq. (20) can then be performed

without the need to differentiate between various cases of stress distribution. Using the stress

distribution τ̂(ŷ) given in Eq. (17), the flow rate as a function of the pressure gradient for

n = 1/3 and n = 1/5 are obtainable from Eq. (20) as below:

q̂n=1/3 = −3κ̂
∫ ĥ
0

∫ ĥ
ŷ τ̂

3dŷdŷ

=

(

3κ̂ĥ5

5

)

P̂ 3
x +

9ζ̂

κ̂3

(

κ̂3ĥ3 − 3κ̂2ĥ2 + 6κ̂ĥ − 6
)

P̂ 2
x

+
9ζ̂2

4κ̂2

(

2κ̂2ĥ2 − 2κ̂ĥ+ 1
)

P̂x +
ζ̂

3κ̂

(

3κ̂ĥ − 1
)

, (26)

which is a cubic polynomial function of P̂x, and

q̂n=1/5 = −5κ̂
∫ ĥ
0

∫ ĥ
ŷ τ̂

5dŷdŷ

=

(

5κ̂ĥ7

7

)

P̂ 5
x +

25ζ̂

κ̂5

(

κ̂5ĥ5 − 5κ̂4ĥ4 + 20κ̂3ĥ3 − 60κ̂2ĥ2 + 120κ̂ĥ − 120
)

P̂ 4
x

+
25ζ̂2

2κ̂4

(

2κ̂4ĥ4 − 4κ̂3ĥ3 + 6κ̂2ĥ2 − 6κ̂ĥ+ 3
)

P̂ 3
x

+
50ζ̂3

27κ̂3

(

9κ̂3ĥ3 − 9κ̂2ĥ2 + 6κ̂ĥ− 2
)

P̂ 2
x

+
25ζ̂4

32κ̂2

(

8κ̂2ĥ2 − 4κ̂ĥ+ 1
)

P̂x +
ζ̂5

5κ̂

(

5κ̂ĥ− 1
)

, (27)

which is a quintic polynomial function of P̂x. The availability of these analytical relationships

will greatly expedite finding the values of the pressure gradient distribution P̂x(x̂i) for a given

q̂. As a result, the solution seeking by trial-and-error can be accomplished more quickly.

Thanks to the condition κ̂� 1, Eqs. (26) and (27) should admit only one real root, thereby

avoiding ambiguity in solving these equations for P̂x.
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3.3 For n = 1/2, 1/4, · · ·

When n is the reciprocal of an even integer, 1/n − 1 is an odd integer, and due regard

must be paid to the sign of τ̂ on performing the integrals in Eq. (20). At any cross section

x̂ = x̂i, the shear stress distribution across the channel expressed by Eq. (17) is determined by

three parameters: P̂x(x̂i), ĥ(x̂i) and ζ̂(x̂i). Different combinations of these parameters may

lead to different shear stress distributions, where the stress can be positive, zero or negative

at different positions across the section. As shown in Fig. 2 and detailed in Table 1, six

possible cases of local stress distribution τ̂(ŷ) as well as the corresponding ranges of the three

parameters can be identified. For Cases 1 and 6, the stress is positive for ŷ > 0, and the flow

rate is always negative. The opposite is true for Cases 3 and 4. In these four cases, the flow

rate is zero if and only if both P̂x and ζ̂ are zero. For Cases 2 and 5, the stress near the wall

is opposite in sign to that far from the wall, and the flow rate can be positive or negative.

Hence, in these two cases, the flow rate can be zero even when P̂x and ζ̂ are non-zero. The

height ŷ = ŷ0 at which the stress is zero is given by

ŷ0 = ĥ + κ̂−1 ln
(

−P̂xŷ0/ζ̂
)

, (28)

which can be solved by iteration with an initial value of ŷ0 = ĥ.

For n = 1/2, the equations governing q̂ as a function of the pressure gradient P̂x for the

six cases are obtainable from Eqs. (17) and (20) as follows:

q̂
(1,6)
n=1/2 = −2κ̂

∫ ĥ
0

∫ ĥ
ŷ τ̂

2dŷdŷ

=

(

−
κ̂ĥ4

2

)

P̂ 2
x −

4ζ̂

κ̂2

(

κ̂2ĥ2 − 2κ̂ĥ+ 2
)

P̂x −
ζ̂2

2κ̂

(

2κ̂ĥ− 1
)

for Cases 1 and 6, (29)

q̂
(2)
n=1/2 = −2κ̂

{

∫ ŷ0

0

[

∫ ŷ0

ŷ (−τ̂ 2) dŷ +
∫ ĥ
ŷ0
τ̂ 2dŷ

]

dŷ +
∫ ĥ
ŷ0

∫ ĥ
ŷ τ̂

2dŷdŷ
}

=

(

k̂ŷ4
0 − 6ŷ3

0 +
15ŷ2

0

κ̂
−

16ŷ0

κ̂2
−
κ̂ĥ4

2

)

P̂ 2
x

−
4ζ̂

κ̂2

(

κ̂2ĥ2 − 2κ̂ĥ+ 2
)

P̂x −
ζ̂2

2κ̂

(

2κ̂ĥ− 1
)

for Case 2, (30)

q̂
(3,4)
n=1/2 = 2κ̂

∫ ĥ
0

∫ ĥ
ŷ τ̂

2dŷdŷ
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Table 1: Six possible cases of local stress distribution τ̂ (0 ≤ ŷ ≤ ĥ), and the corresponding

flow rate q̂, as determined by the local values of wall potential ζ(x̂), channel height ĥ(x̂) and

pressure gradient P̂x(x̂). See Fig. 2 for these six types of stress profiles.

Case ζ̂ P̂x τ̂ q̂

1 ≤ 0 ≤ 0 ≥ 0 ≤ q̂(1) at P̂x = 0

2 < 0











> 0

< −ζ̂/ĥ











> 0 ŷ0 < ŷ ≤ ĥ

< 0 0 ≤ ŷ < ŷ0











> q̂(1) at P̂x = 0

< q̂(3) at P̂x = −ζ̂/ĥ

3 < 0 ≥ −ζ̂/ĥ < 0 ≥ q̂(3) at P̂x = −ζ̂/ĥ

4 ≥ 0 ≥ 0 ≤ 0 ≥ q̂(4) at P̂x = 0

5 > 0











< 0

> −ζ̂/ĥ











< 0 ŷ0 < ŷ ≤ ĥ

> 0 0 ≤ ŷ < ŷ0











< q̂(4) at P̂x = 0

> q̂(6) at P̂x = −ζ̂/ĥ

6 > 0 ≤ −ζ̂/ĥ > 0 ≤ q̂(6) at P̂x = −ζ̂/ĥ

=

(

κ̂ĥ4

2

)

P̂ 2
x +

4ζ̂

κ̂2

(

κ̂2ĥ2 − 2κ̂ĥ+ 2
)

P̂x +
ζ̂2

2κ̂

(

2κ̂ĥ− 1
)

for Cases 3 and 4, (31)

q̂
(5)
n=1/2 = −2κ̂

{

∫ ŷ0

0

[

∫ ŷ0

ŷ τ̂ 2dŷ +
∫ ĥ
ŷ0

(−τ̂ 2) dŷ
]

dŷ +
∫ ĥ
ŷ0

∫ ĥ
ŷ (−τ̂ 2) dŷdŷ

}

= −

(

k̂ŷ4
0 − 6ŷ3

0 +
15ŷ2

0

κ̂
−

16ŷ0

κ̂2
−
κ̂ĥ4

2

)

P̂ 2
x

+
4ζ̂

κ̂2

(

κ̂2ĥ2 − 2κ̂ĥ+ 2
)

P̂x +
ζ̂2

2κ̂

(

2κ̂ĥ− 1
)

for Case 5. (32)

All these are quadratic polynomial functions of P̂x.

For n = 1/4, the equations for q̂ for the six cases are obtained in a similar manner as

follows:

q̂
(1,6)
n=1/4 = −4κ̂

∫ ĥ
0

∫ ĥ
ŷ τ̂

4dŷdŷ

=

(

−
2κ̂ĥ6

3

)

P̂ 4
x −

16ζ̂

κ̂4

(

κ̂4ĥ4 − 4κ̂3ĥ3 + 12κ̂2ĥ2 − 24κ̂ĥ+ 24
)

P̂ 3
x

−
3ζ̂2

κ̂3

(

4κ̂3ĥ3 − 6κ̂2ĥ2 + 6κ̂ĥ − 9
)

P̂ 2
x −

16ζ̂3

27κ̂2

(

9κ̂2ĥ2 − 6κ̂ĥ+ 2
)

P̂x

12



−
ζ̂4

4κ̂

(

4κ̂ĥ− 1
)

for Cases 1 and 6, (33)

q̂
(2)
n=1/4 = −4κ̂

{

∫ ŷ0

0

[

∫ ŷ0

ŷ (−τ̂ 4) dŷ +
∫ ĥ
ŷ0
τ̂ 4dŷ

]

dŷ +
∫ ĥ
ŷ0

∫ ĥ
ŷ τ̂

4dŷdŷ
}

=

(

4κ̂ŷ6
0

3
−

50ŷ5
0

3
+

1775ŷ4
0

18κ̂
−

9460ŷ3
0

27κ̂2
+

750ŷ2
0

κ̂3
−

768ŷ0

κ̂4
−

2κ̂ĥ6

3

)

P̂ 4
x

−
16ζ̂

κ̂4

(

κ̂4ĥ4 − 4κ̂3ĥ3 + 12κ̂2ĥ2 − 24κ̂ĥ+ 24
)

P̂ 3
x

−
3ζ̂2

κ̂3

(

4κ̂3ĥ3 − 6κ̂2ĥ2 + 6κ̂ĥ − 9
)

P̂ 2
x −

16ζ̂3

27κ̂2

(

9κ̂2ĥ2 − 6κ̂ĥ+ 2
)

P̂x

−
ζ̂4

4κ̂

(

4κ̂ĥ− 1
)

for Case 2, (34)

q̂
(3,4)
n=1/4 = 4κ̂

∫ ĥ
0

∫ ĥ
ŷ τ̂

4dŷdŷ

=

(

2κ̂ĥ6

3

)

P̂ 4
x +

16ζ̂

κ̂4

(

κ̂4ĥ4 − 4κ̂3ĥ3 + 12κ̂2ĥ2 − 24κ̂ĥ + 24
)

P̂ 3
x

+
3ζ̂2

κ̂3

(

4κ̂3ĥ3 − 6κ̂2ĥ2 + 6κ̂ĥ − 9
)

P̂ 2
x +

16ζ̂3

27κ̂2

(

9κ̂2ĥ2 − 6κ̂ĥ+ 2
)

P̂x

+
ζ̂4

4κ̂

(

4κ̂ĥ− 1
)

for Cases 3 and 4, (35)

q̂
(5)
n=1/4 = −4κ̂

{

∫ ŷ0

0

[

∫ ŷ0

ŷ τ̂ 4dŷ +
∫ ĥ
ŷ0

(−τ̂ 4) dŷ
]

dŷ +
∫ ĥ
ŷ0

∫ ĥ
ŷ (−τ̂ 4) dŷdŷ

}

=

(

−
4κ̂ŷ6

0

3
−

50ŷ5
0

3
+

1775ŷ4
0

18κ̂
−

9460ŷ3
0

27κ̂2
+

750ŷ2
0

κ̂3
−

768ŷ0

κ̂4
−

2κ̂ĥ6

3

)

P̂ 4
x

+
16ζ̂

κ̂4

(

κ̂4ĥ4 − 4κ̂3ĥ3 + 12κ̂2ĥ2 − 24κ̂ĥ+ 24
)

P̂ 3
x

+
3ζ̂2

κ̂3

(

4κ̂3ĥ3 − 6κ̂2ĥ2 + 6κ̂ĥ − 9
)

P̂ 2
x +

16ζ̂3

27κ̂2

(

9κ̂2ĥ2 − 6κ̂ĥ+ 2
)

P̂x

+
ζ̂4

4κ̂

(

4κ̂ĥ− 1
)

for Case 5. (36)

All these are quartic polynomial functions of P̂x.

As ζ̂ and ĥ are functions of x̂, the stress distribution may vary among the six possible

cases over one wavelength of the channel. In other words, for a fixed flow rate q̂, the stress

distribution may change with axial position from one type of distribution to another, depend-

ing on the local values of ĥ and ζ̂. It is necessary, as part of the solution, to determine the

stress distribution type before the pressure gradient can be determined at an axial position.

13



To this end, use can be made of the ranges of the flow rate given in the last column of Table

1. At each of the discrete points 0 ≤ x̂i ≤ 1, one first finds out locally which range of flow

rate the trial value of q̂ falls into. Then, the corresponding equation is selected to be solved

for P̂x. The second- or fourth-order polynomial equations have multiple roots, but one should

choose the root that is within the range given in the third column of Table 1. These steps

are repeated until a value of q̂ is found such that the error of satisfying Eq. (21) is suffi-

ciently small. Our classification of stress distribution described above will greatly expedite

the seeking of the solution for n = 1/2, 1/4.

4 Discussion

Let us introduce the following sinusoidal functions for the wall potential and the channel

height:

ζ̂(x̂) = α + β cos(2πx̂), (37)

ĥ(x̂) = 1 + γ cos(2πx̂+ φ), (38)

where α is the mean wall potential, β and γ are the amplitudes of the wall potential and wall

shape modulation, respectively, and φ is a phase shift between the two modulation patterns.

These idealized monochromatic waveforms for the geometric and electrokinetic modulation

will serve to provide results indicative of the physics involved in the problem. Without loss

of generality, only non-negative α and β are considered.

In the limiting case of a strictly uniform channel (i.e., flat walls and uniform wall potential

distribution), the induced pressure gradient is identically zero P̂x = 0, and the stress reduces

to τ̂ = −αe−κ̂(ĥ−ŷ), by which Eq. (20) gives

q̂ = α1/n
(

1 − nκ̂−1
)

for β = γ = 0. (39)

A more general expression for the flow rate in a uniform channel, which is applicable to any

κ̂, has been deduced previously by Zhao et al. [9]. Using the present normalization, their

expression reads as follows:

q̂ = α1/n

[(

1 − n
κ̂

)

eκ̂/n + n−1
κ̂
e1/n

]

+ 2
κ̂(1+2n)

21/n cosh1/n(κ̂)
. (40)
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One can check that, for a very thin EDL (κ̂� 1), the above expression for the flow rate will

reduce to ours given in Eq. (39).

Furthermore, with ζ̂ and ĥ now specifically given by Eqs. (37) and (38), the flow rate for

the Newtonian limit given in Eq. (25) can be evaluated to be

q̂n=1 =
2 (1 − γ2) (α − βγ cos φ)

2 + γ2
−

1

κ̂

(

α−
3βγ cos φ

2 + γ2

)

, (41)

which reduces to the following Newtonian limit of Eq. (39) for a channel of flat walls (i.e.,

γ = 0) and any β:

q̂n=1 = α
(

1 − κ̂−1
)

for γ = 0. (42)

Obviously, the wall undulation interacts with the wall potential modulation through the term

−βγ cos φ in the Newtonian limit (n = 1). When either γ or cosφ is zero, the wall potential

modulation (β) will have no effect on the flow rate. Whether this statement remains true

for non-Newtonian fluid (n 6= 1) is yet to be determined. We shall examine the effect as a

function of n arising from the interaction between β and γ with our numerical discussion

below. The computation requires 6 input parameters: n, α, β, γ, φ and κ. Matlab programs

were developed to perform the numerical solution seeking by the trial-and-error method

described above. Simpson’s formula is chosen to evaluate the definite integrals in Eqs. (20)

and (21). In all the numerical examples presented below, the following specific parameter

values are considered: n = 1/5, 1/2, 1, 2, and κ̂ = 100.

Let us first look into how the flow rate may be affected by the phase shift φ, as is shown

in Fig. 3. Even when the walls are on average electro-neutral (i.e., α = 0, or zero mean wall

potential), a non-zero net flow, positive or negative, can be generated by varying the phase

shift between the wall shape and wall potential patterns. Figure 3(a) shows that the flow

rate is negative, zero, and positive for 0 ≤ φ < π/2, φ = π/2, and π/2 < φ ≤ π, respectively.

Such dependence on φ holds for all values of n. The flow rate is the maximum negative

when φ = 0, and is the maximum positive when φ = π. These phases correspond to the

cases where the maximum negative/positive wall potential is at the narrowest section of the

channel. This correlation between q̂ and φ accords with the well-known fact that, for flow

through an axially non-uniform channel, the flow is rate-limited by the conditions prevailing

at the narrowest part of the channel. An analytical evidence can be sought by referring to
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the Newtonian case. From Eq. (41),

q̂n=1 = −
βγ cos φ

2 + γ2

[

2
(

1 − γ2
)

−
3

κ̂

]

for α = 0, (43)

which shows that, for n = 1, the flow rate is the maximum negative, zero, and maximum

positive at φ = 0, π/2, π, respectively, when α = 0, β > 0, γ > 0. Our numerical results

suggest that this statement remains true for n 6= 1. One can say that, under the condition

α = 0, q̂ is an odd function of φ− π/2 for any n.

The effect of the phase shift on the flow can be very different when α 6= 0. Figure 3(b)

shows the case where α = 1. In this case, there is a net flow even when the wall potential is

zero at the narrowest section of the channel, which happens when φ = 0. Except for n = 1,

the flow rate now varies with the phase shift such that q̂− q̂|φ=π/2 is no longer an odd function

of φ − π/2. It is remarkable that the flow rate can increase much more dramatically as the

phase shift increases toward π for smaller n. The ratio of q̂|φ=π to q̂|φ=0 is equal to 2.32, 2.98,

5.39, 34.7 for n = 2, 1, 0.5, 0.2, respectively. Hence, in the presence of a non-zero mean wall

potential, the EO flow of a fluid of a smaller power-law index will be more sensitively affected

by the phase shift between the wall patterns.

We next show in Fig. 4 how the flow rate may be affected by the wall undulation amplitude

γ, where the phase shift φ = 0 for γ < 0 is equivalent to φ = π for γ > 0. First, when α = 1

and β = 0 (i.e., uniform wall potential), the flow rate will decrease monotonically as the

wall undulation increases in amplitude; see Fig. 4(a). This is expected since the resistance

to flow increases as the narrowest section becomes narrower. The figure reveals that a shear-

thinning fluid is less susceptible than a shear-thickening fluid to this decreasing effect due

to increasing |γ| on the flow rate. Second, when α = 0 and β = 1 (i.e., zero mean wall

potential), the flow rate is an odd function of γ, and varies non-monotonically with γ; see

Fig. 4(b). In the absence of wall undulation (γ = 0, or flat walls), the net flow rate is always

zero for any n. The non-monotonic variation of q̂ with γ arises from two competing effects.

As γ increases in magnitude, the area of the narrowest section decreases (thereby decreasing

the flow as explained above), but on the other hand there is a stronger interaction between

the wall undulation and the wall potential modulation (thereby enhancing the flow, whether

positive or negative). The optimum value of γ, for which the flow rate is the maximum
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in magnitude, is larger for smaller n. Third, when α = 1 and β = 1, the flow rate also

varies non-monotonically with γ, but q̂ − q̂|γ=0 is no longer an odd function of γ; see Fig.

4(c). Again, it is seen that the flow rate can increase more dramatically as γ approaches the

optimum value for smaller n. The ratio of q̂max to q̂|γ=0 is equal to 1.07, 1.13, 1.34, 2.92 for

n = 2, 1, 0.5, 0.2, respectively. This implies that, for a wall potential with non-zero mean

and modulation components, the EO flow of a fluid of a smaller power-law index will be more

sensitively affected by the amplitude of the wall undulation.

As has been remarked earlier, in the Newtonian case (n = 1), the wall potential modu-

lation β will have no effect on the flow rate when either γ or cos φ is zero. This statement

can be extended to the non-Newtonian cases (n 6= 1) only when α = 0. For α 6= 0, this

trait of independence of β is no longer applicable to n 6= 1. As is shown in Fig. 5, where

α = 1, the flow rate will increase, keep constant, or decrease as β increases, depending on

n < 1, n = 1, or n > 1, respectively. These distinguishing behaviors are exhibited when

either γ = 0 (Fig. 5(a)) or cosφ = 0 (Fig. 5(b)). Results shown in this figure are also in

sharp contrast to what was found in a previous study [26]: with a Newtonian depletion layer,

the wall potential modulation will not have any effect on the flow rate, for any n, when there

is no applied pressure forcing. Here, it is seen that in the absence of a depletion layer, the

wall potential modulation will have finite effect on the flow rate for n 6= 1 and α 6= 0. One

can readily reason that, for n 6= 1, a sinusoidal wall potential distribution of a mean α 6= 0

will not generate a flow rate equal to that resulting from a uniform wall potential of α. This

is simply due to the nonlinear stress–shear rate relationship for n 6= 1. As β increases, the

wall stress increases in the region near the peak wall potential, which for a shear-thinning

fluid (n < 1) means a decreased effective viscosity and hence leads to an overall increased

flow. The opposite is true for a shear-thickening fluid (n > 1). One may make use of these

distinguishing behaviors to determine, based on experimental observations, whether a fluid

under investigation is shear-thinning, shear-thickening, or Newtonian.

Finally, we show in Fig. 6, for an example case, the stress distribution τ̂ (x̂, ŷ), and the

corresponding flow pattern and pressure gradient P̂x(x̂) in one periodic domain of the channel,

where n = 0.5, α = 0.1, β = γ = 0.5, and φ = π. In this example case, the stress type varies

from Cases 2 through 5 over one period of the wall pattern. The shear stress has a sharp
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gradient in the near-wall EDL, where the electric forcing is effective. Outside the EDL, the

stress has a linear cross-sectional profile, which is characteristic of a pressure-driven flow.

To maintain continuity of flow, the pressure gradient P̂x is negative (i.e., adverse pressure

gradient) near the region where the electric forcing is the positive maximum, but is positive

(i.e, favorable pressure gradient) near the region where the electric forcing is the negative

maximum. The negative wall potential results in a recirculation zone near the wall in the

bulging part of the channel.

5 Concluding remarks

A numerical method has been developed to solve the problem of nearly one-dimensional

electroosmotic flow of a power-law fluid through a slit microchannel with gradually varying

channel height and wall potential. The method involves the searching for a flow rate that will

give rise to an axial pressure distribution with zero pressure difference over one wavelength.

For a general flow behavior index n, the trial-and-error solution seeking can be tedious and

time-consuming. For n equal to the reciprocal of an integer, the solution searching can be

accomplished more easily as polynomial equations can be deduced to relate the flow rate

and the local pressure gradient. When n is the reciprocal of an even integer, we also need

to distinguish between the various types of the stress distribution as controlled by the local

pressure gradient, wall height and wall potential.

We have shown that, for a given non-zero wall potential modulation (β), there exist an

optimum value of the wall undulation amplitude (γ) for which the flow rate is the maximum,

where the flow rate is more sensitively affected by the mean wall potential (α) for smaller n.

We have also shown that, when the mean wall potential is non-zero, the flow behavior index

will have qualitatively different effects on how the wall potential modulation may interact with

the wall undulation in driving the flow. For n = 1 (i.e., Newtonian fluid), the wall potential

modulation will have no effect on the flow rate when either the walls are flat (γ = 0) or

the two wall patterns are at a phase shift of φ = π/2. This statement can be extended

to n 6= 1 only if the mean wall potential is zero. Under a positive mean wall potential,

increasing the amplitude of the wall potential modulation may increase or decrease the flow
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rate, depending on n < 1 or n > 1, respectively. Such a distinguishing behavior can be

utilized to verify whether a fluid under investigation is shear-thinning or not. This finding

has not been reported in the literature before.
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Figure captions

Figure 1 Electroosmotic flow of a power-law fluid through a slit microchannel with undu-

lating and non-uniformly charged walls, where (x, y) are the axial and transverse coordinates.

The wall shape y = h(x) and the wall potential ζ = ζ(x) are periodic functions of x with a

wavelength L, which is much longer than half the average channel height h0.

Figure 2 Six possible cases of stress distributions τ̂ (ŷ) for 0 ≤ ŷ ≤ ĥ(x̂), depending on

the local values of pressure gradient P̂x(x̂), channel height ĥ(x̂), and wall potential ζ̂(x̂). See

Table 1 for the ranges of ζ̂(x̂) and P̂x(x̂) corresponding to these six cases.

Figure 3 Flow rate q̂ as a function of the phase shift φ, for (a) α = 0, β = 1, γ = 0.5;

(b) α = 1, β = 1, γ = 0.5.

Figure 4 Flow rate q̂ as a function of the amplitude of the wall undulation γ, for (a)

α = 1, β = 0, φ = 0; (b) α = 0, β = 1, φ = 0; (c) α = 1, β = 1, φ = 0.

Figure 5 Flow rate q̂ as a function of the amplitude of the wall potential modulation β,

for (a) α = 1, γ = 0; (b) α = 1, γ = 0.5, φ = π/2.

Figure 6 In one wavelength of the channel, 0 ≤ x̂ ≤ 1, 0 ≤ ŷ ≤ ĥ(x̂), (a) stress

distribution τ̂ (x̂, ŷ), which varies among different cases in different regions as indicated; (b)

streamlines; (c) pressure gradient distribution P̂x(x̂), for n = 0.5, α = 0.1, β = 0.5, γ = 0.5,

and φ = π.
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Figure 1: Electroosmotic flow of a power-law fluid through a slit microchannel with undulating

and non-uniformly charged walls, where (x, y) are the axial and transverse coordinates. The

wall shape y = h(x) and the wall potential ζ = ζ(x) are periodic functions of x with a

wavelength L, which is much longer than half the average channel height h0.
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ŷ
0

^    ^y = h

τ̂

Case 2 Case 5

0

ŷ

Figure 2: Six possible cases of stress distributions τ̂(ŷ) for 0 ≤ ŷ ≤ ĥ(x̂), depending on the

local values of pressure gradient P̂x(x̂), channel height ĥ(x̂), and wall potential ζ̂(x̂). See

Table 1 for the ranges of ζ̂(x̂) and P̂x(x̂) corresponding to these six cases.
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Figure 3: Flow rate q̂ as a function of the phase shift φ, for (a) α = 0, β = 1, γ = 0.5; (b)

α = 1, β = 1, γ = 0.5.
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Figure 4: Flow rate q̂ as a function of the amplitude of the wall undulation γ, for (a) α = 1,

β = 0, φ = 0; (b) α = 0, β = 1, φ = 0; (c) α = 1, β = 1, φ = 0.
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Figure 5: Flow rate q̂ as a function of the amplitude of the wall potential modulation β, for

(a) α = 1, γ = 0; (b) α = 1, γ = 0.5, φ = π/2.
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Figure 6: In one wavelength of the channel, 0 ≤ x̂ ≤ 1, 0 ≤ ŷ ≤ ĥ(x̂), (a) stress distribution

τ̂ (x̂, ŷ), which varies among different cases in different regions as indicated; (b) streamlines;

(c) pressure gradient distribution P̂x(x̂), for n = 0.5, α = 0.1, β = 0.5, γ = 0.5, and φ = π.
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