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SUMMARY 57 

The source of the SARS epidemic was traced to wildlife market civets and ultimately to bats. 58 

Subsequent hunting for novel coronaviruses (CoVs) led to the discovery of two additional human 59 

and over 40 animal CoVs, including the prototype lineage C betacoronaviruses, Tylonycteris bat 60 

CoV HKU4 and Pipistrellus bat CoV HKU5, which are phylogenetically closely related to the 61 

Middle East respiratory syndrome coronavirus that has affected >900 patients with >35% fatality 62 

since its emergence in 2012. All primary cases of MERS are epidemiologically linked to the 63 

Middle East. Some had contacted camels which shed virus and/or had positive serology. Most 64 

secondary cases are related to healthcare-associated clusters. The disease is especially severe in 65 

elderly men with comorbidities. Clinical severity may be related to MERS-CoV’s ability to infect 66 

a broad range of cells with DPP4 expression, evade host innate immune response, and induce 67 

cytokine dysregulation. Reverse transcription-PCR on respiratory and/or extrapulmonary 68 

specimens rapidly establishes diagnosis. Supportive treatment with extracorporeal membrane 69 

oxygenation and dialysis is often required in patients with organ failure. Antivirals with potent 70 

in-vitro activities include neutralizing monoclonal antibodies, antiviral peptides, interferons, 71 

mycophenolic acid, and lopinavir. They should be evaluated in better animal models before 72 

clinical trials. Developing camel MERS-CoV vaccine and implementing appropriate infection 73 

control measures may control the expanding epidemic.  74 
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INTRODUCTION: FROM SARS TO MERS 75 

Frequent mixing of different animal species in markets in densely populated areas and human 76 

intrusions into the natural habitats of animals have facilitated the emergence of novel viruses. 77 

Examples with specific geographical origins include severe acute respiratory syndrome 78 

coronavirus (SARS-CoV) and avian influenza A/H7N9 and H5N1 in China, Nipah virus in 79 

Malaysia and Bangladesh, and Ebola and Marburg viruses in Africa (1-8). The Middle East is a 80 

region encompassing the majority of Western Asia and Egypt that contains 18 countries with 81 

various ethnic groups. It is one of the busiest politicoeconomic centers in the world with many 82 

unique religious and cultural practices such as the annual Hajj along with a reliance on camels 83 

for food, business, and travel in both rural and urban areas. These distinct regional characteristics 84 

have provided favorable conditions for new and rapidly mutating viruses to emerge. Similar to 85 

the first decade of the new millennium during which the world witnessed the devastating 86 

outbreak of SARS caused by SARS-CoV, the beginning of the second decade was plagued by the 87 

emergence of another novel CoV, Middle East respiratory syndrome coronavirus, that has caused 88 

an outbreak of severe respiratory disease in the Middle East with secondary spread to Europe, 89 

Africa, Asia, and North America since 2012 (3, 9). MERS-CoV is similar to SARS-CoV in being 90 

a CoV that is likely to have originated from animal reservoirs and crossed interspecies barriers to 91 

infect humans (1). The disease, Middle East respiratory syndrome (MERS), was initially called a 92 

“SARS-like” illness at the beginning of the epidemic as both are human CoV infections that 93 

manifest as severe lower respiratory tract infection with extrapulmonary involvement and high 94 

case-fatality rates (10, 11), whereas the other four CoVs that cause human infections, namely 95 

human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63, mainly cause 96 

mild, self-limiting upper respiratory tract infections such as the common cold (10). MERS-CoV, 97 
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like SARS-CoV, is considered by the global health community as a potential pandemic agent 98 

since person-to-person transmission occurs and effective therapeutic options are limited. 99 

However, unlike the SARS epidemic, which rapidly died off after the intermediate amplifying 100 

hosts were identified and segregated from humans by closure of wild animal markets in Southern 101 

China, the MERS epidemic has persisted for more than two years with no signs of abatement (3, 102 

12). Detailed analysis of the epidemiological, virological, and clinical aspects of MERS and 103 

SARS reveals important differences between the two diseases, and identifies unique aspects of 104 

MERS-CoV that may help to explain the evolution of the MERS epidemic. A summary of the 105 

key differences between the MERS and SARS epidemics is provided in Table 1. In this article, 106 

we review the biology of MERS-CoV in relation to its epidemiology, clinical manifestations, 107 

pathogenesis, laboratory diagnosis, therapeutic options, immunization, and infection control, and 108 

identify key research priorities that are important for the control of this evolving epidemic. 109 

  110 

TAXONOMY, NOMENCLATURE, AND GENERAL VIROLOGY 111 

MERS-CoV belongs to lineage C of the genus Betacoronavirus (βCoV) in the family 112 

Coronaviridae under the order Nidovirales (Fig. 1A). Prior to the discovery of MERS-CoV, the 113 

only known lineage C βCoVs were two bat coronaviruses that are phylogenetically closely 114 

related to MERS-CoV, namely Tylonycteris bat CoV HKU4 (Ty-BatCoV-HKU4) and Pipistrellus 115 

bat CoV HKU5 (Pi-BatCoV-HKU5) discovered in Tylonycteris pachypus and Pipistrellus 116 

abramus respectively in Hong Kong in 2006 (Fig. 1B) (13-15). MERS-CoV is the first lineage C 117 

βCoV and the sixth CoV known to cause human infection. It was designated as a novel lineage C 118 

βCoV based on the International Committee on Taxonomy of Viruses (ICTV) criteria for CoV 119 

species identification using rooted phylogeny. Calculation of pairwise evolutionary distances for 120 
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seven replicase domains showed that MERS-CoV had an amino acid sequence identity of <90% 121 

when compared to all other known CoVs at the time when MERS-CoV was discovered (16). 122 

Before the virus was formally named MERS-CoV by the Coronavirus Study Group of ICTV, it 123 

was also known by other names including “novel coronavirus”, “human coronavirus EMC”, 124 

“human betacoronavirus 2c EMC”, “human betacoronavirus 2c England-Qatar”, “human 125 

betacoronavirus 2C Jordan-N3”, and “betacoronavirus England 1”, which represented the places 126 

where the first complete viral genome was sequenced (Erasmus Medical Center, Rotterdam, the 127 

Netherlands) or where the first laboratory-confirmed cases were identified or managed (Jordan, 128 

Qatar, England) (9, 17-20). Similar to other CoVs, MERS-CoV is an enveloped positive-sense 129 

single-stranded RNA virus (16). Its single-stranded RNA genome has a size of approximately 30 130 

kb, G+C content of 41%, and contains 5’-capped, polyadenylated, polycistronic RNA (16, 20, 131 

21). The genome arrangement of 5’-replicase-structural proteins (spike-envelope-membrane-132 

nucleocapsid)-poly(A)-3’ [ie: 5’-ORF1a/b-S-E-M-N-poly(A)-3’] is similar to that of other 133 

βCoVs, and unambiguously distinguishes MERS-CoV from lineage A βCoVs, which universally 134 

contain the characteristic hemagglutinin-esterase (HE) gene (16, 20-22). Many of these genes 135 

and their encoded proteins are useful diagnostic, therapeutic, or vaccination targets (Fig. 2). 136 

There are 10 complete, functional open reading frames (ORFs) expressed from a nested set of 137 

seven subgenomic mRNAs carrying a 67-nt common leader sequence in the genome, eight 138 

transcription-regulatory sequences, and two terminal untranslated regions (16, 20, 21). The 139 

putative roles and functions of the ORFs and their encoded proteins are derived by analogy to 140 

other CoVs (Table 2). Proteolytic cleavage of the large replicase polyprotein pp1a/b encoded by 141 

the partially overlapping 5’-terminal ORF1a/b within the 5’ two-thirds of the genome produces 142 

16 putative non-structural proteins (nsp), including two viral cysteine proteases, namely nsp3 143 
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(papain-like protease) and nsp5 (chymotrypsin-like, 3C-like, or main protease), nsp12 (RNA-144 

dependent RNA polyemerase; RdRp), nsp13 (helicase), and other nsps which are likely involved 145 

in the transcription and replication of the virus (16, 20, 21). The membrane anchored trimeric S 146 

protein is a major immunogenic antigen involved in virus attachment and entry into host cell, and 147 

has an essential role in determining virus virulence, protective immunity, tissue tropism, and host 148 

range (23). The other canonical structural proteins, namely E, M, and N proteins, are encoded by 149 

ORF6, -7, and -8 respectively, and are involved in the assembly of the virion. The M protein, as 150 

well as the papain-like protease and accessory proteins 4a, 4b, and 5, exhibit in vitro interferon 151 

antagonist activities that may modulate in vivo replication efficiency and pathogenesis (24-28). 152 

 153 

VIRAL REPLICATION CYCLE  154 

The replication cycle of MERS-CoV consists of numerous essential steps that can be efficiently 155 

inhibited by antiviral agents in vitro (Fig. 3). CoVs are so named because of their characteristic 156 

solar corona (corona soli) or “crown-like” appearance observed under electron microscopy, 157 

which represents the peplomers formed by trimers of S protein radiating from the virus lipid 158 

envelope. The MERS-CoV S protein is a class I fusion protein composed of the amino N-159 

terminal receptor-binding S1 and carboxyl C-terminal membrane fusion S2 subunits (Fig. 2). The 160 

S1/S2 junction is the location of a protease cleavage site which is required to activate membrane 161 

fusion, virus entry, and syncytia formation. The S1 subunit consists of the C-domain, which 162 

contains the receptor binding domain (RBD), and an N-domain (29). The RBD of MERS-CoV 163 

has been mapped by different groups to a 200 to 300-residue region spanning residues 358 to 164 

588, 367 to 588, 367 to 606, 377 to 588, or 377 to 662 (29-36). Among these RBD-containing 165 

fragments, the one that encompasses residues 377 to 588 appears to be the most stable and 166 
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neutralizing fragment in structural analysis and virus neutralization assays (36). Neutralizing 167 

monoclonal antibodies against the RBD potently inhibit virus entry into host cells and receptor-168 

dependent syncytia formation in cell culture, and vaccines containing the RBD induce high 169 

levels of neutralizing antibodies in mice and rabbits (31, 34, 36-43). The S2 subunit contains the 170 

heptad repeat 1 and 2 (HR1 and HR2) domains, a transmembrane domain, and an intracellular 171 

domain that form the stalk region of S protein which facilitates fusion of the viral and cell 172 

membranes necessary for virus entry (44, 45). The binding of the S1 subunit to the cellular 173 

receptor triggers conformational changes in the S2 subunit which inserts its fusion peptide into 174 

the target cell membrane to form a six-helix bundle fusion core between the HR1 and HR2 175 

domains that approximates the viral and cell membranes for fusion. This fusion process can be 176 

inhibited by HR2-based antiviral peptide fusion inhibitors which prevent the interaction between 177 

the HR1 and HR2 domains (44, 45). 178 

The key functional receptor of the host cell attached to by the MERS-CoV S protein is 179 

dipeptidyl peptidase-4 (DPP4), which is also known as adenosine deaminase complexing protein 180 

2 or CD26 (46). MERS-CoV is the first coronavirus that has been identified to use DPP4 as a 181 

functional receptor for entry into host cells (1, 46). DPP4 is a multifunctional 766-amino-acid-182 

long type II transmembrane glycoprotein presented as a homo-dimer on the cell surface which is 183 

involved in the cleavage of dipeptides (46, 47). It has important roles in glucose metabolism and 184 

various immunological functions including T cell activation, chemotaxis modulation, cell 185 

adhesion, and apoptosis (46, 47). In humans, it is abundantly expressed on the epithelial and 186 

endothelial cells of most organs including lung, kidney, small intestine, liver, and prostate, as 187 

well as immune cells, and exists as a soluble form in the circulation (46-48). This broad tissue 188 

expression of DPP4 may partially explain the extrapulmonary manifestations seen in MERS. 189 
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Adenosine deaminase, which is a natural competitive antagonist, and some anti-DPP4 190 

monoclonal antibodies exhibit inhibitory effects on in vitro MERS-CoV infection (49, 50). 191 

The energetically unfavorable membrane fusion reaction in endosomal cell entry is 192 

overcome by low pH and the pH-dependent endosomal cysteine protease cathepsins, and can be 193 

blocked by lysosomotropic agents such as ammonium chloride, bafilomycin A, and cathepsin 194 

inhibitors in a cell type-dependent manner (23, 51). Additionally, various host proteases, such as 195 

transmembrane protease serine protease-2 (TMPRSS2), trypsin, chymotrypsin, elastase, 196 

thermolysin, endoproteinase Lys-C, and human airway trypsin-like protease, cleave the S protein 197 

into the S1 and S2 subunits to activate the MERS-CoV S protein for endosomal-independent host 198 

cell entry at the plasma membrane (23, 51-53). Inhibitors of TMPRSS2 can abrogate this 199 

proteolytic cleavage and partially block cell entry (23, 51, 52). In some cell lines, MERS-CoV 200 

demonstrates the ability to utilize both the cathepsin-mediated endosomal and the TMPRSS2-201 

mediated plasma membrane pathways to enter host cells (51, 52). 202 

In addition to these cellular proteases, furin has recently been identified as another 203 

protease that has essential roles in the MERS-CoV S protein cleavage activation (54). Furin and 204 

furin-like proprotein convertases are broadly expressed serine endoproteases that cleave the 205 

multibasic motifs RX(R/K/X)R and processes proproteins into their biologically active forms 206 

(55). Proprotein convertases including furin have been implicated in the processing of fusion 207 

proteins and therefore cell entry of various viruses including human immunodeficiency virus, 208 

avian influenza A/H5N1 virus, Marburg virus, Ebola virus, and flaviviruses (55-57). The MERS-209 

CoV S protein contains two cleavage sites for furin at S1/S2 (748RSVR751) and S2’ (884RSAR887) 210 

and exhibits an unusual two-step furin-mediated activation process (Fig. 2) (54). Furin cleaves 211 

the S1/S2 site during S protein biosynthesis and the S2’ site during virus entry into host cell (54). 212 
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Furin inhibitors such as dec-RVKR-CMK block MERS-CoV entry and cell-cell fusion (54). 213 

Treatment of MERS-CoV infection with a combination of inhibitors of the different cellular 214 

proteases utilized by MERS-CoV for S activation should be further evaluated in in  vivo settings. 215 

After cell entry, MERS-CoV disassembles to release the inner parts of the virion 216 

including the nucleocapsid and viral RNA into the cytoplasm for translation of the viral 1a and 217 

1b polyproteins and replication of genomic RNA (Fig. 3). The characteristic replication 218 

structures of CoVs including double-membrane vesicles and convoluted membranes are formed 219 

by the attachment of the hydrophobic domains of the MERS-CoV replication machinery to the 220 

limiting membrane of autophagosomes (58). These structures can be observed at the perinuclear 221 

region of the infected cells under electron microscopy (58). The viral papain-like protease and 222 

3C-like protease co-translationally cleave the large replicase polyproteins pp1a and pp1b 223 

encoded by ORF1a/b into nsp1 to nsp16 (16, 59, 60). These nsps form the replication-224 

transcription complex where transcription of the full length positive genomic RNA yields a full 225 

length negative strand template for synthesis of new genomic RNAs as well as a series of 226 

overlapping subgenomic negative strand templates for synthesis of subgenomic 3’ co-terminal 227 

mRNAs that will be translated to make viral structural and accessory proteins (58). The relative 228 

abundance of the subgenomic mRNAs of MERS-CoV is similar to those of other CoVs, with the 229 

smallest mRNA, which encodes the N protein, being the most abundant (58). After adequate 230 

viral genomic RNA and structural proteins have been cumulated, the N protein assembles with 231 

the genomic RNA in the cytoplasm to form the helical nucleocapsid. The nucleocapsid then 232 

acquires its envelope by budding through intracellular membranes between the endoplasmic 233 

reticulum and Golgi apparatus. The S, E, and M proteins are transported to the budding 234 

compartment where the nucleocapsid probably interacts with M protein to generate the basic 235 
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structure and complexes with the S and E proteins to induce viral budding and release from the 236 

Golgi apparatus (61). The viral replication cycle is completed when the assembled virion is 237 

released through exocytosis to the extracellular compartment. 238 

 239 

SEQUENCE OF EVENTS IN THE MERS EPIDEMIC  240 

On 23 September 2012, the World Health Organization (WHO) reported two cases of acute 241 

respiratory syndrome with renal failure associated with a novel CoV in two patients from the 242 

Middle East (Table 3). The viral strains obtained from the respiratory tract specimens of these 243 

two epidemiologically-unlinked patients shared 99.5% nucleotide identity with each other, with 244 

only one nucleotide mismatch in partial replicase gene sequencing (18). In the following week, 245 

the WHO and other collaborative healthcare authorities rapidly responded to the outbreak by 246 

providing a unified interim case definition, making the complete genome sequence publicly 247 

available in GenBank, and establishing a laboratory diagnostic protocol for real-time reverse 248 

transcription (RT)-PCR using the upE (upstream of E gene) and ORF1b assays (16, 62). With 249 

these important tools, sporadic cases were increasingly detected in the Middle East over the 250 

subsequent six months, including two retrospectively diagnosed cases that occurred in a 251 

healthcare-associated cluster of severe respiratory disease in Zarqa, Jordan, in April 2012 (19, 252 

63-66). Additional cases were also reported in Europe and Africa among patients with recent 253 

travel to the Arabian Peninsula and their close hospital and household contacts (18, 67-74). The 254 

fear of person-to-person transmission was further heightened by the occurrence of a large-scale 255 

outbreak involving over 20 patients in four interrelated hospitals in Al-Hasa, the Kingdom of 256 

Saudi Arabia (KSA), from April to May 2013 (75). 257 

 In view of the significant epidemiological link of all the reported cases to the region, the 258 
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ICTV formally named the novel virus MERS-CoV on 15 May 2013 (17). However, the epidemic 259 

was not contained within the Middle East as its name implied, and the number of patients and 260 

countries involved continued to escalate over the following years (76-81). In particular, there was 261 

a sudden surge of over 400 cases in KSA and the United Arab Emirates (UAE) within just two 262 

months from mid-March to May 2014 as a result of both an increased number of primary cases 263 

possibly related to the weaning season of dromedary camels, a probable zoonotic source of 264 

MERS-CoV, and an amplification of the number of secondary cases by several healthcare-265 

associated outbreaks in the region during the same period (82, 266 

http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_Update_09_May_2014.pdf)267 

. As of 17 December 2014, the WHO has reported a total of 938 laboratory-confirmed cases of 268 

MERS including 343 deaths. The affected countries with primary cases include KSA, Qatar, 269 

Jordan, UAE, Oman, Kuwait, Egypt, Yemen, Lebanon, and Iran in the Middle East. The 270 

countries with imported cases include the United Kingdom, Germany, France, Italy, Greece, the 271 

Netherlands, Austria, and Turkey in Europe, Tunisia and Algeria in Africa, Malaysia and the 272 

Philippines in Asia, and the United States in North America. 273 

 274 

EPIDEMIOLOGY 275 

Among the first 699 laboratory-confirmed cases of MERS, 63.5% were male and the median age 276 

was 47 years, with a range of 9 months to 94 years 277 

(http://www.who.int/csr/disease/coronavirus_infections/MERS-278 

CoV_summary_update_20140611.pdf). The persistence of the epidemic is postulated to be 279 

related to repeated animal-to-human transmissions from at least one type of animal reservoir that 280 

is in frequent contact with residents in the region, which are amplified by non-sustained person-281 

http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_Update_09_May_2014.pdf
http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf
http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf
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to-person transmission in multiple large-scale healthcare-associated outbreaks and limited 282 

household clusters (67, 68, 70, 71, 73-75, 83, 84, 283 

http://www.who.int/csr/disease/coronavirus_infections/MERS-284 

CoV_summary_update_20140611.pdf). Human infection has been linked to the contacts with 285 

dromedary camels (Camelus dromedarius) or other humans infected with MERS-CoV, but 286 

alternative sources of infection are possible as many patients did not have epidemiological link to 287 

infected camels or humans. All primary MERS cases were epidemiologically linked to the 288 

Middle East and all secondary cases in other countries were linked to primary cases imported 289 

from the Middle East. The incubation period is estimated to be 5.2 days, with a range of 1.9 to 290 

14.7 days, and 95% of infected patients have symptom onset by day 12.4 (63, 75). The serial 291 

interval, representing the time between the case’s symptom onset and the contact’s symptom 292 

onset, is estimated to be 7.6 days with a range of 2.5 to 23.1 days, and is less than 19.4 days in 293 

95% of the cases (63, 75). The rate of secondary transmission among household contacts of 294 

MERS patients is estimated to be about 4% (85). 295 

 296 

Risk Factors for Severe Disease 297 

Among the first 536 laboratory-confirmed cases reported by the WHO, 62% were severe cases 298 

that required hospitalization (77). Severe cases requiring hospitalization were more commonly 299 

seen among primary cases which mainly consist of older patients with comorbidities. The 300 

secondary cases were mostly younger patients and healthcare workers without comorbidities, but 301 

severe nosocomial infection among patients sharing contaminated equipment with improper 302 

barrier controls have also been reported (75, 303 

http://www.who.int/csr/disease/coronavirus_infections/MERS-304 

http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf
http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf
http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf
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CoV_summary_update_20140611.pdf) (Table 4). In a clinical cohort from KSA with 47 severe 305 

cases requiring hospitalization, the patients’ median age was 56 years. There was a male 306 

predominance with a male to female ratio of 3.3 to 1 (63). About 96% of the patients had 307 

comorbidities, with the most common being diabetes mellitus (68%), chronic renal disease 308 

(49%), hypertension (34%), chronic cardiac disease (28%), and chronic pulmonary disease 309 

(26%). Smoking and obesity were also reported in 23% and 17% of the patients respectively. The 310 

predominance of older males with comorbidities among severe cases was also reported in other 311 

case series at variable rates, depending on the size and setting of the studies (63, 66, 75, 80, 86-312 

89). Furthermore, age of over 50 years, male sex, and the presence of multiple comorbidities 313 

were associated with a higher fatality rate (63, 87, 90). Some of these conditions are highly 314 

prevalent among residents in the Middle East, for example, diabetes mellitus in nearly 63% of 315 

persons at or older than 50 years in KSA (91). Their relative risk of developing severe MERS 316 

requires further evaluation in large-scale case-control studies. Patients who develop 317 

complications such as acute respiratory distress syndrome requiring hospitalization and/or 318 

intensive care are also at risk of fatal outcome (87). 319 

 320 

Seroepidemiology 321 

The interim WHO case definition used early in the epidemic was criticized for being focused on 322 

identifying severe cases which might have over-estimated the clinical severity and significance 323 

of MERS (92). This was supported by the increasing number of asymptomatic and mild cases 324 

identified in subsequent enhanced surveillance among contacts of MERS patients in various 325 

clusters. It was thus suggested that the genuine epidemiology of MERS-CoV might be more 326 

similar to that of HCoV-HKU1 rather than SARS-CoV in that the infection is prevalent in the 327 

http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf
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general population, but only manifests severely in the elderly and immunocompromised (93-96). 328 

However, seroepidemiological studies conducted so far have refuted this hypothesis as there is 329 

little evidence of past infection among the general population in the Middle East. Serum anti-330 

MERS-CoV antibodies were not detected in archived serum samples of 2400 control in- or out-331 

patients without MERS in KSA, suggesting that MERS-CoV was unlikely to be circulating in the 332 

general population during the preceding two years (9, 90). Similarly, serum neutralizing anti-333 

MERS-CoV antibodies were not detected among 158 children hospitalized for lower respiratory 334 

tract infections and 110 adult male blood donors in KSA between May 2010 and December 2012 335 

(97). Even among 226 slaughterhouse workers who had contact with various livestock species 336 

that might serve as zoonotic sources of MERS-CoV, neutralizing anti-MERS-CoV antibodies 337 

were not detected in serum samples collected in October 2012 (98). Additional region-wide 338 

seroepidemiological studies that include large collections of archived samples from earlier 339 

timepoints may determine the true prevalence and clinical severity of MERS among residents in 340 

the affected areas. 341 

 342 

Animal Surveillance 343 

Given the sudden emergence of MERS-CoV without definite serological evidence of past 344 

exposure in the general population, a novel episode of interspecies transmission of the virus was 345 

postulated. An intense hunt for animal reservoirs of MERS-CoV was sparked by the early 346 

recognition of the close phylogenetic relationship between MERS-CoV and the prototype lineage 347 

C βCoVs, Ty-BatCoV-HKU4 and Pi-BatCoV-HKU5, which suggested the possibility of MERS-348 

CoV being a zoonotic agent (9, 13, 14, 21, 99). Subsequent functional studies showed that Ty-349 

BatCoV-HKU4 also utilizes DPP4 as a functional receptor for cell entry in pseudotyped virus 350 
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assay (100, 101). These findings concur with the existing notion that bats are the likely gene 351 

sources of most αCoVs and βCoVs including SARS-CoV (1, 15, 102-107). Recent reports also 352 

show a high nonsynonymous (dN) to synonymous (dS) nucleotide substitutions per site ratio in 353 

the bat DPP4-encoding genes (108). This adaptive evolution on the bat DPP4 is suggestive of 354 

long-term interactions between bats and MERS-CoV-related viruses (108). In addition to Ty-355 

BatCoV-HKU4 and Pi-BatCoVHKU5 which are found in bats in Hong Kong and Southern 356 

China, other lineage C βCoVs closely related to MERS-CoV were also identified in different bat 357 

species in the Middle East, Africa, Europe, and Central America after the MERS epidemic 358 

started (Table 5). The virus that is most closely related to MERS-CoV phylogenetically was a 359 

βCoV detected in the fecal pellet of a Taphozous perforatus bat caught in Bisha, KSA, near the 360 

home of a patient with laboratory-confirmed MERS, which shared 100% nucleotide identity with 361 

MERS-CoV by partial RdRp gene sequencing (109). However, this study was limited by the 362 

short length of the gene fragment analyzed (182 nucleotides) and its detection in only one of 29 363 

(3.4%) T. perforatus bats caught at the same location. Furthermore, no live virus was isolated 364 

from any of these bats. Subsequent studies identified a closely related virus, NeoCoV, in the 365 

feces of a Neoromicia capensis bat in South Africa which had a complete genome sequence 366 

sharing 85.6% nucleotide identity with those of MERS-CoV from infected humans and 367 

dromedary camels (110, 111). Based on the estimated evolutionary rate of MERS-CoV, the most 368 

recent common ancestor between NeoCoV and human MERS-CoV strains was proposed to exist 369 

in bats more than 44 years ago (112). As the same lineage of CoVs are usually found and 370 

originate from closely related bat species, the likelihood of MERS-CoV originating from both T. 371 

perforatus (superfamily Emballonuroidea) and vespertilionid bats (Neoromicia capensis, 372 

Pipistrellus sp., and Tylonycteris pachypus in the superfamily Vespertilionoidea), which belong 373 
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to two distantly related superfamilies of insectivorous bats, is low (20, 110, 111). Interestingly, 374 

European hedgehogs (Erinaceus europaeus) belonging to the order Eulipotyphla, which is 375 

closely related to bats phylogenetically, also carry high concentrations of a MERS-CoV-related 376 

lineage C βCoV, Erinaceus CoV, in their feces and intestines (113). Further surveillance and full 377 

virus genome sequencing involving a larger population of different bat and bat-related species is 378 

required to confirm these preliminary findings. 379 

 Besides the possibility of direct interspecies transmission of SARS-CoV from bats to 380 

humans, it is postulated that intermediate amplifying animal hosts such as civets and raccoon 381 

dogs might also have been important in the transmission of SARS. Therefore, specific 382 

intermediate animal hosts of MERS-CoV with frequent contact with infected humans were 383 

sought since the early phase of the MERS epidemic (3, 114, 115). In in vitro studies, MERS-CoV 384 

can replicate efficiently not only in a variety of bat cell lines, but also in cell lines originating 385 

from other animal species including camelid, goat, pig, rabbit, and civet (116-118) (Table 6). The 386 

host range is mainly determined by the binding of the MERS-CoV S protein to the host receptor 387 

DPP4, which is relatively conserved among mammalian species (30, 48, 49, 119, 120). The first 388 

in vivo evidence to support the presence of an intermediate animal reservoir of MERS-CoV 389 

emerged when high-titer of serum neutralizing IgG against the MERS-CoV S1 RBD were 390 

detected in dromedary camels (121). All 50 Omani dromedary camels were seropositive as 391 

compared to less than 10% of the Spanish dromedary camels and none of the other common 392 

livestock species in the study. This suggested that widespread circulation of MERS-CoV or a 393 

closely related virus was present among dromedary camels in this Middle Eastern country. 394 

Numerous seroepidemiological studies also demonstrated serological evidence of MERS-CoV 395 

infection in dromedary camels in other Middle Eastern countries including KSA, Qatar, UAE, 396 
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and Jordan, and also in African countries including Egypt, Kenya, Nigeria, Ethiopia, Tunisia, 397 

Somalia, and Sudan where most of the camels found in the Middle East have originated from 398 

(Table 5). Serological evidence of infection among camels was detected in archived specimens 399 

collected in as early as 1992 and 1983 in KSA and eastern Africa respectively, and was 400 

especially prevalent in areas of high dromedary population density (122-133). These findings 401 

suggested that unrecognized primary human cases of MERS might also be present outside the 402 

Middle East. On the other hand, studies in Qatar and several other countries showed that anti-403 

MERS-CoV antibodies were not detected in the sera of other livestock species tested including 404 

goats, sheep, cows, water buffaloes, swine, and wild birds 405 

(http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_RA_20140613.pdf). 406 

Furthermore, it was also shown that the percent seropositivity of neutralizing anti-MERS-CoV 407 

antibodies was much lower in juvenile than adult dromedary camels, suggesting that acutely 408 

infected juvenile dromedary camels without neutralizing antibodies might be a more important 409 

source for transmission to humans than adult dromedary camels (123, 127).  410 

The significance of camels as the major source of animal-to-human transmission required 411 

further virological studies on the pattern of viral shedding in camels and their relationship to 412 

laboratory-confirmed human cases (Fig. 4). An investigation of a disease outbreak in dromedary 413 

camels in Qatar demonstrated MERS-CoV in nasal swabs, but not rectal swabs or fecal samples, 414 

of three of 14 (21.4%) camels by RT-PCR sequencing (133). The nucleotide sequences of a 940-415 

nucleotide ORF1a fragment and a 4.2 kb concatenated gene fragment of these camel strains were 416 

very similar to those of two epidemiologically-linked human strains. This study, however, was 417 

not able to conclusively establish the direction of transmission or exclude the presence of a third 418 

source of infection. Subsequently, the detection of MERS-CoV in dromedary camels was 419 

http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_RA_20140613.pdf
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reported in a number of studies conducted in different areas in the Middle East, which provided 420 

further insights into the viral shedding kinetics in camels (123, 128, 129, 131, 134). In agreement 421 

with the lower frequency of neutralizing anti-MERS-CoV antibodies in juvenile camels, the rate 422 

of detection of MERS-CoV RNA in the nasal and/or rectal swabs of juvenile camels was higher 423 

than those of adult camels (123). These findings may partially explain the absence of serum 424 

neutralizing anti-MERS-CoV antibodies among camel abattoir workers who have predominantly 425 

contacted adult camels (135, 136). These serological surveys should be confirmed by virus 426 

neutralization assays. Nevertheless, infected adult camels might still be a source of human 427 

infection. Similar to HCoVs and other respiratory viruses that can cause repeated infections in 428 

humans over a lifetime, MERS-CoV shedding could be observed in camels with pre-existing 429 

serum antibodies, suggesting that prior infection and passively acquired maternal antibodies 430 

might not provide complete protection from MERS-CoV infection and/or re-infection in camels 431 

(129). The fact that the majority of amino acid residues critical for receptor binding are identical 432 

between most human and camel strains further supports the potential of the dromedary MERS-433 

CoVs to infect humans despite differences in clinical manifestations of infected humans and 434 

camels (129, 131). The higher positivity rate of MERS-CoV RNA in nasal swabs than in rectal 435 

swabs or fecal samples, and the isolation of MERS-CoV from cultures of nasal swabs but not 436 

rectal swabs of camels in Vero E6 cells correlated with the predominantly upper respiratory tract 437 

symptoms in acutely infected symptomatic camels (129, 137). Together with the genetic stability 438 

of MERS-CoV in camels, these serological and virological data from animal surveillance support 439 

the hypothesis that MERS-CoV has likely originated from bats in Africa and then crossed species 440 

barriers to infect camels in the greater Horn of Africa many years ago. Infected camels were then 441 

transported to the Middle East where they transmitted the virus to non-immune humans to cause 442 
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the epidemic (111). 443 

The strongest evidence of direct cross-species transmission of MERS-CoV from camels 444 

to humans was provided in a study reporting the isolation of the virus from a dromedary camel 445 

which had a complete genome sequence identical to that of a human strain from a patient who 446 

developed MERS after close contact with sick camels that had rhinorrhea (138). Serological tests 447 

showed seropositivity in the camels but not in the patient before the human infection occurred 448 

(138). The air sample collected from the camel barn on the same day when a sick camel tested 449 

positive for MERS-CoV, but not on the subsequent two days, was also positive for MERS-CoV 450 

RNA by RT-PCR (139). This suggests that the virus may persist in the air surrounding infected 451 

animals or humans for less than 24 hours, although viral infectivity is uncertain because the virus 452 

was not culturable from the air sample. Another similar study also reported a human case of 453 

MERS that developed after the patient had contact with sick camels with respiratory symptoms 454 

(128). Comparison of eight RT-PCR fragments, constituting 15% of the virus genomes derived 455 

from the infected camel and from an epidemiologically-linked patient, showed nearly 100% 456 

nucleotide identity (128). The genomes of both the camel and human strains of MERS-CoV 457 

contained unique nucleotide polymorphism signatures not found in any other known MERS-CoV 458 

sequences and therefore supported direct cross-species transmission (128). Preliminary results 459 

from an ongoing investigation in Qatar showed that people working closely with camels, 460 

including farm workers, slaughterhouse workers, and veterinarians, may be at higher risk of 461 

developing MERS than those who do not have regular contact with camels 462 

(http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_RA_20140613.pdf). 463 

Notably, while these studies support camel-to-human transmission, a bidirectional mode of 464 

transmission cannot be completely excluded at this stage. 465 

http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_RA_20140613.pdf
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In spite of these examples that support the hypothesis of direct camel-to-human cross-466 

species transmission of MERS-CoV, a number of important questions remain unresolved at this 467 

stage. Firstly, it is uncertain whether camels are intermediate amplification hosts or the natural 468 

reservoirs of MERS-CoV. Although bats are postulated to be the natural host of most βCoVs 469 

including MERS-CoV, the detection of anti-MERS-CoV antibodies in archived sera of camels 470 

dating back to more than 28 years ago in eastern Africa and more than 20 years ago in KSA, the 471 

high genetic stability of MERS-CoV in camels, and the high sequence nucleotide identities 472 

between camel and human strains of MERS-CoV suggest that the virus was well adapated and 473 

circulating in camels for a long time (123, 129). The reason why human infection has not been 474 

reported until 2012 remains elusive. Notably, a different novel lineage A βCoV, named 475 

dromedary camel CoV UAE-HKU23, has also been discovered in the fecal samples of 476 

dromedary camels in Dubai, UAE recently (140). Further surveillance studies may provide novel 477 

insights into the role of this unique camelid species, which also have heavy-chain antibodies as 478 

humoral defense, in the emergence of novel CoVs (141). Another unresolved question is whether 479 

an alternative source may be present but undetected at this stage. It is noteworthy that a 480 

significant proportion of laboratory-confirmed human cases did not have a clear history of 481 

contact with camels (83, 142). Evaluation of other animal species endemic in the region using 482 

validated serological and virological assays should be conducted. Finally, the route of 483 

transmission of MERS-CoV from camels to humans remains unknown at this stage. Droplet 484 

transmission appears likely as evidenced by the high viral loads in the nasal and conjunctival 485 

swabs of camels and the surrounding air samples. However, viral shedding in nasal secretions is 486 

usually short-lasting during acute infection, which may limit viral transmission by this route 487 

(129). Direct contact with other infected bodily fluids including blood and feces is also possible, 488 
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but viral shedding in these samples is also transient in acute infection (129). Food-borne 489 

transmission through ingestion of infected unpasteurized camel milk, in which MERS-CoV can 490 

survive for at least 48 hours at 4
o
C or 22

o
C, has also been suggested. But it has yet to be 491 

definitively proven that camels actively shed MERS-CoV in their milk as contamination by 492 

feces, nasal secretions, or calf saliva containing the virus cannot be completely excluded (143). 493 

The presence of neutralizing antibody in milk may also limit the virus’ infectivity in vivo (144). 494 

In human MERS cases without direct exposure to camels, contact with environments 495 

contaminated with infected camel secretions and aerosol transmission are other possibilities that 496 

warrant further investigations (139, 145).  497 

 498 

Molecular Epidemiology 499 

Detailed analysis of the molecular evolution and spatiotemporal distribution of genomes 500 

of human and animal strains of MERS-CoV provides useful information for detecting viral 501 

adaptation to animal-to-human and person-to-person transmissions, identifying zoonotic and 502 

other sources of human infections, and assessing the pandemic potential of the virus. 503 

Comparative analysis of 65 complete or near-complete genomes of human MERS-CoV strains 504 

identified early in the epidemic from June 2012 to September 2013 estimated the evolutionary 505 

rate of the coding regions of the viral genome to be 1.12  10
-3

 (95% confidence interval, 8.76  506 

10
-4

 to 1.37  10
-3

) substitutions per site per year (146). The time to the most recent common 507 

ancestor (TMRCA) of MERS-CoV was estimated to be March 2012 (95% confidence interval, 508 

December 2011 to June 2012) (112, 146). Compared with the genome of one of the earliest 509 

human MERS-CoV strains, the genomes of the MERS-CoV strains obtained from patients 510 

diagnosed between October 2012 and June 2013 showed various nucleotide changes in the last 511 
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third of the genomes, which represent potential amino acid changes in the accessory proteins and 512 

the S protein encoded at nucleotide positions 21,000-25,500 (112). Specifically, codon 1020 at 513 

the HR1 domain of the S gene was identified to be under strong episodic selection among 514 

different geographical lineages with either a histidine or arginine at this position (112, 146). 515 

Although the amino acid variations are not predicted to change the alpha helical structure of this 516 

region, the histidine and arginine provide an endosomal protonated residue and a potential 517 

endosomal protease cleavage site respectively that may affect the S protein membrane fusion 518 

activity (146). Codon 158 at the N-terminal domain and codon 509 at the RBD of the S gene are 519 

also noted to be under weaker positive selection (146). As mutations in the RBD of the S protein 520 

of CoVs may be associated with changes in the transmissibility across and within species, the 521 

phenotypic changes associated with these genomic variations should be ascertained (3, 29, 147-522 

149). 523 

In addition to the results of animal surveillance studies and investigations of human 524 

MERS outbreaks, genomic analysis also supports the hypothesis that MERS-CoV is transmitted 525 

from both animal-to-human and person-to-person. Among genomes of sporadic human MERS 526 

cases, numerous distinct phylogenetic clades and genotypes exist, which likely represent separate 527 

instances of incursions from animals to human (112). Indeed, at least four clades of MERS-CoV 528 

were identified in KSA, with three of them apparently no longer widely circulating during May 529 

to September 2013 (146). In a large healthcare-associated outbreak in Al-Hasa, person-to-person 530 

transmissions were supported by genomic analysis in at least 8 of 13 patients (75, 112). Two 531 

phylogenetically distinct MERS-CoV strains were detected in a family cluster in Riyadh, KSA, 532 

in October 2012, suggesting that at least two distinct lineages of MERS-CoV were circulating in 533 

Riyadh during this time period and that human clusters might involve multiple sources with more 534 



25 
 

than one virus lineage (112). The genomic diversity of MERS-CoV detected in patients from the 535 

same locality and the geographical dispersion of MERS-CoV lineages in the Middle East suggest 536 

the presence of multiple mobile infection sources such as animal reservoirs, infected animal 537 

products, and/or infected patients in the epidemic regions (146). This hypothesis fits well with 538 

the evidence of MERS-CoV infection in dromedary camels, which are an important vehicle for 539 

transportation of goods and travelers, as well as food source in the Middle East. Notably, 540 

quasispecies of MERS-CoV within single samples have been detected in samples from 541 

dromedary camels but not humans or Vero cell isolates from the same animal (137). Further 542 

studies using next-generation high throughput sequencing are required to confirm the presence of 543 

quasispecies and clonal virus populations within individual human cases, which may help 544 

identify specific genotypes that can pass the bottleneck selection to cause cross-species 545 

transmission from camels to humans, and help to explain the relative rarity of human cases 546 

despite the widespread circulation of MERS-CoV in dromedary camels for prolonged periods in 547 

the Middle East and North Africa (137). 548 

 549 

Mathematical Modeling 550 

Mathematical modeling has been widely used to predict the spread and pandemic potential of 551 

emerging viruses. Although the interval for data accumulation may diminish the predictive value 552 

of mathematical modeling and its impact on epidemiological control or policy setting, these 553 

studies provide a preliminary estimate of the pandemic potential of emerging viruses if enough 554 

data are included in the calculations. Three real-time predictions of the spread of MERS-CoV 555 

have been conducted for the current epidemic and have estimated the basic reproduction number 556 

(R0), the number of secondary cases per index case in a fully susceptible population, to be 0.30-557 
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0.77 (150), 0.60-0.69 (90), or 0.8-1.3 (151), as compared to about 0.8 for pre-epidemic SARS-558 

CoV. These estimates imply the occurrence of a subcritical epidemic in the Middle East, which is 559 

unlikely to sustain person-to-person transmission of MERS-CoV, especially when infection 560 

control measures are implemented (150). The estimated daily rate of MERS-CoV introductions 561 

into the human population in the Middle East is 0.12-0.85 and the expected yearly incidence of 562 

MERS introduction was estimated to be between 160 and 320 cases per year (90, 150). Clearly, 563 

these estimations are at most only modestly accurate for a number of reasons. Firstly, these 564 

studies were conducted early in the epidemic when the total number of laboratory-confirmed 565 

cases was only less than one-eighth of that reported by the WHO as of 17 December 2014 (90, 566 

150, 151). This low number limited the accuracy of the predictions as sufficient caseload is 567 

required to calculate the basic parameters for estimation of the worst- and best-case scenarios to 568 

gauge the magnitude of the epidemic. The omission of large clusters may underestimate the R0 569 

(90). Secondly, most of the cases reported in the early period of the epidemic were biased 570 

towards including more severe cases. The increasingly recognized number of asymptomatic or 571 

mildly symptomatic cases identified through enhanced surveillance programmes may further 572 

underestimate the R0 (90). Finally, the R0 may also be affected by community demographics, 573 

contact structure, large gatherings such as the Hajj, and exportation of patients from the 574 

relatively less populated Middle East to densely populated areas such as Southeast Asia (78, 90). 575 

Updated mathematical modeling using the latest available epidemiological and virological data 576 

may increase the accuracy of these estimates. 577 

 578 

CLINICAL MANIFESTATIONS 579 

The early reports of MERS have focused on severe cases which typically presented as acute 580 
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pneumonia with rapid respiratory deterioration and extrapulmonary manifestations (Table 7). 581 

Few clinical and radiological features can reliably differentiate MERS from acute pneumonia 582 

caused by other microbial agents (80). The common presenting symptoms of MERS are non-583 

specific, and include feverishness, chills, rigors, sore throat, non-productive cough, and dyspnea. 584 

Other symptoms of respiratory tract infections including rhinorrhea, sputum production, 585 

wheezing, chest pain, myalgia, headache, and malaise may also be present. Rapid clinical 586 

deterioration with development of respiratory failure usually occurs within a few days after these 587 

initial symptoms (80). Physical signs at the time of deterioration may include high fever, 588 

tachypnea, tachycardia, and hypotension. Diffuse crepitations may be present on chest 589 

auscultation, but they may be disproportionately mild compared with radiological findings (68). 590 

 Chest radiograph abnormalities are found in nearly all severe cases and often progress 591 

from a mild unilateral focal lesion to extensive multifocal or bilateral involvement especially of 592 

the lower lobes as the patient deteriorates (63). The radiological changes are non-specific and 593 

indistinguishable from other viral pneumonias associated with acute respiratory distress 594 

syndrome (ARDS), and include air-space opacities, segmental, lobar or patchy consolidations, 595 

interstitial ground glass infiltrates, reticulonodular shadows, bronchial wall thickening, increased 596 

bronchovascular markings, and/or pleural and pericardial effusions (Table 7). Rarely, pneumonia 597 

may be an incidental finding in chest radiograph and precede the sudden deterioration in 598 

respiratory function in patients who are harboring a “walking pneumonia” with minimal 599 

respiratory tract symptoms (63, 68). The most common thoracic computerized tomography (CT) 600 

scan features are bilateral, predominantly basilar and subpleural airspace involvement, with 601 

extensive ground-glass opacities, and occasional septal thickening and pleural effusions (152). 602 

Tree-in-bud pattern, cavitation, and lymph node enlargement have not been reported. Fibrotic 603 
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changes including reticulation, traction bronchiectasis, subpleural bands, and architectural 604 

distortion may be found in thoracic CT scans performed three weeks after symptom onset. These 605 

different changes in thoracic CT scan throughout the course of disease are suggestive of 606 

organizing pneumonia and may mimic those seen in other viral pneumonias such as influenza (4, 607 

8, 153-156).  608 

 Various extrapulmonary manifestations involving multiple body systems have been 609 

reported in MERS (Table 7). Acute renal impairment was the most striking feature in the early 610 

reports (9, 18). This finding was confirmed in subsequent sporadic reports and at least three case 611 

series that provided specific details on renal function, in which more than half of the patients 612 

developed acute renal impairment at a median time of around 11 days after symptom onset, with 613 

most requiring renal replacement therapy (88, 152, 157). This is unique among CoV infections of 614 

human. For SARS, only around 6.7% of patients developed acute renal impairment mainly due 615 

to hypoxic injury at a median duration of 20 days after symptom onset and 5% required renal 616 

replacement therapy (158, 159). The exceptionally high incidence of this distinctive 617 

manifestation of MERS is likely multi-factorial. These include the high prevalence of 618 

background chronic renal impairment among severe cases and the renal tropism of MERS-CoV 619 

(63, 116, 157). The presence of MERS-CoV RNA in urine also supports the possibility of direct 620 

renal involvement, but the exact incidence and prognostic significance of this finding is unknown 621 

at present (72). 622 

 As in humans infected with SARS-CoV and animals infected with other CoVs, patients 623 

infected with MERS-CoV may have enteric symptoms in addition to respiratory tract 624 

involvement (3, 160, 161). Gastrointestinal symptoms are found in more than a quarter of 625 

hospitalized cases in a large cohort in KSA (63). Diarrhea is the most common symptom and 626 
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occurs in 6.7% to 25.5% of severe cases. Nausea, vomiting, and abdominal pain may also occur. 627 

The detection of viral RNA in fecal samples has been reported, but longitudinal studies on the 628 

pattern of viral shedding are lacking (72). It remains to be determined whether cases of acute 629 

abdomen presenting as ischemic bowel or negative findings on laparotomy result from hypoxic 630 

damage or direct viral invasion of the gastrointestinal tract (88). 631 

 Other extrapulmonary features of MERS include hepatic dysfunction, pericarditis, 632 

arrhythmias, and hypotension (66). Hematological abnormalities include leukopenia or 633 

leukocytosis, usually accompanied by lymphopenia with normal neutrophil count, and 634 

thrombocytopenia. Compared to other patients with pneumonia, patients with MERS are more 635 

likely to have a normal leukocyte count on admission (80). Anemia, coagulopathy, and 636 

disseminated intravascular coagulation have also been reported (64, 72, 162). Elevated levels of 637 

serum transaminases, lactate dehydrogenase, potassium, creatine kinase, troponin, C-reactive 638 

protein, and procalcitonin, and reduced levels of serum sodium and albumin are seen 639 

occasionally. 640 

 Complications of MERS include bacterial, viral, and/or fungal co-infections, ventilator-641 

associated pneumonia, septic shock, delirium, and possibly stillbirth (9, 69, 71, 73) (Table 7). 642 

Respiratory failure with ARDS and multiorgan dysfunction syndrome is not uncommon, and the 643 

majority of such patients require admission to the intensive care unit at a median of 2 to 5 days 644 

from symptom onset. The median time from symptom onset to invasive ventilation and/or 645 

extracorporeal membrane oxygenation (ECMO) in these patients is 4.5 to 7 days, which is at 646 

least 6 days earlier than that of SARS (63, 75, 88, 162, 163). The duration of stay in the intensive 647 

care unit is often prolonged with a median of 30 days (range: 7 to 104 days). The case-fatality 648 

rate is up to 25.0% to 76.5% in various cohorts (Table 7). 649 
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 With enhanced surveillance of healthcare-associated and family contacts of MERS 650 

patients, an increasing number of asymptomatic and mild cases have been identified. Most of 651 

these patients are young, healthy female healthcare workers or children who do not have any 652 

comorbidities (65, 164). Among 402 patients identified in the recent clusters that occurred in 653 

KSA between 11 April 2014 and 9 June 2014, 109 (27.1%) were healthcare workers. Of note, 654 

though many were either asymptomatic or mildly symptomatic, more than one-third developed 655 

moderate to severe disease requiring hospitalization and nearly 4% died 656 

(http://www.who.int/csr/disease/coronavirus_infections/MERS-657 

CoV_summary_update_20140611.pdf). Severe and even fatal cases have also been reported 658 

among infected children, especially in those who have underlying diseases such as cystic fibrosis 659 

and Down’s syndrome with congenital heart disease and hypothyroidism (164). Therefore, even 660 

healthcare workers and children with MERS should be monitored closely for clinical 661 

deterioration. 662 

 663 

HISTOPATHOLOGY AND PATHOGENESIS 664 

The pathogenesis of MERS is under-studied and poorly understood. Serial sampling for 665 

characterization of the innate and adaptive immune responses is lacking in human cases of 666 

MERS. Due to religious and cultural reasons, post-mortem examination was seldom performed 667 

in Islamic patients who died of MERS and no post-mortem findings have been reported so far. 668 

Thus, the current understanding on the histopathology and pathogenesis of MERS is limited to 669 

findings in in vitro, ex vivo, and animal experiments. 670 

 671 

Histological Changes 672 

http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf
http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf
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In rhesus macaques infected with MERS-CoV, macroscopic changes of acute pneumonia 673 

including multifocal to coalescent bright red palpable nodules with congestion occurred 674 

throughout the lower respiratory tract in necropsy lung tissues collected on day 3 post-infection 675 

(165-167). On day 6 post-infection, these inflamed areas progressed into dark reddish purple 676 

lesions. Microscopically, the changes resembled those seen in mild to severe acute interstitial 677 

pneumonia, characterized by alveolar infiltration by small to moderate numbers of macrophages 678 

and fewer neutrophils with occasional multinucleate syncytia, and thickening of alveolar septae 679 

by edema fluid and fibrin on day 3 post-infection. Lesions similar to those described in early 680 

bronchiolitis obliterans with organizing pneumonia consisting of aggregations of fibrin, 681 

macrophages, and sloughed pulmonary epithelium that occluded small airways, and multifocal 682 

perivascular infiltrates of inflammatory cells within and adjacent to the affected areas of lungs 683 

were also reported. On day 6 post-infection, moderate to marked microscopic changes including 684 

type II pneumocyte hyperplasia, alveolar edema, and hyaline membranes of fibrin were observed 685 

(166). In situ hybridization and immunohistochemistry demonstrated viral RNA and antigen 686 

respectively in type I and II pneumocytes, alveolar macrophages, and occasionally round 687 

mononuclear cells and stellate cells within the cortex of the mediastinal lymph nodes, but not in 688 

pulmonary endothelial cells, on both days 3 and 6 post-infection (166, 167). Infected cells were 689 

not observed in the kidney, brain, heart, liver, spleen, and large intestine of the infected rhesus 690 

macaques (167). Common marmosets infected with MERS-CoV showed similar but more severe 691 

histological findings. In necropsied lungs of common marmosets euthanized on days 3 to 4 post-692 

infection, extensive transcriptional evidence of pulmonary fibrosis was present (168). In 693 

immunosuppressed rhesus macaques using cyclophosphamide and dexamethasone with depleted 694 

T and B cells and disrupted splenic and mesenteric lymph node architectures, MERS-CoV 695 
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replicated more efficiently and affected more tissues as compared to non-immunosuppressed 696 

controls. Interestingly, the immunosuppressed animals had fewer histological changes associated 697 

with infection despite having higher virus replication in the lungs, suggesting that 698 

immunopathology might also play a key role in MERS (169). 699 

 700 

Innate Immune Response 701 

Immune evasion is an important strategy utilized by CoVs to overcome the innate immune 702 

response for efficient replication in the host. MERS-CoV is capable of inhibiting recognition, 703 

delaying interferon induction, and dampening interferon-stimulated genes (ISGs) expression in 704 

polarized human bronchial epithelia (Calu-3) cells until peak viral titers have been reached (170). 705 

While MERS-CoV triggers an activation of pattern recognition receptors that is similar to SARS-706 

CoV, their subsequent levels of interferon induction in Calu-3 cells are markedly different (171). 707 

This may be related to the different structural and accessory proteins of the two viruses that act 708 

as interferon antagonists. Instead of the papain-like protease, accessory proteins 3b and 6, nsp1, 709 

M, and N proteins which are the major putative interferon antagonists of SARS-CoV, the papain-710 

like protease encoded by nsp3 of ORF1a/b, M protein encoded by ORF7, and accessory proteins 711 

4a and 4b encoded by ORF4a and -4b respectively of MERS-CoV antagonize interferons in vitro 712 

(3, 24, 25, 27, 28, 172). Among them, the MERS-CoV accesory protein 4a, a double-stranded 713 

RNA-binding protein, exhibits potent antagonistic activity at multiple levels of the interferon 714 

response including the prevention of interferon-β synthesis through the inhibition of interferon 715 

promoter activation and interferon regulatory factor 3 (IRF3) function, and inhibition of the 716 

interferon-stimulated response element (ISRE) promoter signaling pathway in human (HEK-717 

293T) and/or primate kidney (Vero) cells (24). Specifically, it inhibits PACT-induced activation 718 
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of retinoic acid-inducible gene 1 (RIG-I) and melanoma differentiation-associated protein 5 719 

(MDA5), which are key cytosolic recognition receptors of virus-derived RNAs (25). 720 

Furthermore, preliminary data show that MERS-CoV, but not SARS-CoV, may employ an 721 

additional mechanism to antagonize ISG via altered histone modification which affects a diverse 722 

spectrum of biological processes including gene regulation (170). With the attenuated interferon 723 

response at the cellular level, the virus may then employ the deISGylating and deubiquitinating 724 

activities of its papain-like protease to take over the host metabolic apparatus (28, 172, 173). 725 

Efficient viral replication may follow and result in cell damage through direct virus-induced 726 

cytolysis or immunopathology via dysregulated pro-inflammatory cytokine induction. 727 

 In addition to these in vitro data, the roles of the different branches of the innate immune 728 

response have been assessed in a limited number of animal models and patients. MERS-CoV 729 

infection is more severe in knockout C57BL/6 and BALB/c mice with impaired type I interferon 730 

or Toll-like receptor signaling than those with impaired RIG-I-like receptor signaling, suggesting 731 

that the former signaling pathways are more important for controlling the infection (174). The 732 

depletion of natural killer cells, a major cellular component of the innate immune response, does 733 

not significantly affect the clinical disease severity or viral clearance kinetics (174). In rhesus 734 

macaques, the innate immune response occurs and resolves very rapidly after MERS-CoV 735 

inoculation. A type I interferon response is observed on days 1 and 2 and disappears on day 3 736 

after infection (166, 175). Robust but transient up-regulation of the expression levels and 737 

elevated serum levels of proinflammatory cytokines and chemokines including interleukin-6 (IL-738 

6), chemokine (C-X-C motif) ligand 1 (CXCL1), and matrix metalloproteinase 9 (MMP9) are 739 

associated with chemotaxis and activation of neutrophils as evidenced by increased numbers of 740 

neutrophils in the blood and lungs of the infected animals (166). In humans who develop severe 741 
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MERS, significant differences are noted between the innate immune responses of fatal and non-742 

fatal cases. Compared to a patient who survived, a patient who died from MERS induced lower 743 

expression levels of RIG-I and MDA-5, which led to decreased expression levels of IRF3 and 744 

IRF7 (176). This was associated with a major decrease in the amount of mRNA and protein of 745 

interferon-α in serum and bronchoalvelolar lavage. Additionally, the antigen presentation 746 

pathway was broadly down-regulated and affected types I and II major histocompatibility 747 

(MHC) genes which were associated with significantly lower expression levels of the key 748 

cytokines involved in the activation of lymphocytes into CD4+ Th1 cells, including IL-12 and 749 

interferon-γ (176, 177). Increased levels of IL-17A and IL-23 in the serum and bronchoalveolar 750 

lavage within the first week after symptom onset, and persistent uncontrolled secretion of the 751 

type-1 interferon-triggered CXCL10 and IL-10 beyond the first week after symptom onset, were 752 

noted in fatal MERS cases and might be associated with poor outcome as in SARS and other 753 

respiratory viral infections (176, 178-181). A poorly coordinated innate immune response with 754 

ineffective activation of the adaptive immune response that failed to clear MERS-CoV viremia 755 

appeared to be associated with fatal outcome (176, 182). 756 

 757 

Adaptive Immune Response 758 

Systematic study on the adaptive immune response to MERS in large cohorts of human cases is 759 

lacking. T-cell or combined T- and B-cell deficiencies, but not B-cell deficiency, were found to 760 

be associated with persistent infections and lack of virus clearance in C57BL/6 and BALB/c 761 

mice transduced with adenoviral vectors expressing human DPP4, highlighting the important 762 

role of T cells in acute clearance of MERS-CoV (174). In terms of antibody-mediated immunity 763 

which is essential for protection against subsequent challenge by the virus, the CD8 T-cell 764 



35 
 

response to the immunodominant epitopes located in the MERS-CoV S protein is shown to peak 765 

at days 7 to 10 post-infection and exhibits only low level of cross-reactivity with the T-cell 766 

response to SARS-CoV infection (174). In rhesus macaques infected with MERS-CoV, serum 767 

neutralizing antibodies are detected on as early as day 7 post-infection, reaching a peak titer on 768 

day 14 post-infection, and decreasing slightly in titer on day 28 post-infection. In patients with 769 

MERS, high titers of serum neutralizing antibodies can be detected on day 12 and persist for at 770 

least 13 months after symptom onset (66, 72, 81, 183). Both IgM and IgG against S and N 771 

proteins are detectable in the sera of infected patients on day 16 after symptom onset, with the 772 

titer of IgG being at least 10 times higher than that of IgM, suggesting that the initial IgM 773 

antibody response is likely mounted before this time period (72). IgG titers peaked at three 774 

weeks after symptom onset, while IgM titers remained elevated between two to five weeks after 775 

symptom onset in a patient (184). Notably, serum anti-MERS-CoV antibodies were undetectable 776 

in a patient who died on days 26 and 32 after symptom onset, suggesting that inadequate 777 

antibody response may be associated with poor clinical outcome (66). The exact onset and 778 

changes in titer of serum neutralizing anti-MERS-CoV antibodies should be further evaluated in 779 

subsequent clinical cohorts consisting of patients with different severities and outcomes. 780 

Moreover, given the in vitro observation that the viral fitness and evolution may be restricted by 781 

the immunodominance of the anti-MERS-CoV-RBD neutralizing antibody response that blocks 782 

binding to human DPP4, B cell-associated antibodyome studies from MERS patients should be 783 

performed to further assess the role that immunoglobulin polymorphisms play in determining the 784 

protective antibody repertoire and clinical outcomes (40). 785 

 786 

Organ-Specific Pathology and Systemic Virus Dissemination 787 
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Although in vitro cell line studies and even ex vivo organ cultures may not completely represent 788 

in vivo scenarios, they have provided insightful clues to explain the pathogenesis involved in the 789 

pulmonary and extrapulmonary manifestations of MERS, before findings from animal models 790 

and post-mortem examination are available (Table 6). The in vitro observation that MERS-CoV 791 

replicates more efficiently in a variety of lower respiratory tract cell lines than in upper 792 

respiratory tract cell lines, and the inability of the human bronchial epithelium to mount a timely 793 

and adequate innate immune response against MERS-CoV infection in the absence of 794 

professional cytokine-producing cells including dendritic cells and macrophages may partially 795 

explain the high incidence of severe cases in MERS (116, 157, 171, 185-188). The finding in ex 796 

vivo culture systems that MERS-CoV is capable of infecting most cell types of the human 797 

alveolar compartment including non-ciliated and possibly ciliated epithelial cells, types I and II 798 

pneumocytes, and endothelial cells of pulmonary vessels further supports the notion that all the 799 

host cell factors necessary for viral replication are available in the human lung (187, 189-191). 800 

Additionally, MERS-CoV can also infect pulmonary vascular endothelial cells and lung 801 

macrophages, which corroborates with the clinical observation of systemic dissemination of the 802 

virus with viremia in severe cases (191). 803 

 Besides lower respiratory tract cells, MERS-CoV also exhibits a peculiar tropism for 804 

renal cells that is not seen in any other CoVs associated with human infections and not 805 

explainable by the expression of their respective host cell receptors. Avian nephropathogenic 806 

infectious bronchitis virus may cause lymphoplasmacytic interstitial nephritis, but rarely 807 

pneumonia, in broiler chickens (192). MERS-CoV replicates efficiently to about 5 logs above the 808 

baseline titer with abundant N protein expression and prominent cytopathic effects (CPE) within 809 

72 hours after infection in human embryonic kidney cells (116). In primary kidney epithelial 810 
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cells and primary bronchial epithelial cells infected with either MERS-CoV or SARS-CoV, 811 

pronounced CPE with rounding, detachment, and death of the majority of cells occur only in 812 

primary kidney epithelial cells infected with MERS-CoV, although viral replication was 813 

detectable with both viruses (157). The concentration of infectious MERS-CoV progeny in 814 

primary kidney epithelial cells was almost 1000-fold higher than that in primary bronchial 815 

epithelial cells (157). Together with the clinical observation that MERS-CoV RNA may be 816 

detectable in the urine without viremia after almost 2 weeks of symptom onset, these in vitro 817 

findings suggest that the kidney may be a potential site of autonomous virus replication (72, 818 

157). Comparable findings are also observed in many bat and primate kidney cell lines, although 819 

clinical disease in these animals is much milder than in humans and viral RNA is not detectable 820 

in the kidneys of infected rhesus macaques (116, 117). As in the case of ex vivo lung cultures, it 821 

would be important to elucidate the specific pathways involved in virus-host cell interactions 822 

affecting different cell types such as podocytes in the renal cortex and others in the medulla 823 

which are often involved in renal disease pathogenesis. 824 

 In view of the pronounced systemic inflammatory response with multi-organ involvement 825 

and hematological abnormalities seen in patients with MERS, the specific roles of immune cells 826 

in the pathogenesis of the disease have been investigated. Among the immune cells, human 827 

histiocytes efficiently support viral replication with N protein expression in vitro on as early as 828 

day 1 post-infection, while increased viral RNA levels without N protein expression are 829 

detectable in human monocyte and T lymphocyte cell lines (116). Correspondingly, ex vivo 830 

culture systems of human monocyte-derived dendritic cells and macrophages confirm that 831 

MERS-CoV can productively infect both of these important professional antigen-presenting cell 832 

types with high-level and persistent induction of immune cell-recruiting cytokines (191, 193). 833 
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This leads to recruitment and infiltration of a large number of immune cells into the infected lung 834 

tissues as is seen clinically. Moreover, the sequestration of lymphocytes at infected tissues 835 

resulting from the induction of CXCL10 and monocyte chemotactic protein 1 (MCP-1) may also 836 

explain marked peripheral lymphopenia that is commonly seen in MERS (191). Together with 837 

the wide distribution of DPP4 in different human cell types, the ability of MERS-CoV to hijack 838 

these professional antigen-presenting cells as vehicles for systemic dissemination to and 839 

induction of immunopathology at various organs may help to explain the unusually severe multi-840 

organ involvement in MERS.  841 

 842 

LABORATORY DIAGNOSIS 843 

There are no pathognomonic clinical, biochemical, or radiological features that reliably 844 

differentiate MERS from other causes of acute community- or hospital-acquired pneumonia. Due 845 

to the lack of Biosafety Level 3 (BSL-3) containment, nucleic acid amplification assays are the 846 

most widely used method to provide laboratory confirmation of MERS with a short turn-around 847 

time using a unified testing protocol that was established early on in the epidemic. The WHO 848 

criteria for a laboratory-confirmed case include either a positive RT-PCR result for at least two 849 

different specific targets on the MERS-CoV genome, or one positive RT-PCR result for a specific 850 

target on the MERS-CoV genome and an additional different RT-PCR product sequenced, 851 

confirming identity to known sequences of MERS-CoV (Table 8) 852 

(http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?u853 

a=1). Isolation of infectious MERS-CoV from respiratory tract specimens, and possibly also 854 

blood, urine, and fecal samples, also provides laboratory confirmation, but virus isolation has a 855 

longer turn-around time than nucleic acid amplification assays, requires experienced staff for 856 

http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
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interpretation of CPE and confirmation of infection by RT-PCR or immunostaining. Serological 857 

assays for detection of specific neutralizing anti-MERS-CoV antibodies in paired sera, taken at 858 

the acute and convalescent phases 14 to 21 days apart, also provides evidence of infection, but 859 

none of the serological assays developed so far has been thoroughly validated or compared 860 

against each other. Furthermore, viral culture and neutralizing antibody detection assays using 861 

whole virus require BSL-3 containment, which is not widely available in standard clinical 862 

microbiology laboratories. 863 

 864 

Specimen Collection 865 

The ideal clinical specimen for laboratory diagnosis is one which can be readily obtained by non-866 

invasive means and contains a large number of infected cells with high viral load. Although 867 

lower respiratory tract specimens including tracheal aspirate and bronchoalveolar lavage contain 868 

higher viral loads and genome yields than upper respiratory tract specimens and sputum, they 869 

require invasive procedures for collection and may not be easily obtainable in the early phase of 870 

illness (71, 72, 194). Therefore, upper respiratory tract specimens including nasopharyngeal 871 

aspirate or swabs, and oropharyngeal swabs are the most commonly collected specimens in 872 

suspected cases of MERS. Clinical specimens from extrapulmonary sites, especially urine, feces, 873 

blood, and/or tissues, may occasionally be positive and should also be collected if available, 874 

especially for their possible impact on infection control implementation (71, 72, 81, 176, 182). 875 

Notably, the diagnosis of MERS in a Tunisian patient was established by RT-PCR targeting the 876 

upE and N genes followed by nucleotide sequencing of RNA from a serum sample collected 10 877 

days after symptom onset, whereas his mini-bronchoalveolar lavage tested negative (74). As for 878 

the optimal timing of specimen collection, there is a lack of data on the viral shedding kinetics of 879 
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MERS-CoV in infected humans over time. Analysis of a limited number of laboratory-confirmed 880 

MERS cases suggests that the pattern may be more similar to that of SARS than that of other 881 

HCoV infections (195). Thus, the viral load of MERS-CoV in nasopharyngeal specimens may 882 

also peak in the second week of illness rather than at symptom onset (163, 182, 196, 197). 883 

Repeated testing of upper and preferably lower respiratory tract specimens at different time 884 

points should be performed in suspected cases of MERS even when the first samples have tested 885 

negative (77, 886 

http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua887 

=1). Virus shedding in the upper respiratory tract may be found in up to 30% of case contacts 888 

with minimal symptoms (198). Severe cases appear to have more prolonged virus shedding than 889 

mild cases (198). In critically ill patients who may have detectable MERS-CoV RNA in 890 

respiratory tract specimens and/or blood for more than three weeks, continued compliance with 891 

infection control measures is required during patient-care procedures as a precautionary measure 892 

despite the presence of serum neutralizing antibody (88, 176, 182, 184). Aerosol-generating 893 

procedures for specimen collection should be performed under strict compliance with droplet 894 

precautions along with additional measures including the wearing of a N95 respirator, eye shield, 895 

long-sleeved gown and gloves in an adequately ventilated room 896 

(http://www.who.int/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13.pdf?ua=1). 897 

The specimens should be sent to the laboratory in viral transport medium as soon as possible 898 

after collection, or be stored at -80
o
C if delay in transfer was expected 899 

(http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?u900 

a=1). 901 

 902 

http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
http://www.who.int/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13.pdf?ua=1
http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
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Nucleic Acid Amplification Assays 903 

With the successful isolation and propagation of MERS-CoV and sequencing of its complete 904 

genome early in the epidemic, specific primers and a standardized laboratory protocol were 905 

rapidly developed and evaluated (199). Several gene targets can be used for RT-PCR as 906 

screening and/or confirmatory testing for MERS-CoV (Table 8). The most widely adopted 907 

approach uses the upE assay as a screening test, followed by the ORF1a or the ORF1b assays as 908 

confirmation. If the ORF1a assay or the ORF1b assay is negative or equivocal despite a positive 909 

upE assay, further testing of other specific gene targets, including the N, RdRp, and/or S genes, 910 

followed by amplicon sequencing, should be performed. If further testing is not available, but the 911 

patient had a compatible epidemiological and clinical history, then the case is considered to be a 912 

probable case of MERS 913 

(http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?u914 

a=1). Notably, assays targeting the abundant N gene may be more sensitive than those targeting 915 

the other genes, although direct comparison with the upE assay in human clinical specimens has 916 

not been performed (133). However, a 6-nt deletion was found in N gene of the strain from the 917 

second laboratory-confirmed patient when compared to the one obtained from the first patient, 918 

and therefore potential false-negative results due to mutations in this region may occur (62). For 919 

all positive cases, a second sample should preferably be tested to exclude false-positive results 920 

due to amplicon carryover. Other novel diagnostic approaches for MERS which have short 921 

turnaround times, high sensitivities and specificities include reverse transcription loop-mediated 922 

isothermal amplification and reverse transcription isothermal recombinase polymerase 923 

amplification assays which may be useful in areas without easy access to laboratories equipped 924 

with RT-PCR and/or sequencing technologies (200, 201). Further validation using more clinical 925 

http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
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specimens is required to assess their field performance. 926 

 927 

Antibody Detection Assays 928 

A number of assays for detection of non-neutralizing and neutralizing antibodies to MERS-CoV 929 

proteins have been developed but require further validation because some antibodies against 930 

βCoVs are generally known to cross-react within the genus (Table 9). Indeed, cross-reacting 931 

antibodies have been found not only in immunofluorescence assays, but also in virus 932 

neutralization tests, which are considered to be the most specific method of antibody detection 933 

(202, 203). Therefore, the European Centre for Disease Prevention and Control recommends 934 

against testing for immunofluorescent antibodies unless convalescent plasma is available to look 935 

for 4-fold increase in antibody titer because false positive results may arise in single tests. Cases 936 

with positive serology in the absence of PCR testing or sequencing should be considered 937 

probable only if they meet the other criteria of the case definition 938 

(http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?u939 

a=1). Nevertheless, antibody detection assays are important for retrospective diagnosis in 940 

clinically and epidemiologically suspicious cases with negative molecular test results, 941 

particularly in those with only upper respiratory tract specimens being tested. It can also be used 942 

for monitoring the evolution of epidemics in human and animal seroepidemiological studies, and 943 

contact tracing in outbreak investigations (126). The development of high throughput, non-whole 944 

virus-based assays such as enzyme-linked immunosorbent and pseudoparticle neutralization 945 

assays that do not required BSL-3 containment facilities may increase their utility especially in 946 

rural parts of the Middle East and other affected areas. 947 

 948 

http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
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Antigen Detection Assays 949 

The development of antigen detection assays for MERS-CoV has only been reported in 950 

histopathological confirmation in infected tissues of animals and in cell cultures with positive 951 

CPE (166, 167, 174). Possible approaches include antigen detection with monoclonal antibodies 952 

or monospecific polyclonal antibodies against the abundantly expressed N protein using either 953 

enzyme immunoassay or immunofluroescence assay. These methods were found to be highly 954 

sensitive and specific for the laboratory diagnosis of SARS from sera and nasopharyngeal 955 

samples, and have the potential advantages of being non-labor-intensive and relatively high 956 

throughput without requiring a BSL-3 containment facility (3). More information on the timing 957 

of serum neutralizing antibody kinetics and viral shedding patterns in different clinical 958 

specimens is required to optimize these antigen detection assays.  959 

 960 

Viral Culture 961 

In contrast to other CoVs causing human infections, which are difficult to culture in in vitro 962 

systems, MERS-CoV grows rapidly in a wide range of human and non-human cell lines (Table 963 

6) (116-118). Indeed, the first identification of MERS-CoV was achieved by inoculation of the 964 

patient’s sputum sample in monkey kidney cell lines, including LLC-MK2 and Vero cell lines, 965 

for detection of CPE, before specific nucleic acid amplification assays were developed (9). 966 

MERS-CoV produces focal CPE with rounded refractile cells in various susceptible cell lines on 967 

day 5 after inoculation during primary isolation, and on as early as day 1 on subsequent passage 968 

(116). These changes then spread throughout the cell monolayers, leading to rounding and 969 

detachment of cells within 24 to 48 hours. Additionally, syncytium formation caused by fusion 970 

activity of the viral spike protein at neutral pH may be observed in LLC-MK2, Calu-3, Caco-2, 971 
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and Huh-7 cell lines, and Vero cells expressing TMPRSS2 (9, 52, 58, 116). Transmission 972 

electron microscopy of MERS-CoV-infected cells shows CoV-induced membrane structures that 973 

support RNA synthesis, including convoluted membranes surrounded by double-membrane 974 

vesicles measuring 150 to 320 nm with dense inner cores, in the perinuclear region, which is 975 

typical of cellular changes of CoV infection (58). Although the clinical use of viral culture for 976 

MERS-CoV is limited by the lack of BSL-3 facilities in most satellite hospitals, the ease of 977 

growing the virus in cell culture systems has greatly facilitated study on its pathogenesis and 978 

development of antiviral agents in reference research laboratories. 979 

 980 

CLINICAL MANAGEMENT AND ANTIVIRALS 981 

As in the case of other human CoV infections including SARS, specific antiviral agents with 982 

proven efficacy in randomized controlled trials are lacking for MERS (204, 205). Supportive 983 

care remains the mainstay of treatment for severe MERS cases with respiratory failure and 984 

extrapulmonary complications. ECMO has been increasingly used in severe viral pneumonia 985 

including some cases of MERS (18, 71, 153, 154, 156, 206). However, procedure-related factors 986 

such as the requirements of technical expertise and specific equipment, and patient factors 987 

including the presence of multiple comorbidities and coagulopathy may limit its use especially 988 

among patients in rural parts of the Middle East and Africa. Other forms of assisted ventilation 989 

and pulmonary rescue therapy, including mechanical ventilation using a lung protective strategy 990 

with a small tidal volume, non-invasive positive pressure ventilation, and inhaled nitric oxide 991 

have been tried for SARS and influenza with ARDS (3, 153). However, data on their efficacies in 992 

MERS are lacking (88, 207). Due to the apparently high incidence of acute and acute-on-chronic 993 

renal failure in patients with severe MERS, renal replacement therapy has been frequently used, 994 
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and was essential for tiding the patient over the oliguric phase (64, 88, 207). Circulatory failure 995 

is supported by the use of inotropes and volume expansion (207). Broad-spectrum antibacterials 996 

and neuraminidase inhibitors against influenza are used empirically before the diagnosis of 997 

MERS is established (207). Antimicrobials guided by interval surveillance or sepsis work-up 998 

should be used to treat secondary nosocomial infections in those with prolonged hospitalization 999 

and invasive ventilation, and opportunistic infections in patients who are immunocompromised, 1000 

especially those who receive corticosteroid for immunomodulation. As in SARS, 1001 

immunosuppressive dose of corticosteroid therapy should not be given because of its potential 1002 

side effects and immunosuppression. Only stress dose of corticosteroid should be considered in 1003 

patients with refractory shock and relative adrenal insufficiency 1004 

(http://www.who.int/csr/disease/coronavirus_infections/InterimGuidance_ClinicalManagement_1005 

NovelCoronavirus_11Feb13u.pdf?ua=1). 1006 

 The improvement in outcome of MERS with a case-fatality rate of over 30% depends on 1007 

the development of effective antiviral treatment for suppression of viral load. Candidate antiviral 1008 

agents are identified using three general approaches (Table 10). The first and fastest approach is 1009 

to test drugs with broad-spectrum antiviral activities including those with reported activities 1010 

against other CoVs associated with human infection, particularly SARS-CoV. This approach has 1011 

identified numerous agents with known antiviral mechanisms. Examples include interferons, 1012 

ribavirin, and cyclophilin inhibitors (58, 208, 209). Type I interferons, which are important in the 1013 

innate immunity against CoV infection, exhibit anti-MERS-CoV activity in various cell lines and 1014 

also rhesus macaques. MERS-CoV is 50 to 100 times more sensitive to pegylated interferon-α 1015 

than SARS-CoV in cell culture (58). Moreover, the combination of interferon-α2b and ribavirin, 1016 

a purine nucleoside analogue that inhibits guanosine triphosphate synthesis and viral RNA 1017 

http://www.who.int/csr/disease/coronavirus_infections/InterimGuidance_ClinicalManagement_NovelCoronavirus_11Feb13u.pdf?ua=1
http://www.who.int/csr/disease/coronavirus_infections/InterimGuidance_ClinicalManagement_NovelCoronavirus_11Feb13u.pdf?ua=1
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polymerase activity that has been widely used to treat SARS, has exhibited synergistic effects 1018 

against MERS-CoV in cell cultures (209, 210). In rhesus macaques infected with MERS-CoV, 1019 

this combination reduces virus replication, moderates host inflammatory response, and improves 1020 

clinical outcome (175). However, the regimen’s efficacy in humans remains uncertain. In a small 1021 

cohort of MERS cases in KSA, all five patients who received a combination of interferon-α2b, 1022 

ribavirin, and corticosteroid died. The delayed commencement of the antiviral regimen of at least 1023 

two weeks after symptom onset in these patients might have reduced treatment benefit, as 1024 

another patient who received treatment early on the day of admission survived, though MERS-1025 

CoV RNA remained detectable in his sputum samples until day 12 of treatment (211). A more 1026 

recent retrospective cohort study showed that 20 severe adult MERS patients who received oral 1027 

ribavirin and pegylated interferon-α2a (Pegasys; Roche Pharmaceuticals, Basel, Switzerland) for 1028 

8 to 10 days (initiatied on a median of 3 days after diagnosis) had significantly better survival 1029 

rates at 14 days but not at 28 days after diagnosis as compared to 28 historical controls who 1030 

received supportive care only (207). Possible reasons for the lack of long-term survival benefit in 1031 

the treatment group include the small number of patients in the study and the fact that both 1032 

ribavirin and pegylated interferon have high EC50 against MERS-CoV relative to their peak 1033 

serum concentrations achievable at clinically relevant dosages. Cyclophilin inhibitors, such as 1034 

cyclosporine A, are known to have antiviral activity against numerous human and animal 1035 

coroanviruses including SARS-CoV. However, the clinical relevance of cyclosporin A for 1036 

treating MERS is likely limited as the drug’s peak serum level achievable with clinically relevant 1037 

dosages is below its EC50 for MERS-CoV (58).  1038 

 The second approach to identify candidate antivirals for MERS involves screening of 1039 

chemical libraries that comprise large numbers of existing drugs or databases that contain 1040 
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information on transcriptional signatures in different cell lines. The advantages of this approach 1041 

include the commercial availability, known pharmacokinetics, and well-reported safety profiles 1042 

of the identified drugs. The first agent with potent in vitro anti-MERS-CoV activity identified by 1043 

this method was mycophenolic acid, an anti-rejection drug used in organ transplantation with 1044 

broad-spectrum antiviral activities that acts by inhibiting inosine-5’-monophosphate 1045 

dehydrogenase and depleting the lymphocyte guanosine and deoxyguanosine nucleotide pools 1046 

(210). The combination of mycophenolic acid and interferon-β1b shows synergistic activity 1047 

against MERS-CoV in Vero cells. The desirable pharmacokinetics of mycophenolic acid 1048 

compared to ribavirin warrants further evaluation, although the potential inhibitory effect on the 1049 

immune system and therefore neutralizing antibody production should be fully assessed in 1050 

animal models before use in humans. The very low EC50 when compared with the peak serum 1051 

level achieved at routine clinical dosages suggests that even a very low dose may be effective 1052 

without inducing significant immunosuppression. A fatal case of MERS was reported in a renal 1053 

transplant recipient who was receiving anti-rejection therapy consisting of prednisone, 1054 

mycophenolate mofetil, and cyclosporine, but the dosage, serum drug level of mycophenolate 1055 

mofetil, and the resulting lymphocyte count were not reported (68, 176). Following the 1056 

identification of mycophenolic acid as an inhibitor of MERS-CoV replication in vitro, many 1057 

other drugs have been found to exhibit in vitro anti-MERS-CoV activity in Vero and/or Huh-7 1058 

cells using a similar drug discovery approach. These drugs belong to a number of major 1059 

pharmacological categories including peptidic or small-molecule HIV entry inhibitors, 1060 

antiparasitics, antibacterials, and inhibitors of clathrin-mediated endocytosis, neurotransmitters, 1061 

estrogen receptor, kinase signaling, lipid or sterol metabolism, protein processing, and DNA 1062 

synthesis or repair (41, 177, 212-215). However, none of them has been tested in animal models 1063 
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for MERS, and many of them have doubtful clinical relevance in human infection because of 1064 

unachievable peak serum levels in relation to their EC50 against MERS-CoV. Two notable 1065 

exceptions which warrant further evaluation in clinical trials are lopinavir and chloroquine. 1066 

Lopinavir, which is routinely available as a lopinavir/ritonavir combination, shows inhibitory 1067 

effects on MERS-CoV infection in vitro in Huh-7 cells at concentrations observed in blood 1068 

during clinical use and has a well established toxicity profile (212, 213, 1069 

http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317139281416). Moreover, 1070 

lopinavir/ritonavir has been used successfully in the treatment of SARS in a case-control study 1071 

(216). Viremia resolved after two days of combinational lopinavir/ritonavir, pegylated interferon, 1072 

and ribavirin therapy in a MERS patient (184). However, virus shedding in the airway was 1073 

persistent despite treatment (184). Chloroquine is an anti-malarial drug that inhibits MERS-CoV 1074 

in vitro in Huh-7 and Vero E6 cells at a concentration achievable by standard clinical oral dosage 1075 

through multiple possible mechanisms including inhibition of the pH-sensitive cathepsin L cell 1076 

entry pathway through elevation of endosomal pH (212, 213, 217, 1077 

http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317139281416). However, previously 1078 

chloroquine has not been shown to work in BALB/c mice infected by SARS-CoV, possibly due 1079 

to the lack of inhibition of other cell entry pathways utilized by the virus (218). 1080 

 The third approach to identify treatment for MERS requires the development of 1081 

specific antiviral agents based on novel insights into the viral genome and structural biology of 1082 

MERS-CoV (219, 220). Understandably, the development of such candidate drugs is more time-1083 

consuming than that of the first two approaches. However, these tailor-made antiviral agents 1084 

represent the most specific and possibly most effective therapeutic options against MERS-CoV. 1085 

Of particular interests are agents that target the MERS-CoV S protein, which has essential roles 1086 

http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317139281416
http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317139281416
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in virus-host cell receptor interaction and immunogenicity. A number of potent monoclonal 1087 

antibodies targeting different epitopes on the RBD in the S1 subunit of the MERS-CoV S protein 1088 

have been identified by biopanning of ultra-large non-immune human antibody libraries 1089 

displayed in yeast or phage baited by the RBD (37-40). These monoclonal antibodies bind to the 1090 

RBD with 10- to 450-fold higher affinity than does the RBD to the human DPP4, conferring 1091 

broader and higher neutralizing activity. The production of these monoclonal antibodies in high 1092 

titers may help to overcome the potential cultural hurdle in collecting large amounts of 1093 

convalescent plasma from patients in the Middle East and the possibility of adverse outcomes 1094 

associated with immune enhancement with low antibody titer previously observed in in vitro and 1095 

animal experiments on SARS (221, 222). Moreover, possible selection of virus mutants capable 1096 

of escaping from antibody-mediated neutralization may be mitigated by using divergent 1097 

combinations of two or more synergistically acting neutralizing monoclonal antibodies that target 1098 

non-cross-resistant epitopes on the RBD (40). In vitro inhibition of S protein-mediated cell-cell 1099 

fusion and virus entry into host cell can also be achieved by specially designed antiviral peptides 1100 

that span the sequence of the HR2 domain of the S2 subunit of the MERS-CoV S protein. 1101 

Analogus to the HIV fusion inhibitor Enfuvirtide which binds to glycoprotein 41 of HIV to block 1102 

membrane fusion and virus entry, the MERS-CoV antiviral peptides block the fusion process of 1103 

MERS-CoV by preventing the interaction between the HR1 and HR2 domains required for the 1104 

formation of the heterologus six-helix bundle in viral fusion core formation (44, 45). Other drug 1105 

candidates that target specific enzymes of MERS-CoV include inhibitors of viral proteases and 1106 

helicase. The rapid determination of crystal structure for these enzymes have facilitated the 1107 

development of candidate drugs to be further tested in animal studies to evaluate their 1108 

pharmacokinetics and in vivo inhibitory effects, especially in view of the reported mutations in 1109 
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the papain-like protease of recently circulating MERS-CoV strains (146, 223-226). Inhibition of 1110 

MERS-CoV infection can also be achieved by agents that target the functional host cell receptor 1111 

DPP4. Because of the abundance of DPP4 in epithelial and endothelial cells, high titers of 1112 

monoclonal antibodies against specific binding regions of DPP4, but not the commercially 1113 

available reversible, competitive DPP4 antagonists such as sitagliptin, vildagliptin, and 1114 

saxagliptin, efficiently inhibit virus-cell receptor interaction (46, 50). Agents that manipulate the 1115 

levels of adenosine deaminase, a natural DPP4 antagonist, may also be considered (49). The 1116 

clinical efficacy of anti-DPP4 monoclonal antibodies and adenosine deaminase analogues 1117 

remains uncertain because expression of catalytically inactive DPP4 still allows for MERS-CoV 1118 

infection in vitro (227). Furthermore, the risk of physiological disturbances, immunopathology, 1119 

and T cell suppression should be assessed in animal studies given the wide distribution of DPP4 1120 

in different human cell types and its multiple essential metabolic and immunological functions 1121 

(228, 229). Alternatively, inhibitors of host cellular proteases including TMPRSS2 and 1122 

cathepsins, which affect virus entry into host cells, may be considered. However, the recent 1123 

finding that cathepsin activity is essential for Ebola virus infection in cell lines but not for viral 1124 

spread and pathogenesis in mice highlights the necessity to confirm the roles of cellular protease 1125 

inhibitors in in vivo spread of MERS-CoV (230, 231). Alternative host proteases that cleave the 1126 

MERS-CoV S protein should also be searched to broaden the range of existing antiviral options 1127 

(51). 1128 

 1129 

INFECTION CONTROL AND LABORATORY SAFETY 1130 

Similar to epidemics caused by other novel emerging respiratory viruses with no herd immunity 1131 

in the general population and limited effective treatment and immunization options, infection 1132 



51 
 

control measures to interrupt the chain of transmission remains the cornerstone to control the 1133 

MERS epidemic (3, 4, 153, 232-234). Based on the available epidemiological data, the scenario 1134 

is most compatible with a combination of animal-to-human and person-to-person transmission. 1135 

In endemic regions, multi-source sporadic animal-to-human transmissions occur in the 1136 

community, which may be amplified under special circumstances such as the breeding seasons of 1137 

dromedary camels. These primary infections may be followed by limited non-sustained person-1138 

to-person transmission among unprotected household contacts (67, 70, 73). When the patients are 1139 

hospitalized, the infection is introduced into the healthcare setting where lapses in infection 1140 

control measures culminate in large healthcare-associated outbreaks (66, 68, 71, 75, 235). The 1141 

infection can then be disseminated beyond the Middle East by air travel of infected patients 1142 

seeking medical care in other non-endemic countries (150, 236, 237). 1143 

 In the community setting, the primary goals of infection control are to identify and 1144 

segregate all zoonotic reservoirs and infected humans from immunologically naive persons. 1145 

Besides dromedary camels, bats, and hedgehogs, other livestock species prevalent in the Middle 1146 

East should be further surveyed by validated serological and virological tests to exclude 1147 

unrecognized MERS-CoV infection. Before these data are available, residents in and travelers to 1148 

the endemic regions should generally avoid contacting sick animals and especially camels. 1149 

Contact with environments contaminated with animal bodily fluids, tissues, or feces should be 1150 

avoided as MERS-CoV may be transmitted via direct contact or fomite due to prolonged 1151 

environmental survival lasting for at least 48 hours at 20
o
C in 40% relative humidity, and 24 1152 

hours at 30
o
C in 30% relative humidity (145, 238). Consumption of unpasteurized camel milk 1153 

should be cautioned against, as MERS-CoV may possibly be shed and survive in the milk of 1154 

camels with active nasal or fecal virus shedding (143, 144). Early recognition of human cases 1155 
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can be achieved by public education and dissemination of diagnostic tests to healthcare facilities. 1156 

Testing should be performed even among asymptomatic or mildly symptomatic persons with 1157 

known exposures to potential animal reservoirs or laboratory-confirmed human cases. They 1158 

should also undergo medical surveillance and quarantine in healthcare facilities or at home until 1159 

the incubation period is over 1160 

(http://www.who.int/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13.pdf?ua=1). 1161 

Air travel should be restricted for laboratory-confirmed cases unless it is necessary to transfer the 1162 

patient to other countries for medical care. In such cases, compliance with infection control 1163 

measures including hand hygiene, wearing of personal protective equipment, and standard and 1164 

transmission-based precautions should be applied by the aircraft staff and accompanying medical 1165 

personnel. Though there is no documented in-flight transmission of MERS-CoV so far, the risk is 1166 

estimated to be one new infection in a five-hour flight in first class, and 15 infections from a 1167 

“super-spreader” in a 13-hour flight in economy class (236). Temperature checks at borders and 1168 

health declarations for travelers are used in some regions, but their value in controlling 1169 

international spread is unproven. The Hajj, which attracts millions of pilgrims from over 180 1170 

countries to gather in Mecca every year, poses a theoretical risk of causing massive outbreaks of 1171 

MERS as in the super-spreading events of SARS. Though MERS has not been reported among 1172 

pilgrims attending the annual Hajj in 2012 and 2013, the small number of subjects tested and the 1173 

lack of samples collected during the pilgrimage are major limitations of the few surveillance 1174 

studies conducted so far (239-241). Thus, persons at risk of developing severe infection should 1175 

consider postponing the Hajj until the epidemic is under control (242, 243). 1176 

 In the hospital setting, triage, early diagnosis, compliance with appropriate infection 1177 

control measures, prompt isolation of suspected cases, and timely contact tracing of case contacts 1178 

http://www.who.int/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13.pdf?ua=1
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are the key strategies to prevent nosocomial transmission. Indeed, the disappearance of the three 1179 

clades of MERS-CoV found earlier in the epidemic suggests the possible effects of enhanced 1180 

surveillance and early isolation of human cases in successfully interrupting person-to-person 1181 

transmission (146). In addition to standard, contact, and droplet precautions, airborne precautions 1182 

should be applied for aerosol-generating procedures such as intubation, non-invasive ventilation, 1183 

manual ventilation before intubation, bronchoscopy, tracheostomy, and suctioning of the airway 1184 

(244, 1185 

http://www.who.int/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13.pdf?ua=1). 1186 

Designated healthcare workers and disposable equipments for managing laboratory-confirmed 1187 

cases in adequately ventilated single rooms or airborne infection isolation rooms should be 1188 

considered to limit the number of exposed contacts. All healthcare workers caring for patients 1189 

with suspected or confirmed MERS should undergo medical surveillance with daily temperature 1190 

checks and monitoring of the development of acute respiratory symptoms. Quarantine after 1191 

unprotected exposure is necessary to prevent unrecognized asymptomatic infection that may 1192 

serve as the source of nosocomial and community outbreaks (70). The duration of observation 1193 

should last for at least two incubation periods as applied in the medical surveillance of other 1194 

respiratory tract infections such as pandemic influenza A/H1N1/2009 (245). Although it has been 1195 

suggested that transmission-based precautions for MERS patients may be stopped 24 hours after 1196 

the resolution of symptoms, laboratory testing to exclude persistent virus shedding should be 1197 

conducted as viral RNA can be detected in the respiratory tract specimens and/or blood of 1198 

critically ill patients for over three weeks after symptom onset (88, 176, 182, 184, 211). Rarely, 1199 

asymptomatic cases may also have prolonged virus shedding for more than five weeks after case 1200 

contact (246). The infectivity of such prolonged viral shedding should be further evaluated to 1201 

http://www.who.int/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13.pdf?ua=1
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optimize infection control strategies. Patients who have no evidence of pneumonia or who have 1202 

recovered from pneumonia but remain positive for MERS-CoV RNA by RT-PCR may be 1203 

discharged from the hospital and isolated at home under appropriate supervision (247). 1204 

Collection of potentially infectious specimens should be performed by trained staff wearing 1205 

appropriate personal protective equipment. The specimens should be transported in leak-proof 1206 

double containers by hand instead of pneumatic-tube systems 1207 

(http://www.who.int/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13.pdf?ua=1). 1208 

To prevent laboratory-related outbreaks as reported in SARS, all laboratories handling live 1209 

MERS-CoV should strictly comply with WHO standards for BSL-3 laboratories. 1210 

  1211 

VACCINATION 1212 

Active Immunization 1213 

Active immunization to protect at-risk humans and camels is a research priority in the control of 1214 

MERS because of the lack of herd immunity and effective antivirals for humans. Based on 1215 

previous experience gained from vaccine design for SARS, which shows the S protein to be one 1216 

of the major immunogenic components of CoVs, a number of vaccines that target the S protein 1217 

of MERS-CoV are being developed and evaluated in cell culture or animal experiments (Table 1218 

11). A viral vector-based vaccine using recombinant modified vaccinia virus Ankara expressing 1219 

full-length MERS-CoV S protein induced high levels of neutralizing antibodies in BALB/c mice 1220 

after intramuscular immunization (248). The possibility of induction of immunopathology as in 1221 

the case of a similar viral vector-based vaccine for SARS that led to enhanced hepatitis in ferrets 1222 

needs to be carefully assessed in subsequent investigations (222). Alternatively, several candidate 1223 

http://www.who.int/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13.pdf?ua=1
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recombinant vaccines containing either full-length MERS-CoV S protein or the RBD of the S1 1224 

subunit have been studied for their theoretical advantages of safety and ease of consistent 1225 

production based on constant conditions and well-defined immunogenic fragments. A 1226 

baculovirus-based expression system and a Venezuelan Equine Encephalitis Replicon Particles 1227 

approach have been successfully applied for the development of full-length MERS-CoV S 1228 

protein-based recombinant vaccines (174, 249). Identification and exclusion of non-neutralizing 1229 

epitopes in the immunopredominant domain of the MERS-CoV S protein may help to reduce the 1230 

risk of antibody-mediated disease enhancement during future optimization of these vaccines 1231 

(250). RBD-based subunit vaccines have elicited neutralizing activity against MERS-CoV in cell 1232 

culture-based assays, BALB/c mice, and rabbits (31, 34, 36, 42, 251). Among five different 1233 

available RBD constructs, a truncated 212-aa fragment at residues 377 to 588 of RBD fused with 1234 

human IgG Fc fragment (S377-588-Fc) showed the highest DPP4-binding affinity and induced 1235 

the highest titers of IgG and neutralizing antibodies in BALB/c mice and rabbits respectively 1236 

(36). Intranasal vaccination of this S377-588-Fc showed stronger systemic cellular and local 1237 

mucosal responses as compared to subcutaneous vaccination (43). Future research directions for 1238 

these promising subunit vaccine candidates include the optimization of adjuvant substances 1239 

which are required to increase the immunogenicity of subunit vaccines (252), and the inclusion 1240 

of chimeric S proteins containing multiple neutralizing epitopes from divergent subgroups, as 1241 

there are considerable variations in the receptor-binding subdomain region of S1 within 1242 

subgroups of MERS-CoV and across different CoV groups (202). 1243 

 1244 

Passive Immunization 1245 
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Passive immunization using convalescent plasma or hyperimmune globulin with high titers of 1246 

neutralizing antibody has been used for emerging respiratory viral infections including SARS 1247 

and pandemic influenza A/H1N1/2009 with relatively few side effects (253-256). The clinical 1248 

use of such therapy for MERS has not yet been evaluated in randomized controlled trials. 1249 

MERS-CoV-S-driven transduction in Caco-2 cells is inhibited by convalescent patient serum in a 1250 

concentration-dependent manner (51). In BALB/c mice transduced by adenoviral vectors 1251 

expressing human DPP4, adoptive transfer of sera containing anti-MERS-CoV-S antibodies 1252 

blocked virus attachment and accelerated virus clearance (174). The increasing number of 1253 

patients recovering from MERS and enhanced international collaboration for the preparation of 1254 

convalescent plasma samples will accelerate the availability of passive immunization before 1255 

neutralizing monoclonal antibodies become commercially available. 1256 

  1257 

ANIMAL MODELS AND ANIMALS SUSCEPTIBLE TO MERS-CoV 1258 

Contrary to SARS-CoV which can cause infection in a diverse range of susceptible mammalian 1259 

species, studies on MERS-CoV have been limited by the lack of animal models which are 1260 

representative of MERS in humans (Table 12). The Koch’s postulates for MERS-CoV as a 1261 

causative agent of MERS were fulfilled with a primate model using rhesus macaques, which 1262 

demonstrated mild to moderate clinical and histopathological features as compared to the 1263 

infection in humans (165). However, clinical signs varied between animals, and were usually 1264 

transient, lasting for only 3 days or less in most animals, which corroborated with the robust but 1265 

self-limiting inflammatory response and leukocyte activation in blood and lungs of tested 1266 

animals (166). Recently, common marmosets were also found to be susceptible to MERS-CoV 1267 

infection and resembled moderate to severe MERS in humans with viremia and disseminated 1268 
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infection as evidenced by the presence of viral RNA in blood and multiple organs (168). 1269 

Nevertheless, extrapulmonary manifestations that are commonly seen in human cases of MERS, 1270 

such as acute renal failure and diarrhea, were absent in both the rhesus macaque and common 1271 

marmoset models. Jamaican fruit bats infected with MERS-CoV do not develop clinical signs of 1272 

infection despite having respiratory and intestinal tract virus shedding up to day 9 post-infection 1273 

(257). Large animals including camels and goats were also found to be susceptible to MERS-1274 

CoV infection, but they developed predominantly upper respiratory tract symptoms without 1275 

pneumonia (257-259). Unlike human infection in which feces and urine might be positive for 1276 

viral RNA, the extrapulmonary specimens of infected camels and goats were negative. Most 1277 

small animal models that worked for SARS-CoV, including BALB/c mouse, Syrian hamster, and 1278 

ferret, were not susceptible to MERS-CoV infection. Infected animals had minimal clinical signs, 1279 

no detectable virus in respiratory tract and extrapulmonary specimens, and did not have 1280 

seroconversion. These findings suggest that MERS-CoV fails to enter these host cells because of 1281 

variable DPP4 binding affinities for MERS-CoV S RBD among different species (48). A mouse 1282 

model using C57BL/6 and BALB/c mice with prior transduction of respiratory epithelial cells 1283 

with adenoviral vectors expressing human DPP4 inoculated with MERS-CoV intranasally 1284 

showed virological, immunological, and histopathological features compatible with interstitial 1285 

pneumonia, but the clinical signs were mild and evidence of infection was confined to the lungs 1286 

without extrapulmonary involvement (174). Furthermore, it requires infection of the mice with 1287 

the adenoviral vectors prior to every experiment, and it is unknown whether the differences in 1288 

the targeted cells between the murine and human lungs may affect the immunological response 1289 

and clinical progress after infection. Nonetheless, this inhaled-adenoviral vector method allows 1290 

the quick use of a wide variety of pre-existing genetically modulated mice with 1291 
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immunodeficiencies to dissect the elements of host responses to MERS-CoV, and can be used to 1292 

test candidate drugs and vaccines in vivo. It also provides a rapid model for any novel emerging 1293 

respiratory viruses before appropriate receptor-transgenic mouse models become available. 1294 

Further refinement of small animal models that are more representative of MERS in humans is 1295 

urgently needed for evaluation of the efficacy of therapeutic and immunization options with in 1296 

vitro activity. 1297 

 1298 

CONCLUSIONS 1299 

In contrast to the public health chaos in the early phase of the SARS outbreak, the global health 1300 

community has demonstrated efficient and collaborative efforts to handle the MERS epidemic. 1301 

The clinical experience gained in SARS and the genomic data accumulated for other human and 1302 

animal CoVs discovered after SARS have facilitated the rapid development of diagnostic assays, 1303 

design of candidate antiviral agents and vaccines, rationalization of infection control measures, 1304 

and identification of zoonotic reservoirs for MERS (93, 104-107, 260-271). The MERS epidemic 1305 

has greatly enhanced our understanding of coronavirology and provided lessons that will be 1306 

useful for tackling future CoV outbreaks. Camels are now recognized as an important animal 1307 

reservoir for lineage A and C βCoVs and other viruses (140, 272, 273). Continued surveillance of 1308 

novel CoVs among different animal species, especially bats and mammals with frequent close 1309 

contact with humans, will strengthen our preparedness to face other emerging CoVs resulting 1310 

from interspecies transmissions in the future. The identification of DPP4 as a functional receptor 1311 

of MERS-CoV has expanded the list of membrane ectopeptidases known to be targeted by CoVs 1312 

and has increased our understanding on the pathogenesis of CoV infections. Finally, the newly 1313 

identified antiviral agents in drug-repurposing programs for MERS represent additional drug 1314 
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candidates that can be evaluated for novel CoVs that lack specific treatment options. Looking 1315 

ahead, the successful control of the expanding MERS epidemic will depend on the development 1316 

of an effective camel vaccine to stop ongoing camel-to-human transmissions, compliance with 1317 

infection control measures, and timely contacting tracing to prevent secondary healthcare-1318 

associated outbreaks. The key research priorities to optimize the clinical outcomes of MERS 1319 

include more in-depth understanding on the pathogenesis from post-mortem studies and serial 1320 

patient samples, testing of antiviral and vaccine candidates in more representative small animal 1321 

models, and evaluation of the efficacy of currently available therapeutic options in randomized 1322 

controlled trials in humans. Monitoring of the molecular evolution of MERS-CoV will facilitate 1323 

early recognition of further viral adaptations for efficient person-to-person transmission.  1324 
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Table 1 Comparison between MERS and SARS 1335 

Characteristics Middle East respiratory syndrome (MERS) Severe acute respiratory syndrome (SARS) References 

Epidemiology    

   Year of first identification 2012 2003 (2, 9) 

   Geographical origin Middle East with imported cases in Europe, Africa, 

Asia, & North America 

South China with imported cases causing large 

outbreaks in Canada & Asia 

(a, 3) 

   Natural reservoirb ?Bats (Neoromicia sp. in Africa) Chinese horse-shoe bats (Rhinolophus sinicus & 

other Rhinolophus sp. in China) 

(3, 102, 

110, 111, 

274, 275) 

   Amplification or intermediate hostb Dromedary camels (Middle East & Africa) Game food mammals (civets & raccoon dogs in 

southern China) 

(3, 12, 114, 

121, 133) 

   Epidemic centers of outbreaks or 

premises of acquisition 

1. ?Camel farms 

2. Hospital or household with MERS patients 

1. Wild life markets & restaurants 

2. Hospitals & laboratories 

3. Housing estate with faulty sewage system & hotels 

4. Planes 

(3, 12, 75, 

138, 139, 

276-278) 

   Seasonality May be related to camel breeding season Winter (c, d, 3) 

   Main types of transmissione 1. Animal-to-human 

2. Person-to-person 

1. Person-to-person 

2. Animal-to-human 

(3, 73, 138) 

   In-flight transmission Not yet documented Numerous episodes, related to physical proximity to 

the index patient 

(3, 278) 

   Modes of transmission ?Droplet, contact, airborne Contact, droplet, airborne (3, 75, 234) 

   Infection control measures Standard, contact, & droplet precautions; airborne 

precautions for aerosol-generating procedures 

Standard, contact, & droplet precautions; airborne 

precautions for aerosol-generating procedures 

(3, 75, 234) 

   Incubation period (days) 2-15 2-14, occasionally up to 21 days (3, 63, 75, 

234) 

   Basic reproduction number (R0) 0.3-1.3 0.3-4.1 (3, 90, 150, 

151, 279-

281) 

Virus-host interaction    

   Causative virus MERS-CoV SARS-CoV (2, 9, 165, 

282) 

   Viral phylogeny Lineage C βCoV Lineage B βCoV (2, 9) 

   Host receptor DPP4 (CD26) ACE2 (46, 283) 

   Major host proteases that activate 

spike protein 

1. TMPRSS2 

2. Cathepsin L 

3. Furin 

1. Cathepsin L 

2. TMPRSS2 

3. HAT 

(44, 51, 52, 

54, 284-

287) 

   Dominant cell entry pathway Cell membrane fusion Endosomal fusion (44, 51, 

284, 288) 

   Cytopathic effects Prominent syncytium formation Few if any syncytia (2, 3, 23, 
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60, 116) 

   Spectrum of cell line susceptibilityf  Broad range of animal & human tissue cells Only a few human & primate cell lines can be 

infected 

(3, 116-

118) 

   Viral proteins with interferon 

antagonist activity 

PLpro, accessory proteins 4a, 4b, & 5, & membrane 

protein 

nsp1 protein, PLpro, accessory proteins 3b & 6, & 

nucleocapsid & membrane proteins 

(3, 24, 25, 

27, 28, 172, 

289-292) 

   Rapid evolution of virus in human Not yet detected Overall Ka/Ks ratio of >1 suggests rapid evolution 

with strong positive selection in human strains with 

deletion of 29bp signature sequence or 82bp in 

ORF8  

(3, 114, 

146, 293) 

Clinical features    

   Presenting clinical syndrome 1. Acute community- or hospital-acquired 

pneumonia in elderly & patients with multiple 

comorbidities 

2. Upper respiratory tract infection, influenza-like 

illness or asymptomatic infection in children & 

immunocompetent hosts 

Acute community- or hospital-acquired pneumonia 

in immunocompetent & immunocompromised hosts 

(2, 63, 294) 

   Common extrapulmonary 

manifestation 

1. Acute renal failure 

2. Diarrhea 

Diarrhea (63, 160, 

196) 

   Radiological changes  Focal to diffuse interstitial ground glass opacities 

and/or consolidations 

Focal to diffuse ground glass opacities and/or 

consolidations with pneumomediastinum 

(3, 63, 152) 

   Common changes in blood tests Leukopenia, lymphopenia, thrombocytopenia, 

impaired liver function at presentation; renal 

function impairment, leukocytosis & neutrophilia 

with progressive illness 

leukopenia, lymphopenia, thrombocytopenia, 

↑ alanine & aspartate 

aminotransferase levels 

(3, 63) 

   Severe complications ARDS, acute renal failure ARDS (3, 63) 

   Case-fatality rate  >35% ~10% (g, 3, 63) 

   Peak viral load in respiratory 

secretion  

Unclear  ~Day 10 after symptom onset (3, 160, 

196) 

   Onset of neutralizing antibody ≤12 days after symptom onset ~Day 5-10 after symptom onset  (3, 66, 72, 

81, 183, 

295) 

   Specimens for diagnosis with 

positive viral RNA (reverse 

transcription-polymerase chain 

reaction) or culture (cell culture) 

1. Lower respiratory tract: sputum, endotracheal 

aspirate, and/or bronchoalveolar lavage 

2. Upper respiratory tract: nasopharyngeal aspirate or 

swab, nasal and/or throat swab 

3. Extra-pulmonary: urine, feces, and/or blood 

4. Tissue: biopsied and/or autopsied specimens 

(findings not yet reported) 

1. Lower respiratory tract: sputum, endotracheal 

aspirate, and/or bronchoalveolar lavage 

2. Upper respiratory tract: nasopharyngeal aspirate or 

swab, nasal and/or throat swab 

3. Extra-pulmonary: urine, feces, blood, and/or 

cerebrospinal fluid 

4. Tissue: biopsied and/or autopsied specimens 

(3, 195, 

296) 

   Criteria for positive RT-PCR test Follow WHO criteria Follow WHO criteria (h, 3) 
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   Criteria for positive antibody 

testing 

No international standard 4-fold rise in serum (taken at least 14 days apart) 

neutralizing anti-SARS-CoV antibody titer (often 

just 4-fold rise in immunofluorescence antibody 

against fixed whole SARS-CoV if BSL-3 facility 

was not available) 

(h, 3) 

   Key treatment measures Ventilatory support & intensive care (ECMO & 

hemodialysis) 

Ventilatory support & intensive care (3, 88, 204, 

234) 

   Antivirals used in humans in non-

randomized trials 

Ribavirin & interferon-α2b Interferons (infacon1, interferon-b, leukocytic 

interferons) 

Combinations of protease inhibitor with ribavirin 

(3, 207, 

216) 

   Active immunization Vaccines containing RBD of S1 (mice) Recombinant S protein fragment (mice) (3, 36, 252, 

297) 

   Passive immunization Adoptive transfer of sera containing anti-MERS-

CoV-S antibodies blocked virus attachment in mice 

Convalescent plasma therapy used in humans (3, 174, 

298) 

   Animal models for testing antivirals 

& vaccinesi 

Common marmoset; no representative small animal 

model of severe human disease yet 

Representative models using various mammalian 

species including small animal models 

(3, 168) 

Abbreviations: ACE2, angiotensin-converting enzyme 2; ARDS, acute respiratory distress syndrome; BSL, Biosafety Level; CoV, 1336 

coronavirus; DPP4, dipeptidyl peptidase-4; ECMO, extracorporeal membrane oxygenation; HAT, human airway trypsin-like protease; 1337 

MERS, Middle East respiratory syndrome; ORF, open reading frame; PLpro, papain-like protease; RBD, receptor-binding domain; S, 1338 

spike; SARS, severe acute respiratory syndrome; TMPRSS2, transmembrane protease serine protease-2. 1339 

a
 http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf?ua=1 1340 

b
 Please refer to Table 5 for details on animal reservoirs of MERS-CoV 1341 

c
 http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_Update_09_May_2014.pdf 1342 

d
 http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf?ua=1 1343 

e
 Both animal (especially dromedary camels)-to-human and person-to-person transmission in nosocomial outbreaks are considered to 1344 

be important factors for the persistent MERS outbreak. Person-to-person transmission of SARS-CoV in “super-spreading events” and 1345 

http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf?ua=1
http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_Update_09_May_2014.pdf
http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf?ua=1
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major nosocomial outbreaks is considered to be the major transmission type in the large-scale epidemic of SARS. 1346 

f
 Please refer to Table 6 for details on tissue and host tropism of MERS-CoV 1347 

g
 http://www.who.int/csr/don/17-december-2014-mers/en/ 1348 

h http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1 1349 

i
 Please refer to Table 12 for details on other animal modes of MERS

  1350 

http://www.who.int/csr/don/17-december-2014-mers/en/
http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1
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TABLE 2 Nomenclature and putative functional characteristics of MERS-CoV gene products with analogy to SARS-CoV
a
 1351 

Gene nomenclature 

(no. of amino acid 

residues in product) 

Gene product and/or 

putative functional 

domain(s) 

Characteristics and/or effect on cellular response of host References 

ORF1a/b    

   nsp1 (193) Unknown May induce template-dependent endonucleolytic cleavage of host mRNA but not viral RNA; 

& may interact with cyclophilins which may be blocked by cyclosporine A. 

(16, 20-22, 

252, 299, 

300) 

   nsp2 (660) Unknown May interact with prohibitin 1 & 2, & disrupts intracellular signaling. (16, 20-22, 

252, 301) 

   nsp3 (1887) Papain-like protease  Structurally similar to the papain-like protease of SARS-CoV albeit only 30% sequence 

identity, consisting of a right-hand-like architecture with palm, thumb, & fingers domains. 

Specific conserved structural features include the ubiquitin-like domain, a catalytic triad 

consisting of C1594-H1761-D1776, & the ubiquitin-binding domain at the zinc finger. 

 

Functions: 

1. Proteolytic processing of the viral replicase polyprotein at 3 sites (nsp1-2, 2-3, & 3-4) to 

generate nsps that contribute to subgenomic RNA synthesis.  

2. DeISGylating (ISG15-linked ISGylation) & deubiquitinating (K48- & K63-linked 

ubiqutination) activities 

3. Interferon antagonist: reduces induction of NF-κB, blocks phosphorylation & nuclear 

translocation of IRF3, & blocks upregulation of cytokines CCL5, interferon-β, & CXCL10 

in HEK293T cells. 

(16, 20-22, 

28, 172, 

173, 252, 

302-305) 

 ADP-ribose 1”-

phosphatase 

Putative dephosphorylation of Appr-1”-p, a side product of cellular tRNA splicing, to ADP-

ribose. 

(16, 20-22, 

252) 

 Transmembrane domain 1 Uncertain function, but may be similar to other CoVs including SARS-CoV in anchoring the 

viral replication complex through recruitment of intracellular membranes to form a 

reticulovesicular network of CMs & DMVs interconnected via the outer membrane with the 

rough endoplasmic reticulum. 

(16, 20-22, 

252, 306) 

   nsp4 (507) Transmembrane domain 2 Similar to nsp3 & may help to form part of the viral replication complex. (16, 20-22, 

252, 306) 

   nsp5 (306) Main, chymotrypsin-like, 

or 3C-like protease 

Proteolytic processing of the replicative polyprotein at specific sites & forming key 

functional enzymes such as replicase & helicase.  

(16, 20, 22, 

252) 

   nsp6 (292) Transmembrane domain 3 Membrane-spanning integral component of the viral replication complex involved in DMV 

formation; substitutions lead to resistance to the viral RNA synthesis inhibitor K22.  

(16, 20-22, 

252, 306) 

   nsp7 (83) Unknown In SARS-CoV, nsp7 & -8 are part of a unique multimeric RNA polymerase complex. (16, 20-22,  

252, 307) 

   nsp8 (199) Primase  (16, 20-22, 

252) 
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   nsp9 (110) Unknown In SARS-CoV, nsp9 is an essential protein dimer with RNA/DNA binding activity. (16, 20-22, 

253, 308) 

   nsp10 (140) Unknown In SARS-CoV, nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate & S-

adenosyl-L-methionine cofactor; nsp16 possesses the canonical scaffold of MTase & 

associates with nsp10 at 1:1 ratio. 

(16, 20-22, 

253, 309) 

   nsp11 (14) Unknown Unknown (16, 20-22, 

252) 

   nsp12 (933) RNA-dependent RNA 

polymerase 

Replication & transcription to produce genome- & subgenome-sized RNAs of both 

polarities.  

(16, 20-22, 

252) 

   nsp13 (598) Superfamily 1 helicase Putative dNTPase & RNA 5’-triphosphatase activities. (16, 20-22, 

252) 

 Zinc-binding domain  (16, 20-22, 

252) 

   nsp14 (524) 3’-to’5’ exonuclease Putative endoribonuclease activity in the replication of the giant RNA genome. (16, 20-22, 

252) 

 N7-methyltransferase  (16, 20-22, 

252) 

   nsp15 (343) Nidoviral 

endoribonuclease specific 

for U 

Putative RNA endonuclease that is essential in the CoV replication cycle. (16, 20-22, 

252) 

   nsp16 (303) S-adenosylmethionine-

dependent ribose 2’-O-

methyltransferase 

In SARS-CoV, nsp16 is critical for capping of viral mRNA & prevents recognition by host 

sensor molecules. 

(16, 20-22, 

252, 310) 

ORF2 (1353) Spike (S) protein A type I transmembrane glycoprotein displayed on viral membrane surface critical for 

receptor binding & membrane fusion. 

(16, 20-22, 

252) 

ORF3 (103) Accessory protein 3 

(single transmembrane 

domain) 

Deletion of ORF3, -4, & -5 accessory cluster showed ~1.5 logs reduction in viral titer 

compared with recombinant MERS-CoV, & resulted in enhanced expression of subgenomic 

gRNA2 encoding the S protein associated with an increased fusion phenotype; not essential 

for virus replication in Vero A66 & Huh-7 cells.  

(16, 20-22, 

188, 252, 

311) 

ORF4a (109) Accessory protein 4a 

(dsRNA-binding motif) 

A dsRNA-binding protein of with the dsRNA-binding domain (residues 3 to 83) that 

potently antagonizes host interferon response via inhibition of interferon production 

(interferon-β promoter activity, IRF-3/7 & NF-κB activation), ISRE promoter element 

signaling pathways, and/or suppression of PACT-induced activation of RIG-I & MDA5 in an 

RNA-dependent manner; not essential for virus replication in Vero A66 & Huh-7 cells. 

(16, 20-22, 

24, 25, 252, 

311) 

ORF4b (246) Accessory protein 4b 

(single transmembrane 

domain) 

May have interferon antagonist activity; not essential for virus replication in Vero A66 & 

Huh-7 cells. 

(16, 20-22, 

24-27, 252, 

311) 

ORF5 (224) Accessory protein 5 (three 

transmembrane domains) 

Interferon antagonist with no effect on interferon-β promoter activation; not essential for 

virus replication in Vero A66 & Huh-7 cells. 

(16, 20-22, 

27, 188, 

252, 311) 
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ORF6 (82) Envelope (E) protein Putative ion channel activity & is involved in viral budding & release; essential for efficient 

virus propagation in Vero A66 & Huh-7 cells. 

(16, 20-22, 

252, 311) 

ORF7 (219) Membrane (M) protein Surface protein that incorporates viral components into virions & interacts with N protein in 

infected cells; interferon antagonist. 

(16, 20-22, 

24, 252) 

ORF8a (413) Nucleocapsid (N) protein Interacts with C-terminal domain of M protein for binding & packaging of viral RNA in 

assembly of the virion. 

(16, 20-22, 

252) 

ORF8b (112) Unknown Unknown (16, 20-22, 

252) 

Abbreviations: CCL5, chemokine ligand 5; CM, convoluted membrane; CoV, coronavirus; CXCL10, chemokine (C-X-C motif) ligand 1352 

10; DMV, double membrane vesicle; ds, double-stranded; IRF3, interferon regulatory factor 3; ISG, Interferon-Stimulated Gene; nsp, 1353 

non-structural protein. 1354 

a
 The putative functions of the accessory gene products of MERS-CoV and SARS-CoV may not directly correlate as the accessory 1355 

genes of these two viruses are not homologous.   1356 
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TABLE 3 Sequence of events with epidemiological importance related to MERS 1357 

Date
a Place or Institution Important event References 

19 April 2012 Zarqa, Jordan 1
st
 healthcare-associated cluster: an outbreak of severe respiratory disease among 13 patients & 

healthcare workers in an ICU. The index patient & a close contact (ICU nurse) were subsequently 

confirmed to be infected with MERS-CoV in November 2012. 

(66) 

6 to 24 June 2012 Jeddah, KSA 1
st
 laboratory-confirmed case: a 60-year-old man was admitted to a regional hospital for severe 

acute community-acquired pneumonia complicated with acute renal failure & later died. A novel 

CoV was isolated in cell culture of a sputum sample obtained on admission. The virus was initially 

named human coronavirus-Erasmus Medical Center (HCoV-EMC). 

(9) 

3 September 2012 London, UK 1
st
 imported case in UK: a 49-year-old man in Qatar with travel history to KSA was transferred 

from Doha, Qatar to an ICU in London, UK on 11 September 2012 for severe acute community-

acquired pneumonia. A novel CoV was detected in combined nose & throat swab, sputum, & 

tracheal aspirate samples. The replicase gene fragment of this strain shared 99.5% identity with the 

1st HCoV-EMC strain. 

(18, 84) 

23 September 2012 WHO WHO Disease Outbreak News: report of the first 2 laboratory-confirmed cases. c 

25 September 2012 WHO 1
st
 interim case definition for HCoV-EMC infection was issued. d 

26 September 2012 EMC, Rotterdam, 

the Netherlands 

1
st
 complete genome of HCoV-EMC was available in GenBank (accession number: JX869059). (16) 

27 September 2012 ECDC Protocols for real-time RT-PCR (upE & ORF1b) assays published in Eurosurveillance. (312) 

5 October to 14 

November 2012 

KSA 1
st
 household cluster: three household family members of a 70-year-old man with laboratory-

confirmed HCoV-EMC infection were hospitalized for severe respiratory disease. 

(67) 

9 October 2012 Riyadh, KSA 1
st
 survived case: a 45-year-old man who was admitted for severe respiratory disease & renal failure 

recovered from HCoV-EMC infection. 

(64) 

13 October 2012 Essen, Germany 1
st
 imported case in Germany (69) 

21 December 2012 WHO 1
st
 interim recommendations for laboratory testing for HCoV-EMC were issued. e 

24 January to 16 

February 2013 

UK 1
st
 cluster outside of the Middle East: a 60-year old man with recent travel history to KSA was 

admitted to an ICU for laboratory-confirmed HCoV-EMC. Two of his relatives who were close 

contacts also developed laboratory-confirmed MERS. 

(73) 

5 February 2013 UK 1
st
 mild case: the 30-year-old female relative in the cluster only had mild, influenza-like illness 

symptoms & spontaneously recovered. 

(73) 

8 March 2013 UAE 1
st
 case in UAE (72) 

8 April to May 

2013 

Al-Hasa, KSA 1
st
 large-scale cluster: >20 laboratory-confirmed cases of HCoV-EMC were reported in household 

& hospital contacts in the eastern province of KSA. 

(75) 

22 April 2013 Valenciennes, 

France 

1
st
 imported case in France (68, 71) 

6 May 2013 Tunisia 1
st
 imported cases in Tunisia (74) 

15 May 2013 Coronavirus Study 

Group, ICTV 

Formal naming of the novel CoV as Middle East respiratory syndrome coronavirus. (17) 

25 May 2013 Italy 1
st
 imported case in Italy f 
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2 June 2013b Italy 1
st
 pediatric case: a 2-year-old girl who was a close contact of the 1st imported case in Italy 

(subsequently reclassified as a probable case). 

(313) 

9 August 2013 Oman 1st report on the detection of anti-MERS-CoV antibodies in dromedaries in the Middle East. (121) 

23 August 2013 CDC 1st report on the detection of a short (182-nt) fragment of the viral RdRp gene from a fecal pellet of a 

Taphozous perforatus bat in KSA which showed 100% identity to that of MERS-CoV (strain 

HCoV-EMC/2012). 

(109) 

16 September 2013 CDC 1st report on the detection of a MERS-CoV-like virus (Neoromicia coronavirus) with 85.6% nt 

identity (complete genome) in the fecal sample of a Neoromicia capensis bat in South Africa. 

(110, 111) 

26 October 2013 Oman 1
st
 case in Oman g 

17 December 2013 Qatar 1st report on the detection of MERS-CoV RNA in nose swabs from dromedaries by RT-PCR. (133) 

13 February 2014 Kuwait 1
st
 case in Kuwait h 

17 March 2014 Yemen 1
st
 case in Yemen i 

9 April 2014 Malaysia 1
st
 imported case in Malaysia (78) 

13 April 2014 The Philippines 1
st
 imported case in the Philippines  j 

17 April 2014 Greece 1
st
 imported case in Greece (76) 

18 April 2014 USA 1
st
 imported case in USA (77, 81)  

22 April 2014 Egypt 1
st
 imported case in Egypt k 

mid-March to May 

2014 

KSA & UAE Sudden surge of >400 cases associated with an increase in the number of primary cases amplified 

by several large healthcare-associated outbreaks in KSA & UAE. 

l, m 

22 April 2014 Lebanon 1
st
 case in Lebanon n 

1 May 2014 The Netherlands 1
st
 imported case in the Netherlands (79) 

11 May 2014 Iran 1
st
 cases in Iran o 

23 May 2014 Algeria 1
st
 imported cases in Algeria p 

4 June 2014 KSA 1st report on camel-to-human transmission of MERS-CoV.  

22 September 2014 Austria 1
st
 imported case in Austria q 

25 September 2014 Turkey 1
st
 imported case in Turkey r 

17 December 2014 WHO A total of 938 laboratory-confirmed cases of MERS including at least 343 deaths were reported. s 

Abbreviations: CoV, coronavirus; CDC, Centers for Disease Control and Prevention; ECDC, European Centre for Disease Prevention 1358 

and Control; ICTV, International Committee on Taxonomy of Viruses; ICU, intensive care unit; KSA, Kingdom of Saudi Arabia; 1359 

UAE, United Arab Emirates; UK, United Kingdom; USA, the United States of America; WHO, World Health Organization. 1360 

a
 The date of reported cases represents the date of symptom onset unless otherwise specified. 1361 

b
 The date of reporting by WHO. 1362 

c
 http://www.who.int/csr/don/2012_09_23/en/ 1363 

d
 http://www.who.int/csr/don/2012_09_25/en/ 1364 

e
 http://www.who.int/csr/disease/coronavirus_infections/LaboratoryTestingNovelCoronavirus_21Dec12.pdf?ua=1 1365 

http://www.who.int/csr/don/2012_09_23/en/
http://www.who.int/csr/don/2012_09_25/en/
http://www.who.int/csr/disease/coronavirus_infections/LaboratoryTestingNovelCoronavirus_21Dec12.pdf?ua=1
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f
 http://www.who.int/csr/don/2013_06_01_ncov/en/ 1366 

g
 http://www.who.int/csr/don/2013_10_31/en/ 1367 

h
 http://www.who.int/csr/don/2014_03_20_mers/en/ 1368 

i
 http://www.who.int/csr/don/2014_05_07_mers_yemen/en/ 1369 

j
 http://www.who.int/csr/don/2014_04_17_mers/en/ 1370 

k
 http://www.who.int/csr/don/2014_05_01_mers/en/ 1371 

l
 http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_Update_09_May_2014.pdf 1372 

m
 http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf?ua=1 1373 

n
 http://www.who.int/csr/don/2014_05_15_mers/en/ 1374 

o
 http://www.who.int/csr/don/2014_06_11_mers/en/ 1375 

p
 http://www.who.int/csr/don/2014_06_14_mers/en/ 1376 

q
 http://www.who.int/csr/don/02-october-2014-mers-austria/en/ 1377 

r
 http://www.who.int/csr/don/24-october-2014-mers/en/ 1378 

s
 http://www.who.int/csr/don/17-december-2014-mers/en/ 1379 

  1380 

http://www.who.int/csr/don/2013_06_01_ncov/en/
http://www.who.int/csr/don/2013_10_31/en/
http://www.who.int/csr/don/2014_03_20_mers/en/
http://www.who.int/csr/don/2014_05_07_mers_yemen/en/
http://www.who.int/csr/don/2014_04_17_mers/en/
http://www.who.int/csr/don/2014_05_01_mers/en/
http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_Update_09_May_2014.pdf
http://www.who.int/csr/disease/coronavirus_infections/MERS-CoV_summary_update_20140611.pdf?ua=1
http://www.who.int/csr/don/2014_05_15_mers/en/
http://www.who.int/csr/don/2014_06_11_mers/en/
http://www.who.int/csr/don/2014_06_14_mers/en/
http://www.who.int/csr/don/02-october-2014-mers-austria/en/
http://www.who.int/csr/don/24-october-2014-mers/en/
http://www.who.int/csr/don/17-december-2014-mers/en/
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TABLE 4 Underlying comorbidities of patients with laboratory-confirmed MERS 1381 

 

Underlying 

comorbidities 

   

Clinical cohorts 

(references) 

 

   

 (87) (66) (63) (75) (80) (88) (314) Others (86, 

152) 

Time period April 2012 to 

22 October 

2013 

April 2012 1 September 

2012 to 15 

June 2013 

1 March 2013 

to 19 April 

2013 

1 April 2013 to 

3 June 2013 

May 2013 to 

August 2013 

1 October 

2012 to 31 

May 2014 

 

Setting / Data 

source 

161 cases 

reported to 

WHO 

Retrospective 

outbreak 

investigation in 

Jordan 

All cases 

reported by the 

KSA Ministry 

of Health to 

WHO 

Outbreak 

investigation in 

4 hospitals in 

Al-Hasa, KSA 

A 350-bed 

general 

hospital in 

KSA 

3 intensive 

care units in 

KSA 

70 cases at a 

single center in 

Riyadh, KSA 

Case reports or 

case series 

Any comorbidity 91/120 

(75.8%); fatal 

(86.8%) > non-

fatal (42.4%) 

cases 

NA 45/47 (95.7%); 

28/45 (62.2%) 

fatal 

NA 12/12 (100%) NA 57/70 (81.4%) Fatal (40/55; 

72.7%) > non-

fatal (30/73; 

41.1%) cases 

Chronic 

pulmonary 

disease 

NA NA  12/47 

(25.6%); 10/12 

(83.3%) fatal 

10/23 (43.5%) 6/15 (40.0%) Asthma (1/12; 

8.3%) 

NA NA 

Chronic renal 

disease 

16/120 

(13.3%); 

20.8% of fatal 

cases; 2o 

(23.0%) > 1o 

(4.3%) cases 

NA 23/47 (48.9%); 

17/23 (73.9%) 

fatal 

NA 5/15 (33.3%) 5/12 (41.7%); 

1/12 (8.3%) 

required 

dialysis 

NA NA 

Chronic cardiac 

disease 

9/120 (7.5%); 

at least 2 fatal; 

1o (7/47, 

14.9%) > 2o 

(2/61, 3.3%) 

cases 

1/8 (12.5%) 13/47 (27.7%); 

10/13 (76.9%) 

fatal 

9/23 (39.1%) 8/15 (53.3%) 

including 3/15 

(20.0%) with 

CHF 

MI (4/12; 

33.3%), 

cardiac surgery 

(3/12; 25.0%), 

CHF (2/12; 

16.7%), 

valvular 

disease (1/12; 

8.3%), & PVD 

(2/12; 16.7%)  

NA Chemotherapy

-induced 

cardiomyopath

y (1/7; 14.3%) 
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Diabetes mellitus 12/120 

(10.0%); 3.8% 

of fatal cases; 

1o (11/47, 

23.4%) > 2o 

(1/61, 1.6%) 

cases 

NA 32/47 (68.1%); 

21/32 (65.6%) 

fatal 

17/23 (73.9%) 13/15 (86.7%) 8/12 (66.7%) NA 3/7 (42.9%) 

Hypertension NA 2/8 (25.0%) 16/47 (34.0%); 

13/16 (81.3%) 

fatal 

NA NA 6/12 (50.0%) NA 3/7 (42.9%) 

Obesity NA NA 8/47 (17.0%); 

5/8 (62.5%) 

fatal 

5/21 (23.8%) Mean BMI: 

32.02±6.78 

kg/m2 

Median BMI: 

31.8 (21.6 to 

46.1) kg/m2; 

3/12 (33.3%) 

were obese 

7/70 (10.0%) 1/7 (14.3%) 

Smoking NA 2/8 (25.0%) 11/47 (23.4%); 

7/11 (63.6%) 

fatal 

NA NA 4/12 (33.3%) 9/70 (12.9%) 2/7 (28.6%) 

Malignancy NA NA  1/47 (2.1%); 

fatal 

NA 1/15 (6.7%) 1/12 (8.3%) NA 2/7 (28.6%) 

Others NA Pregnancy Immunosuppre

ssive therapy 

(3/47, 6.4%; 

all 3 fatal)  

NA NA  Stroke, kidney 

& liver 

transplant, & 

neuromuscular 

disease 

Pregnancy Dyslipidemia 

(1/7; 14.3%) 

Abbreviations: BMI, body mass index; CHF, congestive heart failure; KSA, Kingdom of Saudi Arabia; MI, myocardial infarction; 1382 

NA, not available; PVD, peripheral vascular disease; vs, versus; WHO, World Health Organization.  1383 
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TABLE 5 Evidence of zoonotic sources of MERS-CoV and closely related CoVs 1384 

Animal species (virus) Country (area) / Specimen collection date Main findings References 

Bats    

Superfamily Vespertilionoidea    

   Family Vespertilionidae    

      Asia    

      Tylonycteris pachypus (Ty-

BatCoV HKU4) 

China (Hong Kong) / April 2005 to August 

2012 

Detected in 29/99 (29.3%) alimentary samples; shared 90.0% 

(RdRp), 67.4% (S), & 72.3% (N) aa identities with MERS-CoV 

(HCoV-EMC/2012) 

(13, 99) 

      Pipistrellus abramus (Pi-

BatCoV HKU5) 

China (Hong Kong) / April 2005 to August 

2012 

Detected in 55/216 (25.5%) alimentary samples; shared 92.3% 

(RdRp), 64.5% (S), & 70.5% (N) aa identities with MERS-CoV 

(HCoV-EMC/2012) 

(13, 99) 

      Vespertilio superans (Bat 

CoV-BetaCoV/SC2013) 

China (Southwestern part) / June 2013 Detected in 5/32 (15.6%) anal swabs; shared 75.7% (complete 

genome of 1 strain) nt identity; & 96.7% (816-nt RdRp fragment) 

& 69.0% (S) aa identities with MERS-CoV (HCoV-EMC/2012) 

(315) 

      Africa    

      Neoromicia capensis 

(NeoCoV) 

South Africa (KwaZulu-Natal & Western 

Cape Provinces) / 2011 

Detected in 1/62 (1.6%) fecal sample; shared 85.6% (complete 

genome) nt identity; & 64.6% (S), 89.0% (E), 94.5% (M), & 91.7% 

(N) aa identities with MERS-CoV from humans & camels; placing 

them in the same viral species based on taxonomic criteria. 

(110, 111) 

      Europe    

      Pipistrellus pipistrellus, 

Pipistrellus nathusii, & 

Pipistrellus pygmaeus 

(Pipistrellus bat βCoVs) 

Romania (Tulcea county) & Ukraine (Kiev 

region) / 2009-2011 

Detected in 40/272 (14.7%) fecal samples; shared 98.2% (816-nt 

RdRp fragment) aa identity with MERS-CoV (HCoV-EMC/2012) 

(316) 

      Pipistrellus kuhlii, Hypsugo 

savii, Nyctalus noctula, & an 

unknown Pipistrellus sp. 

(βCoVs) 

Italy (Lombardia & Emilia regions) / 2010-

2012 

10 βCoVs detected in fecal specimens of Pipistrellus kuhlii (7), 

Hypsugo savii (1), Nyctalus noctula (1), & an unknown Pipistrellus 

sp. (1) bats; shared 85.2% to 87% nt identity & 95.3% to 96.1% 

(329-nt RdRp fragment) aa identity with MERS-CoV (HCoV-

EMC/2012) 

(317) 

Superfamily Emballonuroidea    

   Family Emballonuridae    

      Taphozous perforatus KSA (Bisha) / October 2012 A βCoV detected in 1/29 (3.4%) fecal sample; shared 100% nt 

identity (182-nt RdRp fragment) with MERS-CoV (HCoV-

(109) 
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(betaCoV) EMC/2012) 

Superfamily Molossoidea    

   Family Molossidae    

      Nyctinomops laticaudatus 

(Mex_CoV-9) 

Mexico (Campeche) / 2012 Detected in 1/5 (20.0%) rectal swabs; shared 96.5% (329-nt RdRp 

fragment) aa identity with MERS-CoV (HCoV-EMC/2012) 

(318) 

Superfamily Noctilionoidea    

   Family Mormoopidae    

      Pteronotus davyi (BatCoV-

P.davyi49/Mexico/2012) 

Mexico (La Huerta) / 2007-2010 Detected in 1/4 (25.0%) intestinal sample; shared 71.0% (439-nt 

RdRp fragment) nt identity with MERS-CoV (HCoV-EMC/2012) 

(319) 

Superfamily Rhinolophoidea    

   Family Nycteridae    

      Nycteris gambiensis 

(Nycteris bat CoV) 

Ghana (Bouyem, Forikrom, & Kwamang) / 

2009-2011 

Detected in 46/185 (24.9%) fecal samples; shared 92.5% aa identity 

(816-nt RdRp fragment) with MERS-CoV (HCoV-EMC/2012) 

(316) 

Hedgehogs    

   Europe    

      Erinaceus europaeus 

(Erinaceous CoV) 

Northern Germany / unknown date Two clades detected in 146/248 (58.9%) fecal samples; shared 

89.4% (816-nt RdRp fragment), 58.2% (S), 72.0% (E), 79.4% (M), 

& 72.1% (N)  aa identities with MERS-CoV (HCoV-EMC/2012); 

RNA concentration was higher in the intestine & fecal samples than 

other solid organs, blood, or urine, suggestive of viral replication in 

the lower intestine & fecal-oral transmission; 13/27 (48.2%) sera 

contained non-neutralizing antibodies 

(113) 

Camelids    

   Middle East    

      Camelus dromedarius KSA (countrywide) / 1992 to 2010; & 

November to December 2013 

Serum Ab: 150/203 (73.9%) (2013) & 72%-100% (1992 to 2010); 

adults (95%) > juveniles (55%) 

 

Viral RNA: nasal > rectal swabs; juveniles (36/104; 34.6%) > 

adults (15/98; 15.3%) 

 

Virus isolation: two nasal swabs cultured in Vero E6 cells 

(123, 137) 
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      Camelus dromedarius KSA (Riyadh & Al Ahsa) / 2012 to 2013 Serum nAb: 280/310 (90.3% with titer ≥1:20) adults (233/245; 

95.1%) > juveniles (47/65; 72.3%) 

(127) 

      Camelus dromedarius KSA (Jeddah) / 3 November 2013 Direct camel-to-human transmission: phylogenetical (identical full 

genome sequences of patient strain & an epidemiologically-linked 

camel strain) & serological (the virus was circulating in the 

epidemiologically-linked camels but not in the patient before the 

human infection occurred) evidence 

(138) 

      Camelus dromedarius KSA (Jeddah) / 14 November to 9 

December 2013 

Serum Ab: 4-fold rise in paired sera in 2/9 (22.2%) 

 

Viral RNA: detected in nasal swabs of both camels (upE & ORF1a) 

(128) 

      Camelus dromedarius KSA (Al-Hasa) / November 2013 to 

February 2014 (peak calving season) 

Serum nAb: 280/310 (90.3%)  

 

Viral RNA: nasal > fecal specimens 

 

Viral genome: highly stable with an estimated mutation rate of 0 nt 

substitutions per site per day 

 

Clinical: both calves & adults could be infected; symptoms 

included mild respiratory symptoms (cough, sneezing, respiratory 

discharge), ↑ body temperature, & ↓ appetite; acute infection was 

not associated with prolonged viremia or viral shedding 

(320) 

      Camelus dromedarius UAE (Dubai) / 2003 & 2013 Serum Ab: 151/151 (100%) (2003) & 481/500 (96.2%) (2013); 

high titers of nAb >1:640 in 509/651 (78.2%) 

(124) 

      Camelus dromedarius UAE (Dubai) / February to October 2005 Serum nAb: 9/11 (81.8%) (125) 

      Camelus dromedarius Oman / March 2013 & Spain (Canary 

Islands) / April 2012 to May 2013  

Serum Ab: 50/50 (100%) of Omani & 15/105 (14.3%) of Spanish 

camels; all 50/50 (100%) of Omani (titers 1/320 to 1/2560) & 9/105 

(9%) of Spanish camels had nAb (titers 1/20 to 1/320) 

(121) 

      Camelus dromedarius Oman (countrywide) / December 2013 Viral RNA: high concentrations in nasal & conjunvtival swabs of 

5/76 (6.6%) camels (≥2 gene targets) 

(321) 

      Camelus dromedarius Jordan (al Zarqa governorate) / June to 

September 2013 

Serum nAb: 11/11 (100%) (126) 

      Camelus dromedarius Qatar / 17 October 2013 Serum nAb: 14/14 (100%); titers 1/160 to 1/5120 

  

Viral RNA: 5/14 (35.7%) nasal swabs by 3 gene targets (upE, N, & 

ORF1a), 1/14 (7.1%) by 2 gene targets, & 5/14 (35.7%) by 1 gene 

target 

 

Viral genome: 3/5 samples shared 100% identity (357-nt S 

fragment) with sequences from 2 epidemiologically-linked patients; 

further sequencing of 4.2kb concatenated fragments of a camel 

(133) 
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strain & 2 epidemiologically-linked patient strains: only 1 nt 

difference in ORF1a & 1 nt difference in ORF4b 

      Camelus dromedarius Qatar (Doha) / February 2014 Viral RNA: 1/53 (1.9%) nasal swab from an 8-month-old camel 

(1/53, 1.9%) (upE & N) 

 

Viral genome: complete genome (MERS-CoV 

camel/Qatar_2_2014) shared 99.5% to 99.9% nt identities with 

other camel & patient strains 

(131) 

      Camelus dromedarius Qatar (Al Shahaniya & Dukhan) / April 

2014 

Serum & milk Ab: all 33 camels had IgG in serum & milk 

 

Viral RNA: detected in the nose swabs and/or feces of 7/12 camels, 

& the milk of 5/7 of these camels in Al Shahaniya 

(144) 

      Camelus dromedarius KSA (Al Hasa, As Sulayyil, Hafar Al-Batin, 

Medina) / 1993, Egypt / 2014, & Australia 

(central Australia & Queensland) / 2014 

Serum nAb: 118/131 (90.1%) of KSA camels & 0/25 (0%) of 

Australian camels 

(322) 

   Africa    

      Camelus dromedarius Somalia / 1983 to 1984, Sudan / June & 

July 1983, Egypt / June & July 1997 

Serum nAb: Somalia (70/86, 81.4%), Sudan (49/60, 81.0%) & 

Egypt (34/43, 79.1%) by MNT 

(132) 

      Camelus dromedarius Kenya / 1992 to 2013 Serum Ab: 213/774 (27.5%); including 119/774 (15.4%) with nAb; 

seropositive camels were found in all sampling sites throughout the 

study period; ↑ seroprevalence was significantly correlated with ↑ 

camel population density 

(130) 

      Camelus dromedarius Nigeria / 2010 to 2011, Tunisia / 2009 & 

2013, & Ethiopia / 2011 to 2013 

Serum Ab: Nigeria (94.0% of adults) & Ethiopia (93.0% of 

juveniles & 97.0% of adults); lower rates in Tunisia (54.0% of 

adults & 30.0% of juveniles) 

(323) 

      Camelus dromedarius Egypt (Cairo & Qalyubia governorate) / 

June 2013 

Serum nAb: 103/110 (93.6% with titer ≥1:20) by MNT & 108/110 

(98% with titer ≥1:20) by spike ppNT 

(122) 

      Camelus dromedarius Egypt (Alexandra, Cairo, & Nile Delta 

region) / June to December 2013 

Serum nAb: 48/52 (92.3% with titers between 1:20 to ≥1:640); 

0/179 abattoir workers 

 

Viral RNA: 4/110 (3.6%) nasal swabs (upE & ORF1a)  

(134) 

Abbreviations: aa, amino acid; KSA, Kingdom of Saudi Arabia; N, nucleocapsid; nAb, neutralizing antibody; nt, nucleotide; ORF, 1385 

open reading frame; MNT, micro-neutralization test; RT-PCR, reverse transcription polymerase chain reaction; ppNT, pseudoparticle 1386 

neutralization test; RBD, receptor-binding domain; RdRp; RNA-dependent RNA polymerase; S, spike; UAE, United Arab Emirates.  1387 
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TABLE 6 Tissue and host tropism of MERS-CoV demonstrated in cell culture systems 1388 

Cell culture system Anatomic site or animal species Main findings
a References 

Cell lines    

   Human cell types    

      Lower respiratory tract    

         A549 Lung adenocarcinoma Replication with ↑ viral load (~1-2),  N protein expression & CPE (116) 

         Calu-3 Polarized bronchial epithelia Replication with ↑ viral load (~4-5), N protein expression & CPE (cell 

rounding, detachment, & prominent syncytia formation)  

(116) 

  Replication in Calu-3 cells  with ↑ viral load (~5-6) & CPE at 24 hpi; 

infection & release of virions through both the apical & basolateral 

routes 

(185) 

         HFL Embryonic lung fibroblasts Replication with ↑ viral load (~4-5), N protein expression & CPE (116) 

         Differentiated HTBE Human tracheobronchial epithelia Replication with ↑ viral load (~2.5-4.5) in differentiated HTBE cells; 

virions released exclusively from the apical but not the basolateral side 

(186) 

         Nondifferentiated HTBE Human tracheobronchial epithelia Replication with ↑ viral load (<1) in nondifferentiated  but much less 

than that observed in differentiated HTBE cells 

(186) 

         HAE  Pseudostratified human airway 

epithelia 

Productive infection in HAE cultures peaks at 48 hpi: host cell factors 

required for cell entry, RNA synthesis, & virus assembly & release are 

available in human 

(187) 

  Replication in HAE, lung fibroblasts, type II pneumocytes, & 

microvascular endothelial cells; most efficient in HAE & lung 

fibroblasts 

(188) 

         HBEpC Human primary bronchial epithelium Replication with ↑ viral load (~0.5-1) (~1000-fold lower 

concentrations of virus progeny than in HREpC) & without CPE 

(157) 

      Kidney    

         HEK 293 Human embryonic kidney Replication with ↑ viral load (~4-5), N protein expression & CPE (116) 

         769-P Renal cell adenocarcinoma Replication with ↑ viral load (~3-4) (117) 

         HREpC Human primary kidney epithelium Replication with ↑ viral load (~3-4) (~1000-fold higher concentrations 

of virus progeny than in HBEpC) & CPE (rounding & detachment of 

cells with cell death in the majority of cells after only 20 hpi) 

(157) 

      Colon    

         Caco-2 Colorectal adenocarcinoma Replication with ↑ viral load (~4-5), N protein expression & CPE (cell 

rounding, detachment, & prominent syncytia formation) 

(116) 

         LoVo Metastatic colonic adenocarcinoma Replication in LoVo cells with ↑ viral load (~5-6) & CPE at 4 dpi (185) 

      Liver    

         Huh-7 Hepatocellular carcinoma Replication with ↑ viral load (~4-5), N protein expression & CPE (cell 

aggregates with marked shrinkage) 

(116) 

      Neuromuscular cells    
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         NT2 Neuro-committed teratocarcinoma Replication with ↑ viral load (~2-3), but no N protein expression & 

CPE 

(116) 

      Immune cells    

         THP-1 Peripheral blood monocytes from 

AML 

Replication with ↑ viral load (<1), but no N protein expression & CPE (116) 

         U937 Monocytes from histiocytic lymphoma Replication with ↑ viral load (<0.5), but no N protein expression & 

CPE 

(116) 

         H9 T lymphocytes from T-cell leukemia Replication with ↑ viral load (<0.5), but no N protein expression & 

CPE. 

(116) 

         Jurkat_CD26DPP4+ Human T lymphocytes transfected 

with a human DPP4-encoded plasmid 

Conversion from non-susceptible state to susceptible state with 

productive viral infection after plasmid transfection  

(185) 

         His-1 Malignant histiocytoma Replication with ↑ viral load (~3-4), N protein expression & CPE (116) 

   Nonhuman cell types    

      Primates    

         LLC-MK2 Rhesus monkey kidney Replication with ↑ viral load (~4-5), N protein expression & CPE (116) 

         Vero African green monkey kidney Replication with ↑ viral load (~4-5), N protein expression & CPE (116) 

         Vero-TMPRSS2 African green monkey kidney cells 

expressing TMPRSS2 

Early appearance of large syncytia at18hpi & virus particle-induced 

cell-cell fusion at 3hpi 

(52) 

         Vero E6 African green monkey kidney Replication with ↑ viral load (~4-5) & N protein expression; slower & 

less obvious CPE than those in Vero cells 

(58, 116) 

         COS-7 with DPP4 African green monkey fibroblasts 

transfected with a human DPP4-

encoded plasmid 

Conversion from non-susceptible state to susceptible state with 

productive viral infection after plasmid transfection  

(46) 

      Bats    

         RoNi/7 Old World bat (Rousettus aegyptiacus) 

kidney 

Replication with ↑ viral load (~3-4) (117) 

         PipNi/1 Old World bat (Pipistrellus 

pipistrellus) kidney 

Replication with ↑ viral load (~1-2) (117) 

         PipNi/3 Old World bat (Pipistrellus 

pipistrellus) kidney 

Replication with ↑ viral load (~1-2) (117) 

         RhiLu Old World bat (Rhinolophus landeri) 

lung 

Replication with ↑ viral load (~2-3) (117) 

         MyDauNi/2 Old World bat (Myotis daubentonii) 

kidney 

Replication with ↑ viral load (~1-2) (117) 

         CarNi/1 New World bat (Carollia perspicillata) 

kidney 

Replication with ↑ viral load (<0.5) (117) 

         EFF New World bat (Eptesicus fuscus) 

embryo 

Susceptible to MERS-CoV pseudovirus infection (23) 

         EidNi/41.3 Old World bat (Eidolon helvum) adult 

kidney 
Replication with ↑ viral load (~106 PFU/ml) (324) 
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         EpoNi/22.1 Old World bat (Epomops buettikoferi) 

adult kidney 
Replication with ↑ viral load (~104 PFU/ml) (324) 

         HypLu/45.1 Old World bat (Hypsignathus 

monstrosus) fetal lung 
Replication with ↑ viral load (~105 PFU/ml) (324) 

         HypNi/1.1 Old World bat (Hypsignathus 

monstrosus) fetal kidney 
Replication with ↑ viral load (~105 PFU/ml) (324) 

         PESU-B5L New World bat (Pipistrellus subflavus) 

adult lung 

Did not support productive MERS-CoV infection unless transfected 

with a plasmid expressing human DPP4 

(324) 

         RO5T Old World bat (Rousettus aegyptiacus) 

embryo 

Did not support productive MERS-CoV infection unless transfected 

with a plasmid expressing human DPP4 

(324) 

         RO6E Old World bat (Rousettus aegyptiacus) 

embryo 

Did not support productive MERS-CoV infection unless transfected 

with a plasmid expressing human DPP4 

(324) 

         RoNi/7.1 Old World bat (Rousettus aegyptiacus) 

adult kidney 
Replication with ↑ viral load (~106 PFU/ml) (324) 

         RoNi/7.2 Old World bat (Rousettus aegyptiacus) 

adult kidney 
Replication with ↑ viral load (~106 PFU/ml) (324) 

         Tb1Lu New World bat (Tadarida brasiliensis) 

adult lung 

Did not support productive MERS-CoV infection unless transfected 

with a plasmid expressing human DPP4 

(324) 

      Camelids    

         TT-R.B Arabian camel (Camelus dromedarius) 

umbilical cord 

Replication with ↑ viral load (~1) but without production of infectious 

virus particles  

(118) 

         LGK-1-R Alpaca (Llama pacos) kidney Replication with ↑ viral load (~2-3) & production of infectious virus 

particles 

(118) 

      Other mammals    

         ZLu-R Goat (Capra hircus) lung Replication with ↑ viral load (~1-2) & production of infectious virus 

particles 

(118) 

         ZN-R Goat (Capra hircus) kidney Replication with ↑ viral load (~3-4) & production of infectious virus 

particles 

(118) 

         PK-15 Pig kidney Replication with ↑ viral load (~4-5), N protein expression & CPE (116) 

         PS Pig kidney Replication with ↑ viral load (<1) (117) 

         RK-13 Rabbit kidney Replication with ↑ viral load (~1-2), but no N protein expression & 

CPE 

(116) 

         CL-1 Civet lung fibroblasts Replication with ↑ viral load (~1-2), N protein expression & CPE (116) 

         MDCK with human DPP4 Dog kidney transfected with a human 

DPP4-encoded plasmid 

Conversion from non-susceptible state to susceptible state with 

productive viral infection after plasmid transfection 

(46) 

         LR7 with human DPP4 Mouse fibroblasts transfected with a 

human DPP4-encoded plasmid 

Conversion from non-susceptible state to susceptible state with 

productive viral infection after plasmid transfection 

(46) 

         CRFK with human DPP4 Cat kidney cortex epithelium 

transfected with a human DPP4-

encoded plasmid 

Conversion from non-susceptible state to susceptible state with 

productive viral infection after plasmid transfection 

(46) 
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         BHK with human DPP4 Baby hamster kidney cells expressing 

human DPP4 

Conversion from non-susceptible state to susceptible state after 

transfection with a human but not hamster or ferret DPP4-encoded 

expression vector 

(325) 

         Primary ferret kidney with 

human DPP4 

Primary ferret kidney cells expressing 

human DPP4 

Conversion from non-susceptible state to susceptible state with after 

transfection with a human but not hamster or ferret DPP4-encoded 

expression vector 

(325) 

Ex-vivo organ or cell cultures    

   Respiratory tract    

      Lower respiratory tract Human lung Infection & replication in most cell types of the human alveolar 

compartment (ciliated & non-ciliated cells in simple columnar & 

simple bronchial epithelium, types I & II pneumocytes, endothelial 

cells of large & small pulmonary vessels, but not alveolar 

macrophages) 

(189) 

 Human bronchus & lung Productive replication in both human bronchial & lung ex vivo organ 

cultures (non-ciliated bronchial epithelium, bronchiolar epithelial cells, 

alveolar epithelial cells, & endothelial cells); virions were found within 

the cytoplasm of bronchial epithelial cells & budding virions were 

found in alveolar epithelial cells (type II) 

(190) 

 Human lung Infection of airway epithelial cells (pneumocytes & epithelial cells of 

terminal bronchioles, endothelial cells, & lung macrophages) 

(191) 

   Immune cells    

      Peripheral blood mononuclear 

cells 

Human monocyte-derived 

macrophages (MDMs) 

Productively infection & replication in MDMs with ↑ viral load (~3-4) 

& aberrant induction of inflammatory cytokines & chemokines (higher 

expression levels of IL-12, IFN-γ, IP-10, MCP-1, MIP-1α, IL-8, CCL-

5, MHC class I & costimulatory molecules > SARS-CoV-infected 

MDMs) 

(191) 

 Human monocyte-derived dendritic 

cells (MoDCs) 

Productive infection of MoDCs with ↑ viral load (~2-3) & significantly 

higher expression levels inflammatory cytokines & chemokines (IL-

12, IFN-γ, IP-10, CCL-5, MHC class II & the costimulatory molecule 

CD86) than SARS-CoV-infected MoDCs 

(193) 

Abbreviations: AML, acute monocytic leukemia; CCL, chemokine C-C motif ligand; CPE, cytopathic effects; dpi, days post infection; 1389 

hpi, hours post infection; IFN, interferon; IL, interleukin; IP, interferon-γ-induced protein; MCP, monocyte chemotactic protein; MHC, 1390 

major histocompatibility complex; MIP, macrophage inflammatory protein; N, nucleocapsid; PFU, plaque-forming unit; TMPRSS2, 1391 

transmembrane protease serine protease-2. 1392 
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a
Values of viral loads are presented in log10 virus RNA genome copies equivalents per mL of cell culture supernatant unless otherwise 1393 

specified.  1394 
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TABLE 7 Clinical, laboratory, and radiological features of MERS 1395 

 

Clinical, laboratory, and 

radiological features 

  

Clinical cohorts (references) 

 

 (66) (63) (75) (80) (88) (314) Others (9, 18, 

64, 67, 69, 71-

73, 86, 152, 

157, 326) 

Time period April 2012 1 September 

2012 to 15 June 

2013 

1 March 2013 to 

19 April 2013 

1 April 2013 to 

3 June 2013 

May 2013 to 

August 2013 

1 October 2012 

to 31 May 2014 

 

Setting / Data source Retrospective 

outbreak 

investigation in 

Jordan 

All cases 

reported by the 

KSA Ministry of 

Health to WHO 

Outbreak 

investigation in 

4 hospitals in 

Al-Hasa, KSA 

A 350-bed 

general hospital 

in KSA 

3 intensive care 

units in KSA 

70 cases at a 

single center in 

Riyadh, KSA 

Case reports or 

case series 

Clinical features        

   Systemic        

      Fever >38oC 8/9 (88.9%) 46/47 (97.9%) 20/23 (87.0%) 6/15 (40.0%) 8/12 (66.7%) 43/70 (61.4%) 6/7 (85.7%) 

      Chills and/or rigors 1/9 (11.1%) 41/47 (87.2%) NA 1/15 (6.7%) NA NA NA 

   Respiratory        

      Rhinorrhea 1/9 (11.1%) 2/47 (4.3%) NA NA 1/12 (8.3%) NA NA 

      Sore throat NA 10/47 (21.3%)  20/23 (87.0%) 1/15 (6.7%) 1/12 (8.3%) NA NA 

      Cough 8/9 (88.9%) 39/47 (83.0%) NA NA 10/12 (83.3%) 38/70 (54.3%) 7/7 (100%) 

      Sputum NA 17/47 (36.2%) NA NA 2/12 (16.7%) 23/70 (23.9%) 3/7 (42.9%) 

      Hemoptysis NA 8/47 (17.0%) NA 1/15 (6.7%) 1/12 (8.3%) NA NA 

      Wheezing NA NA NA 2/15 (13.3%) 2/12 (16.7%) 6/70 (8.6%) NA 

      Chest pain 4/9 (44.4%) 7/47 (14.9%) NA 1/15 (6.7%) NA NA NA 

      Dyspnea 5/9 (55.6%) 34/47 (72.3%) 11/23 (47.8%) 10/15 (66.7%)  11/12 (91.7%) 42/70 (60.0%) 4/7 (57.1%) 

   Renal        

      Acute renal failure NA NA NA NA 7/12 (58.3%) 30/70 (42.9%) 7/7 (100%) in 

one cohort; & 

9/12 (75.0%) in 

another with at 

least 6/9 

(75.0%) fatal; 

median time = 

11±2 days from 

symptom onset 
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   Gastrointestinal        

      Nausea NA 10/47 (21.3%) NA NA 1/12 (8.3%) NA NA 

      Vomiting NA 10/47 (21.3%) 4/23 (17.4%) 1/15 (6.7%) NA 21/70 (30.0%) NA 

      Diarrhea NA 12/47 (25.5%) 5/23 (21.7%) 1/15 (6.7%) 2/12 (16.7%) 21/70 (30.0%) NA 

      Abdominal pain NA 8/47 (17.0%) NA NA Acute abdomen 

(3/12, 25.0%): 

ischemic bowel 

requiring hemi-

colectomy (1) & 

negative 

laparotomies (2) 

17/70 (24.3%) 1/7 (14.3%) 

        

   Other symptoms        

      Myalgia NA 15/47 (31.9%) NA 1/15 (6.7%) NA  14/70 (20.0%) 1/7 (14.3%) 

      Headache NA  6/47 (12.8%) NA 1/15 (6.7%) 2/12 (16.7%) 9/70 (12.9%)  

      Malaise 3/9 (33.3%) NA NA NA 2/12 (16.7%) 29/70 (41.4%) 1/7 (14.3%) 

   Complications        

      Co-infections        

         Bacterial & fungal NA 0/47 (0%) NA NA Staphylococcus 

aureus (1/12, 

8.3%) & 

Streptococcus 

pneumoniae 

(1/12, 8.3%) 

Clostridium 

difficile, 

multidrug-

resistant 

bacteria (22/70, 

31.4%) 

including 

CRAB, VRE, 

MRSA, & 

candidemia 

Klebsiella 

pneumoniae, S. 

aureus, S. 

epidermidis, 

Acinetobacter 

sp., 

Pseudomonas 

aeruginosa; 

Aspergillus 

fumigatus, & 

candidemia 

(Candida 

albicans & C. 

glabrata) 

         Viral NA 0/47 (0%) NA NA Influenza B 

(1/12, 8.3%) 

0/70 (0%) Influenza 

A(H1N1)pdm09 

(1) & type 2 

parainfluenza 

(2) 

      ICU admissiona 4/8 (50.0%) 42/47 (89.4%) 18/23 (78.3%); 

time from 

symptom onset 

8/15 (53.3%) 12/12 (100%); 

time from 

symptom onset 

49/70 (70.0%) 60/133 (45.1%) 
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= 5 days (1 to 

10 days) 

to ICU 

admission = 2 

days; duration = 

30 days (7 to 

104 days) 

      Mechanical ventilationa 2/8 (25.0%) 34/47 (72.3%); 

time from 

presentation = 7 

days (3 to 11 

days) 

18/23 (78.3%); 

time from 

symptom onset 

= 7 days (3 to 11 

days)  

NA 12/12 (100%); 

time from 

symptom onset 

to mechanical 

ventilation = 4.5 

days; duration = 

16 days (4 to 30 

days) 

49/70 (70.0%) NA 

      Others Pericarditis, 

pleural & 

pericardial 

effusions, 

arrhythmias 

(SVT & VT), & 

delirium 

NA NA NA Vasopressors: 

(8/12, 66.7%) 

Delirium: 

(18/70, 25.7%), 

seizure (6/70; 

8.6%), 

arrhythmias 

(11/70, 15.7%), 

pneumothorax 

(5/70, 7.1%), 

rhabdomyolysis 

(10/70, 14.3%) 

2nd trimester 

stillbirth at 5 

months of 

gestation 

      Deatha 2/8 (25.0%); 

time from 

symptom onset 

= 16.5 day  

28/47 (59.6%); 

time from 

presentation = 

14 days (5 to 36 

days); CFR ↑ 

with ↑ age 

At least 15/23 

(65.2%); time 

from symptom 

onset = 11 days 

(5 to 27 days)  

13/17 (76.5%)  7/12 (58.3%) at 

day 90 of 

symptom onset 

42/70 (60.0%) 291/837 

(34.8%) (April 

2012 to 23 July 

2014) (86) 

Laboratory features        

   Hematological 

abnormalities 

       

      Leukocytosis NA NA 3/23 (13.0%) 2/17 (11.8%) NA Yes NA 

      Leukopenia 2/7 (28.6%) 7/47 (14.9%) 2/23 (8.7%) 1/17 (5.9%) NA NA 3/7 (42.9%) 

      Normal neutrophil 

count 

NA 43/47 (91.5%) NA NA NA Yes NA 

      Lymphocytosis NA 5/47 (10.6%) NA NA NA NA NA 

      Lymphopenia 6/7 (85.7%) 16/47 (34.0%) NA 6/17 (35.3%) 9/12 (75.0%) on 

ICU admission 

& 11/12 

Yes (median  

lymphocyte 

count, 

7/7 (100%) 
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(91.7%) during 

ICU stay 

0.85x109/l 

      Thrombocytosis NA NA 1/23 (4.3%) NA NA NA NA 

      Thrombocytopenia NA 17/47 (36.2%) 4/23 (17.4%) NA 2/12 (16.7%) on 

ICU admission 

& 7/12 (58.3%) 

during ICU stay 

NA 3/7 (42.9%) 

      Others DIC NA NA NA NA DIC (10, 

14.3%), anemia 

(median 10.7 

g/dl), 

neutropenia 

Anemia, ↑PT, 

↑APTT, ↑INR, 

& DIC 

   Biochemical 

abnormalities 

       

      Elevated serum ALT NA 5 (10.6%) NA 3/17 (17.6%) 2/12 (16.7%) on 

ICU admission 

& 5/12 (41.7%) 

during ICU stay 

22/70 (31.4%) NA 

      Elevated serum AST NA 7/47 (14.9%) 3/13 (23.1%) 9/17 (52.9%) 2/12 (16.7%) on 

ICU admission 

& 8/12 (66.7%) 

during ICU stay 

22/70 (31.4%); 

median 59 IU/l 

NA 

      Elevated serum LDH NA 23/47 (48.9%) NA 8/17 (47.1%) NA NA NA 

      Others NA NA NA NA NA Hypoalbuminem

ia 

Hyponatremia, 

hyperkalemia, 

hypoalbuminem

ia, & ↑ serum 

urea, creatine 

kinase, troponin, 

C-reactive 

protein, & 

procalcitonin 

levels 

Radiological findings 7/7 (100%) had 

CXR lesions in 

≤3 days of 

presentation 

(uni- / bilateral 

↑ 

bronchovascular 

47/47 (100%) 

had CXR 

lesions (mild to 

extensive uni- / 

bilateral ↑ 

bronchovascular 

markings, air-

20/23 (87.0%) 

had CXR 

lesions at 

presentation (↑ 

bronchovascular 

markings, uni- / 

bilateral 

Single (6/15; 

40.0%) & 

multiple (9/15; 

60.0%) CXR 

infiltrates; 

interstitial 

infiltrates 

12/12 (100%) 

had CXR 

lesions (unilobar 

to bilateral 

diffuse air-space 

infiltrates) 

Bi- (53/66; 

80.3%) & 

unilateral 

(10/66; 15.2%) 

had CXR 

lesions  

Bi- (6/7; 85.7%) 

& unilateral 

(1/7; 14.3%) 

had CT lesions; 

ground-glass 

opacities & 

consolidations 
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markings, 

consolidation, 

elevated 

diaphragm, & 

cardiomegaly 

with pericardial 

effusion) 

space opacities, 

patchy 

infiltrates, 

interstitial 

changes, patchy 

to confluent air-

space 

consolidation, 

nodular 

opacities, 

reticular 

opacities, 

reticulonodular 

shadows, pleural 

effusion, & total 

opacification of 

lung segments 

& lobes) 

infiltrates, & 

diffuse 

reticulonodular 

shadows) 

(10/15; 66.7%) 

& cardiomegaly 

(8/15; 53.3%) 

(5/7; 71.4%), 

isolated ground-

glass opacities 

(1/7; 14.3%); 

isolated 

consolidation 

(1/7; 14.3%); 

smooth septal 

thickening (3/7; 

42.9%); lower 

lung-

predominant 

(5/7; 71.4%); 

none had tree-

in-bud pattern, 

cavitation, or 

intrathoracic 

lymphadeopathy 

Abbreviations: ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; AST, aspartate aminotransferase; CFR, 1396 

case-fatality rate; CRAB, carbapenem-resistant Acinetobacter baumannii, CT, computerized tomography scan; CXR, chest 1397 

radiograph; DIC, disseminated intravascular coagulation; ICU, intensive care unit; INR, international normalized ratio; KSA, the 1398 

Kingdom of Saudi Arabia; LDH, lactate dehydrogenase; MRSA, methicillin-resistant Staphylococcus aureus, NA, not available; SVT, 1399 

supraventricular tachycardia; UK, the United Kingdom; VRE, vancomycin-resistant enterococci, VT, ventricular tachycardia; WHO, 1400 

World Health Organization. 1401 

a
 Values represent median time intervals  1402 
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TABLE 8 Characteristics of nucleic acid amplification tests for laboratory diagnosis of MERS 1403 

Diagnostic method and 

target gene 

Clinical specimen(s) Recommended use Technical LOD Remarks References 

Nucleic acid amplification       

   upE assay 

   (upstream of E gene) 

Respiratory swab, 

sputum, & endotracheal 

aspirate 

Screening  1.6 to 3.4 RNA 

copies/reaction 

Most widely used test globally (312) 

   ORF1a assay 

   (ORF1a gene) 

BAL, NPA Confirmatory for 

upE-positive 

samples 

4.1 RNA 

copies/reaction 

As sensitive as upE assay (62, 69) 

   RealStar® MERS-CoV RT-

PCR kit 1.0 

Aspiration tube flushed 

with PBS, BAL, mouth 

exudates, nose exudates, 

stool, urine, CVC flushed 

with PBS 

Screening upE assay: 5.3 

copies/reaction 

ORF1a assay: 9.3 

copies/reaction 

As sensitive as the in-house upE & 

1A assays; rapid & less labor-

intensive than the in-house assays 

(327) 

   ORF1b assay 

   (ORF1b gene) 

Respiratory swab, 

sputum, & endotracheal 

aspirate 

Confirmatory for 

upE positive 

samples 

64 RNA 

copies/reaction 

Less sensitive than upE & 1A 

assays; no overlap with those of 

known pan-CoV assays 

(312) 

   RdRpSeq assay 

   (RdRp gene & sequencing) 

BAL, NPA Screening (pan-CoV 

RT-PCR) & 

confirmatory 

(sequencing) 

0.3 to 3.0 PFU/ml May cross-react with other βCoVs 

as the gene target is highly 

conserved 

(62, 69) 

   NSeq assay 

   (N gene & sequencing) 

BAL, NPA Screening (RT-PCR) 

& confirmatory 

(sequencing) 

 

0.03 to 0.3 PFU/ml Highly sensitive & specific for 

MERS-CoV; may have deletion or 

mutation in the amplified fragment 

(62, 69) 

   N2 assay 

   (N gene) 

URT, LRT, serum, stool Screening with upE 

to enhance 

sensitivity & 

specificity 

5 to 10 RNA 

copies/reaction 

As sensitive as upE assay (328) 

   N3 assay 

   (N gene) 

URT, LRT, serum, stool Confirmatory of 

upE- or N2-positive 

samples 

5 to 10 RNA 

copies/reaction 

As sensitive as upE assay (328) 

   RT-RPA assay 

(N gene) 

No clinical specimen: 

culture supernatant 

Field use (point-of-

care test) 

10 RNA 

copies/reaction 

As sensitive as RT-PCR, faster 

TAT (≤30 minutes), & mobile 

(200) 

   RT-LAMP Medium containing 

pharyngeal swabs 

(healthy adults) mixed 

with MERS-CoV 

Field use 3.4 RNA 

copies/reaction 

As sensitive as upE & ORF1a 

assays, faster TAT(≤30 minutes) 

(201) 
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Abbreviations: BAL, bronchoalveolar lavage; CoV, coronavirus; CVC, central venous catheter; Ig, immunoglobulin; LOD, lower limit 1404 

of detection; LRT, lower respiratory tract; PCR, polymerase chain reaction; N, nucleocapsid; NPA, nasopharyngeal aspirate; ORF, 1405 

open reading frame; RdRp, RNA-dependent RNA polyemerase; RT-LAMP, reverse transcription loop-mediated isothermal 1406 

amplification; RT-PCR, reverse transcription polymerase chain reaction; RT-PRA, reverse transcription isothermal Recombinase 1407 

Polymerase Amplification; TAT, turnaround time; URT, upper respiratory tract.  1408 
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TABLE 9 Characteristics of antibody detection assays for laboratory diagnosis of MERS and related seroepidemiological data in 1409 

human 1410 

Diagnostic method and 

detection target 

Antigen used Source of tested sera Cross-reactivity Main findings References 

IFA      

   Indirect IFA (anti-

MERS-CoV Ab)  

Whole virus 2 laboratory-confirmed 

cases & blood donors 

1/85 (1.2%) cross-reactive 

IgM in blood donors; 

detected in cells 

overexpressing 

recombinant S or N 

proteins 

Better cell morphology; used as 

a screening test in a 2-stage 

protocol 

(62, 69, 

183) 

  130 blood donors & 

226 slaughterhouse 

workers (Jeddah & 

Makkah, KSA) 

8/226 slaughterhouse 

workers had cross-reactive 

Ab in IFA 

No evidence of widespread 

circulation of MERS-CoV in 

Jeddah & Makkah, KSA 

(98) 

   Indirect IFA (anti-

MERS-CoV Ab) 

Whole virus Animal handlers, SARS 

patients, & healthy 

blood donors in 

southern China 

2/94 (2.1%) of animal 

handlers, 17/28 (60.7%) 

SARS patients, & 0/152 

(0%) of healthy blood 

donors had cross-reactive 

anti-MERS-CoV Ab 

An epitope around HR2 domain 

of S2 subunit may induce cross-

reactivity in IFA against βCoVs. 

(203) 

   IFA on Vero B4 cells 

(anti-MERS-CoV Ab) 

Recombinant S & N 

proteins 

2 serum samples from 1 

patient (weeks 3 & 8) 

None in samples from a 

few German blood donors; 

detected in cells 

overexpressing 

recombinant S or N 

proteins 

Does not require optimization of 

infection dose & duration, & 

BSL-3 containment 

(62, 69) 

  1laboratory-confirmed 

case & 85 contacts 

None Helps to confirm the positive 

tests in conventional IFA 

(183) 

ELISA      

   ELISA (anti-S & anti-N 

Ab) 

S & N proteins 

expressed in VRP 

Mouse sera Cross-reactive anti-N Ab 

against MERS-CoV & 

other lineage 2c βCoVs; 

little cross-reactive anti-S 

Ab; no cross-reactive anti-

N or anti-S Ab between 

MERS-CoV & SARS-

Strain specific anti-S responses 

with very low level of cross-

reactivity within or across CoV 

subgroups; cross-reactive anti-N 

Ab within but not across CoV 

subgroups 

(202) 
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CoV or αCoVs 

Western blot       

   Western blot (anti-S & 

anti-N Ab) 

Recombinant S & N 

proteins 

2 serum samples from 1 

patient (weeks 3 & 8) 

Not tested Confirms the presence of anti-S 

& anti-N Ab detected in IFA 

(62) 

   Western blot (anti-S & 

anti-N Ab) 

S & N proteins 

expressed in VRP 

Mouse sera Cross-reactive anti-N Ab 

against MERS-CoV & 

other lineage C βCoVs, 

little cross-reactive anti-S 

Ab; no cross-reactive anti-

N or anti-S Ab between 

MERS-CoV & SARS-

CoV or αCoVs 

Strain specific anti-S responses 

with very low level of cross-

reactivity within or across CoV 

subgroups; cross-reactive anti-N 

Ab within but not across CoV 

subgroups 

(202) 

Protein microarray Soluble S1 subunit of S 

protein 

Patients with MERS, 

SARS, and/or other 

human CoV infections; 

& sera from 

cynomolgus macaques 

& rabbit infected with 

MERS-CoV 

None Allows 1-stage, high-

throughput, testing with minimal 

sample requirement & can use 

dried blood spots for testing to 

facilitate sample transfer 

(329) 

Neutralization test     (195) 

   PRNT (anti-MERS-CoV 

Ab) 

Whole virus 1laboratory-confirmed 

case & 85 contacts 

None Used as a confirmatory test in a 

2-stage protocol 

(183) 

  130 blood donors & 

226 slaughterhouse 

workers (Jeddah & 

Makkah, KSA) 

8/226 slaughterhouse 

workers had cross-reactive 

Ab in IFA but not PRNT 

PRNT is more specific than IFA (98) 

   PRNT (anti-MERS-CoV 

Ab) 

Whole virus Patients with MERS, 

SARS, and/or other 

human CoV infections; 

& sera from camels 

&other animals 

None in human samples Used as a confirmatory test in a 

2-stage protocol 

(121) 

   PRNT (anti-S & anti-N 

Ab) 

S & N proteins 

expressed from VRP 

Mouse sera & 1patient 

with MERS 

Very low levels of cross-

neutralization of MERS-

CoV by mouse antisera to 

SARS-CoV using high 

concentrations of serum 

S but not N protein is the major 

determinant of neutralizing Ab 

response to MERS-CoV; N 

proteins of CoVs cross-react 

within but not between 

subgroups; S proteins of CoVs 

have little cross-neutralization or 

cross-reactivity within subgroup 

2c or any other subgroup 

(202) 
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   Neutralization of MERS-

CoV-S-driven transduction 

(anti-S Ab 

S proteins expressed by 

lentiviral vectors 

Sear from hospitalized 

children & male blood 

donors in KSA 

None Estimated MERS-CoV 

seroprevalence in the study area 

was <2.3% in children during 

2010 to 2011, & <3.3% in male 

adults in 2012 

(51, 97) 

   Microneutralization 

assay (neutralizing anti-

MERS-CoV Ab) 

Whole virus Animal handlers, SARS 

patients, & healthy 

blood donors in 

southern China 

0/94 (0%), 7/28 (25.0%) of 

SARS patients, & 0/152 

(0%) of healthy blood 

donors had low-titer cross-

reactive neutralizing anti-

MERS-CoV Ab 

An epitope around HR2 domain 

of S2 subunit may induce cross-

reactive neutralizing Ab against 

βCoVs 

(203) 

   Microneutralization 

assay (neutralizing anti-

MERS-CoV Ab) 

Whole virus Human sera from 

general populations in 

Egypt & Hong Kong; 

MERS & SARS 

patients; & animal sera 

from Egypt 

None in human samples 10 times less sensitive than the 

ppNT assay 

(122) 

   ppNT assay (neutralizing 

anti-S Ab) 

S pseudoparticle  

expressed by a 

replication-incompetent 

HIV virus containing a 

luciferase reporter gene 

Human sera from 

general populations in 

Egypt & Hong Kong; 

MERS & SARS 

patients; & animal sera 

from Egypt 

None in human samples 10 times more sensitive than the 

conventional microneutralization 

assay, does not require BSL-3 

containment 

(122) 

Abbreviations: Ab, antibody; BAL, bronchoalveolar lavage; BSL, Biosafety Level; CPE, cytopathic effects; CVC, central venous 1411 

catheter; ELISA, enzyme-linked immunosorbent assay; HIV, human immunodeficiency virus; HR2, heptad repeat 2; Ig, 1412 

immunoglobulin; IFA, immunofluorescence assay; KSA, Kingdom of Saudi Arabia; LRT, lower respiratory tract; MNT, 1413 

microneutralization test; N, nucleocapsid protein; NPA, nasopharyngeal aspirate; PCR, polymerase chain reaction; ppNT, 1414 

pseudoparticle neutralization; PNRT, plaque reduction neutralization test; RT-PRA, reverse transcription isothermal Recombinase 1415 

Polymerase Amplification; S, Spike; TAT, turnaround time; TCID50, 50% tissue culture infective dose; URT, upper respiratory tract; 1416 

VRP, Venezuelan equine encephalitis virus replicons.  1417 
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TABLE 10 Antiviral agents and immunomodulators against MERS-CoV 1418 

Antiviral agents and/or 

immunomodulator(s) 

Drug target and/or proposed 

mechanism 

Study setting and methods 

(virus strain) 

Main findings References 

In vitro studies      

   Interferons     

      IFN-universal type 1 Exogenous IFN Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 113.8 U/ml (330) 

      Pegylated IFN-α Exogenous IFN Vero (HCoV-EMC/2012) ↓ CPE at ≥1ng/ml (58) 

      IFN-α2a Exogenous IFN Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 160.8 U/ml (330) 

      IFN-α2b Exogenous IFN Vero (HCoV-EMC/2012) IC50 = 58.08 µg/ml (209) 

  LLC-MK2 (HCoV-

EMC/2012) 

IC50 = 13.26 µg/ml (209) 

  Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 21.4 U/ml (330) 

      IFN-α2b (Intron A) Exogenous IFN Vero (HCoV-EMC/2012) IC50 = 6709.79 IU/ml (210) 

      IFN-β1a (Avonex) Exogenous IFN Vero (HCoV-EMC/2012) IC50 = 5073.33 IU/ml (210) 

      IFN-β1a (Rebif) Exogenous IFN Vero (HCoV-EMC/2012) IC50 = 480.54 IU/ml (210) 

      IFN-β1b (Betaferon) Exogenous IFN Vero (HCoV-EMC/2012) IC50 = 17.64 IU/ml (210) 

     Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 1.37 U/ml (330) 

      IFN-γ Exogenous IFN Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 56.5 U/ml (330) 

   Cyclophilin inhibitors     

      Cyclosporin A Inhibitor of cyclophilins & their 

interactions with Nsp1 

Vero (HCoV-EMC/2012) Complete inhibition of infection at 

9 µM of cyclosporin A 

(58) 

  Huh-7 (HCoV-EMC/2012) Partial & complete inhibition of 

infection at 7.5 µM & 15 µM of 

cyclosporin A respectively 

(58) 

   Viral protease inhibitors     

      Lopinavir 3C-like protease inhibitor Huh-7 (HCoV-EMC/2012) IC50 = 8.0 µM, SI = 3.1; 2 other 

MERS-CoV strains (MERS-

HCoV/KSA/UK/Eng-2/2012 & 

MERS-HCoV/Qatar/UK/Eng-

1/2012) tested were less sensitive; 

inhibition of a post-entry step 

(213) 

      N3 3C-like protease inhibitor Not available IC50 = 0.28 µmol/l (223) 

      CE-5 3C-like protease inhibitor HEK293T (HCoV-

EMC/2012) 

IC50 = 12.5 µM (224) 



93 
 

      GRL-001 3C-like protease inhibitor Vero (Hu/England-N1/2012) Completely blocked viral 

replication at early time points (<24 

hpi), ↓ viral replication by ~100-

fold at 24 hpi, & ↓virus-induced 

cytopathology in infected cells 

(225) 

   Helicase inhibitors     

      SSYA10-001 Helicase inhibitor Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 25 µM, SI ≥ 20 (226) 

   Cellular protease 

inhibitors 

    

      Camostat mesylate TMPRSS2 inhibitor Vero-TMPRSS2 (HCoV-

EMC/2012) 

↓ cell entry by ~15-fold (10 µM) & 

inhibited syncytia formation in a 

dose-dependent manner (1 to 100 

µM)  

(52) 

  Calu-3 (HCoV-EMC/2012) ↓ cell entry by ~10-fold (10 µM), 

inhibited the multistep growth of 

the virus by ~90-fold (10 µM) to 

~270-fold (100 µM), & delayed 

virus-induced cell death by 2 (10 

µM) to 5 days (100 µM) 

(52) 

      Leupeptin Protease inhibitor Calu-3 (HCoV-EMC/2012) ↓ virus entry into cells (10 & 100 

µM) 

(52) 

      E-64-D Broad-spectrum cathepsin inhibitor Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 1.275 µM (212) 

      EST Cathepsin inhibitor Vero-TMPRSS2 (HCoV-

EMC/2012) 

↓ virus entry into cells by ~3-fold 

(10 µM) 

(52) 

      Cathepsin L inhibitor III Cathepsin L-specific inhibitor Vero E6 & LLC-MK2 

(HCoV-EMC/2012) 

↓ entry of MERS-CoV pseudovirus 

by 97% 

(23) 

      MDL-28170 Cathepsins B & L inhibitor MRC5 (HCoV-EMC/2012) MERS-CoV-S mediated 

transduction was blocked 

(51) 

   Nucleic acid and/or protein 

synthesis inhibitors 

    

      Anisomycin Protein & DNA synthesis inhibitor by 

inhibiting peptidyl transferase or 80S 

ribosome system 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 0.003 µM (212) 

      Cycloheximide Protein synthesis inhibitor Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 0.189 µM (212) 

      Dasatinib Tyrosine kinase inhibitor (ABL1 

pathway) 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 5.468 µM (212) 

      Emetine dihydrochloride Protein synthesis inhibitor by binding Vero E6 (Hu/Jordan- IC50 = 0.014 µM (212) 
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hydrate to 40S ribosomal subunit N3/2012) 

      Gemcitabine 

hydrochloride 

Nucleoside analog & DNA synthesis 

inhibitor 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 1.216 µM (212) 

      Homoharringtonine 

(omacetaxine mepesuccinate) 

Protein synthesis inhibitor Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 0.0718 µM (212) 

      Imatinib mesylate Tyrosine kinase inhibitor (ABL1 

pathway) 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 =  17.689 µM (212) 

      K22 Specifically targets membrane-bound 

viral RNA synthesis 

HAE (HCoV-EMC/2012) ↓ viral replication by >4-log  & 

substantial reduction of dsRNA (50 

µM) 

(306) 

      Mycophenolic acid Inhibitor of IMPDH & depletion of 

guanosine & deoxyguanosine 

nucleotide pools  

Vero (HCoV-EMC/2012) IC50 = 0.17 µg/ml (210) 

  Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 2.87 µM (330) 

      Ribavirin Nucleoside polymerase inhibitor Vero (HCoV-EMC/2012) IC50 = 41.45 µg/ml (209) 

  Vero (HCoV-EMC/2012) IC50 = 9.99 µg/ml (210) 

  LLC-MK2 (EMC/2012) IC50 = 16.33 µg/ml (209) 

  Vero E6 (Hu/Jordan-

N3/2012) 

IC50 ≥250 µM (330) 

   mAb against Spike protein     

      Mersmab1 mAb against RBD of S1 subunit of S 

protein 

Huh-7 (HCoV-EMC/2012) Blocked entry of MERS-CoV-S-

mediated pseudovirus into cells 

with ND50 <0.16 µg/ml 

(37) 

  Vero E6 (HCoV-EMC/2012) Neutralizing inhibitory activity with 

ND50 <2 µg/ml 

(37) 

  Calu-3 (HCoV-EMC/2012) Neutralizing activity with CPE 

inhibition 

(37) 

      MERS-4 mAb mAb against RBD of S1 subunit of S 

protein 

Huh-7 (IC50) & COS7 

(syncytia formation) (HCoV-

EMC/2012) 

Inhibited syncytia formation & 

neutralizing inhibitory activity with 

IC50 = 0.37 nM (pseudovirus) & 

3.33nM (live) 

(39) 

      MERS-27 mAb mAb against RBD of S1 subunit of S 

protein 

Huh-7 (IC50) & COS7 

(syncytia formation) (HCoV-

EMC/2012) 

Neutralizing inhibitory activity with 

IC50 = 63.96 nM (pseudovirus) & 

13.33nM (live) 

(39) 

      m336 mAb mAb against RBD of S1 subunit of S 

protein 

Vero (live virus) & DPP4-

expressing Huh-7 

(pseudovirus) (HCoV-

EMC/2012) 

Neutralizing inhibitory activity with 

IC50 <0.01 µg/ml (live) & 0.07 

µg/ml (pseudovirus); inhibited 

RBD-DPP4 binding (IC50 = 0.034 

µg/ml) 

(38) 
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      m337 mAb mAb against RBD of S1 subunit of S 

protein 

Vero (live virus) & DPP4-

expressing Huh-7 

(pseudovirus) (HCoV-

EMC/2012) 

Neutralizing inhibitory activity with 

IC50 <0.01 µg/ml (pseudovirus) & 

<10 µg/ml (live); inhibited RBD-

DPP4 binding (IC50 = 0.044 µg/ml) 

(38) 

      m337 mAb mAb against RBD of S1 subunit of S 

protein 

Vero (live virus) & DPP4-

expressing Huh-7 

(pseudovirus) (HCoV-

EMC/2012) 

Neutralizing inhibitory activity with 

IC50 <0.1 µg/ml (pseudovirus) & <1 

µg/ml (live); inhibited RBD-DPP4 

binding (IC50 = 0.041 µg/ml) 

(38) 

      1E9 scFvFc Single-chain variable domain fragment 

against RBD of S1 subunit of S 

protein fused with hFc 

Vero (live virus) & hDPP4-

expressing 293T 

(pseudovirus) cells (HCoV-

EMC/2012) 

Neutralizing inhibitory activity 

(IC50 = 3.21 µg/ml) 

(40) 

      1F8 scFvFc Single-chain variable domain fragment 

against RBD of S1 subunit of Sprotein 

fused with hFc 

Vero (live virus) & hDPP4-

expressing 293T 

(pseudovirus) cells (HCoV-

EMC/2012) 

Neutralizing inhibitory activity 

(IC50 = 6.27 µg/ml) 

(40) 

      3A1 scFvFc Single-chain variable domain fragment 

against RBD of S1 subunit of S 

protein fused with hFc 

Vero (live virus) & hDPP4-

expressing 293T 

(pseudovirus) cells (HCoV-

EMC/2012) 

Neutralizing inhibitory activity 

(IC50 = 1.46 µg/ml) 

(40) 

      3B12 scFvFc Single-chain variable domain fragment 

against RBD of S1 subunit of S 

protein fused with hFc 

Vero (live virus) & hDPP4-

expressing 293T 

(pseudovirus) cells (HCoV-

EMC/2012) 

Neutralizing inhibitory activity 

(IC50 = 1.25 µg/ml) 

(40) 

      3C12 scFvFc Single-chain variable domain fragment 

against RBD of S1 subunit of S 

protein fused with hFc 

Vero (live virus) & hDPP4-

expressing 293T 

(pseudovirus) cells (HCoV-

EMC/2012) 

Neutralizing inhibitory activity 

(IC50 = 2.00 µg/ml) 

(40) 

      3B11 scFvFc Single-chain variable domain fragment 

against RBD of S1 subunit of S 

protein fused with hFc 

Vero (live virus) & hDPP4-

expressing 293T 

(pseudovirus) cells (HCoV-

EMC/2012) 

Neutralizing inhibitory activity 

(IC50 = 1.83 µg/ml) 

(40) 

      M14D3 scFvFc Single-chain variable domain fragment 

against RBD of S1 subunit of S 

protein fused with hFc 

Vero (live virus) & hDPP4-

expressing 293T 

(pseudovirus) cells (HCoV-

EMC/2012) 

Neutralizing inhibitory activity 

(IC50 = 4.30 µg/ml) 

(40) 

   mAb against DPP4     

      Clone 2F9 mAb mAb against DPP4 Huh-7 (?strain) Near complete inhibition of NSP4 

expression in infected cells 

(50) 

      Clone YS110 mAb mAb against DPP4 Huh-7 (?strain) Partial inhibition of NSP4 (50) 
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expression in infected cells 

   Inhibitors of clathrin-

mediated endocytosis 

    

      Astemizole Antihistamine & anticholinergic; 

inhibitor of clarthrin-mediated 

endocytosis 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 4.884 µM (212, 214) 

      Clomipramine 

hydrochloride 

Tricyclic antidepressant; inhibitor of 

clarthrin-mediated endocytosis 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 9.332 µM (212, 214)  

      Chlorpromazine Antipsychotic (phenothiazine); 

inhibitor of clathrin-mediated 

endocytosis 

Huh-7 (HCoV-EMC/2012) IC50 = 4.9 µM, SI = 4.3. Inhibition 

of an early step with or without 

another post-entry step in the 

replicative cycle. 

(213, 214)  

  Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 9.514 µM. (212, 214) 

      Fluphenazine 

hydrochloride 

Antipsychotic (piperazine); inhibitor 

of clarthrin-mediated endocytosis 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 5.868 µM (212, 214)  

      Promethazine 

hydrochloride 

Antihistamine & antipsychotic 

(phenothiazine); inhibitor of clarthrin-

mediated endocytosis 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 11.802 µM (212, 214) 

      Tamoxifen citrate Estrogen receptor inhibitor; inhibitor 

of clarthrin-mediated endocytosis 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 10.117 µM (212, 214)  

      Thiothixene Antipsychotic (thioxanthene); 

inhibitor of clarthrin-mediated 

endocytosis 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 9.297 µM (212, 214)  

      Triflupromazine 

hydrochloride 

Antipsychotic (phenothiazine); 

inhibitor of clarthrin-mediated 

endocytosis 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 5.758 µM (212, 214) 

  Other cell entry inhibitors     

      HR2P peptide HR2-based fusion inhibitor; inhibitor 

of clarthrin-mediated endocytosis 

Vero (HCoV-EMC/2012) IC50 = 0.6 µM (44, 214) 

  Calu-3 (HCoV-EMC/2012) IC50 = 0.6 µM (44) 

  HFL (HCoV-EMC/2012) IC50 = 13.9 µM (44) 

      P1 peptide HR2-based fusion inhibitor Huh-7 (HCoV-EMC/2012) Inhibited MERS-CoV pseudovirus 

with IC50 = 3.013µM. 

(45) 

      dec-RVKR-CMK Furin inhibitor Huh-7, MRC-5, WI-38, 

Vero, & NHBE cells (HCoV-

EMC/2012) 

Dose-dependent & significant ↓ 

virus infection in various cell types. 

(54) 

      S377-588-Fc protein Recombinant truncated RBD of S 

protein fused with human IgG Fc 

fragment 

Calu-3 (HCoV-EMC/2012) Complete CPE inhibition (25 

µg/ml) 

(42) 
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      HP-HSA 3-hydroxyphthalic anhydride-modified 

human serum albumin targeting HIV-1 

gp120 and/or CD4 receptor 

Huh-7 & NBL-7 (MERS-

CoV pseudovirus expressing 

full-length S protein of 

HCoV-EMC/2012) 

Around 90% of pseudovirus entry 

inhibition (20 µM); minimal 

cytotoxicity in Huh-7 cells at up to 

100 µM 

(41) 

      ADS-J1 Small molecule entry inhibitor 

targeting HIV gp41 

Huh-7 & NBL-7 (MERS-

CoV pseudovirus expressing 

full-length S protein of 

HCoV-EMC/2012) 

CC50 = 26.9 µM, IC50 = 0.6 µM, 

& SI = 45 

(41) 

      C34 Peptidic HIV entry inhibitor Huh-7 & NBL-7 (MERS-

CoV pseudovirus expressing 

full-length S protein of 

HCoV-EMC/2012) 

Around 50% of pseudovirus 

inhibition at 20 µM in NBL cells 

but no activity in Huh-7 cells. 

(41) 

      T20 Peptidic HIV entry inhibitor Huh-7 & NBL-7 (MERS-

CoV pseudovirus expressing 

full-length S protein of 

HCoV-EMC/2012) 

Around 50% of pseudovirus 

inhibition at 20 µM in NBL cells 

but no activity in Huh-7 cells. 

(41) 

      Adenosine deaminase Natural DPP4 ligand Huh-7 (HCoV-EMC/2012) Dose-dependent inhibition of 

MERS-CoV infection 

(49) 

  Human DPP4 plasmid-

transfected MDCK  (HCoV-

EMC/2012) 

Blocks S1 binding & MERS-CoV 

infection despite expression of 

DPP4 

(49) 

   Miscellaneous     

       Amodiaquine 

dihydrochloride dihydrate 

Histamine N-methyltransferase 

inhibitor 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 6.212 µM (212) 

      Benztropine mesylate Anticholinergic Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 16.627 µM (212) 

      Chloroquine Anti-parasitic Huh-7 (HCoV-EMC/2012) IC50 = 3.0 µM, SI = 19.4. Inhibition 

of an early step in the replicative 

cycle. 

(213) 

  Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 6.275 µM. (212) 

      Chlorphenoxamine 

hydrochloride 

Antihistamine & anticholinergic Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 12.646 µM (212) 

      Dabrafenib Raf inhibitor Huh-7 (HCoV-EMC/2012) 45% inhibition (10 µM ) (215) 

      ESI-09 Epac-specific inhibitor Calu-3 (HCoV-EMC/2012) Dose-dependent CPE inhibition (1 

to 10 µM) & viral yield reduction 

(2.5 to 40 µM); treatment before 

infection unnecessary; extended 

therapeutic window (≥20 hours); 

inhibitory effects starts at 6 hpi; 

(331) 
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CC50 >50 µM; changed DPP4 

expression pattern on the membrane 

of Calu-3 cells 

  Vero E6 (HCoV-EMC/2012) Dose-dependent CPE inhibition & 

viral yield reduction 

(331) 

      Everolimus mTOR inhibitor Huh-7 (HCoV-EMC/2012) 56% to 59% inhibition (10 µM ) (215) 

      Fluspirilene Antipsychotic 

(diphenylbutylpiperidine) 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 7.477 µM (212) 

      Hydroxychloroquine 

sulfate 

Anti-parasitic Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 8.279 µM. (212) 

      Loperamide µ-opioid receptor agonist  Huh-7 (HCoV-EMC/2012) IC50 = 4.8 µM; SI = 3.2; inhibition 

of an early step in the replication 

cycle 

(213) 

      Mefloquine Inhibition of heme polyermase; 

serotonin agonist 

Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 7.416 µM (212) 

      Miltefosine AKT inhibitor Huh-7 (HCoV-EMC/2012) 28% inhibition (10 µM ) (215) 

      SB203580 Kinase inhibitor Vero E6 (HCoV-EMC/2012) Pretreatment of infected cells with 

SB203580 decreased 15% & 7% of 

the log10 viral titer at 24 hpi & 48 

hpi respectively 

(177) 

      Selumetinib ERK/MAPK signaling inhibitor  Huh-7 (HCoV-EMC/2012) >95% inhibition (10 µM ) (215) 

      Sorafenib Raf inhibitor Huh-7 (HCoV-EMC/2012) 93% inhibition (10 µM ) (215) 

      Terconazole Sterol metabolism inhibitor Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 12.203 µM (212) 

      Thiethylperazine maleate Antiemetic (phenothiazine) Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 7.865 µM (212) 

      Toremifene citrate Estrogen receptor inhibitor Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 12.915 µM (212) 

      Trametinib ERK/MAPK signaling inhibitor Huh-7 (HCoV-EMC/2012) >95% inhibition (0.1 µM ) (215) 

      Triparanol Sterol metabolism inhibitor Vero E6 (Hu/Jordan-

N3/2012) 

IC50 = 5.283 µM (212) 

   Combinational treatment     

      Ribavirin / IFN-α2b (1:5) Nucleoside polymerase inhibitor / 

exogenous IFN 

Vero (HCoV-EMC/2012) Additional ↓ viral titer by 0.40 to 

2.16-logs with ribavirin 

(209) 

      Mycophenolic acid / IFN-

β1b  

IMPDH inhibitor / exogenous IFN Vero (HCoV-EMC/2012) IC50 of mycopheonlic acid = 1.7-2.8 

times lower with 6.25-12.5 IU/ml 

of IFN-β1b; IC50 of IFN-β1b 1.1-

1.8 times lower with 0.016-0.063 

µg/ml of mycophenolic acid 

(210) 

      MERS-4 & MERS-27 mAbs against RBD of S1 subunit of S Huh-7 (HCoV-EMC/2012) Synergistic neutralizing effect (39) 
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mAbs protein against pseudovirus 

Animal experiments     

   Ribavirin / IFN-α2b Nucleoside polymerase inhibitor / 

exogenous IFN 

Rhesus macaques (HCoV-

EMC/2012) 

 

Regimen: loading dose of 

30mg/kg of ribavirin i.v. & 5 

MIU/kg of IFN-α2b s.c.; 

followed by 10mg/kg q8h of 

ribavirin i.m. & 5MIU/kg of 

IFN-α2b s.c. q16h until 72 

hpi 

Compared to untreated, infected 

macaques, treated macaques had no 

breathing abnormalities, minimal 

radiological evidence of 

pneumonia, lower levels of serum 

& pulmonary proinflammatory 

markers, few viral genome copies, 

lower expression of inflammatory 

genes, & less severe 

histopathological changes in lungs 

(175) 

   Poly I:C TLR3 agonist Ad5-hDPP4-transduced mice 

(HCoV-EMC/2012) 

Accelerated virus clearance from 

lungs of infected mice 

(174) 

Human trials     

   Ribavirin / IFN-α2b / 

corticosteroid 

Nucleoside polymerase inhibitor / 

exogenous interferon / corticosteroid 

5 critically ill MERS patients 

 

Regimen: oral ribavirin, s.c. 

IFN-α2b, & i.v. and/or oral 

corticosteroid 

(methylprednisolone and/or 

prednisolone) 

Mean age = 57.6 (24-81) years; 3 

males & 2 females; admitted 4 (2-

10) days after symptom onset; all 

had co-morbidities; time between 

admission & antiviral treatment = 

16.8 (11-21) days & corticosteroid  

15.8 (6-22) days; side effects = 

hemolytic anemia, 

thrombocytopenia, pancreatitis, ↑ 

lipase, & deranged liver & renal 

function tests; all died after a mean 

of 39.6 (32-52) days after 

admission 

(332) 

   Ribavirin / IFN-α2b  ± 

corticosteroid 

Nucleoside polymerase inhibitor / 

exogenous IFN ± corticosteroid 

2 epidemiologically-linked 

MERS patients 

 

Regimen: oral ribavirin & 

s.c. IFN-α2b for 2 weeks (& 

i.v. methylprednisolone 

500mg q24h for 3 days for 

index case) 

Both the index case (treatment) & 

contact (prophylaxis) had clinical & 

radiological improvement after 

receiving ribavirin & IFN-α2b 

(211) 

   Ribavirin / IFN-α2a Nucleoside polymerase inhibitor / 

exogenous IFN ± corticosteroid 

20 severe MERS patients 

 

Regimen: oral ribavirin for 

8-10 days & pegylated IFN-

Compared to the comparator group 

(28 severe MERS patients who 

received supportive care only), the 

treatment group had significantly 

(207) 
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α2a 180 µg/week for 2 

weeks; 11/19 (58%) patients 

received corticosteroid 

improved survival at 14 days but 

not 28 days after the diagnosis of 

MERS; significantly greater 

reduction in hemoglobin level was 

noted in the treatment group 

      Ribavirin / lopinavir / IFN-

α2a  

Nucleoside polymerase inhibitor / 

protease inhibitor / exogenous IFN 

1 severe MERS patient  

 

Regimen: oral ribavirin 

1200mg q8h & 

lopinavir/ritonavir 

(400/100mg) q12h for 8 

days, & pegylated IFN-α2a 

180 µg/week for 2 weeks  

Viremia resolved 2 days after 

initiation of antiviral treatment 

(started on day 13 of illness); 

persistent virus shedding in 

respiratory tract secretions until 4th 

week of illness 

(184) 

Abbreviations: ABL1, Abelson murine leukemia viral oncogene homolog 1; Ad5-hDPP4, adenovirus expressiong human host-cell 1419 

receptor dipeptidyl peptidase 4; AKT, protein kinase B; CC50, 50% inhibition of cell survival; DPP4, dipeptidyl peptidase 4; Epac, 1420 

exchange proteins directly activated by cAMP; ERK/MAPK, extracellular signal-regulated kinases/mitogen-activated protein kinases; 1421 

HAE, primary human airway epithelia; hFc, constant region fragment of human IgG; hpi, hours post infection; HR, heptad repeat; 1422 

IC50, 50% maximal inhibitory concentration; IFN, interferon; IMPDH, inosine-5’-monophosphate dehydrogenase; i.v., intravenous; 1423 

mAb, monoclonal antibody; MIU, mega international units; mTOR, mammalian target of rapamycin; ND50, 50% neutralization dose; 1424 

Nsp1, non-structural protein 1; RBD, receptor-binding domain; S, spike; s.c., subcutaneous; SI, selectivity index; TLR3, Toll-like 1425 

receptor 3; TMPRSS2, type II transmembrane serine protease.  1426 
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TABLE 11 Active and passive immunization against MERS 1427 

Vaccine Components (virus strain) Animal model 

(administration) 

Main findings (animal model) References 

Active immunization     

   MVA-MERS-S Recombinant modified 

vaccinia virus Ankara 

expressing full-length 

MERS-CoV S protein 

(HCoV-EMC/2012) 

BALB/c mice (2 i.m. 

immunizations at days 0 

& 21) 

High levels of nAb were induced (248) 

   VRP-S Venezuelan Equine 

Encephalitis Replicon 

Particles containing S protein 

of MERS-CoV (HCoV-

EMC/2012) 

Ad5-hDPP4-transduced 

BALB/c mice (2 

immunizations in the 

footpads at days 0 & 28) 

Reduction of viral titers to nearly undetectable levels 

by 1 dpi 

(174) 

   Spike protein nanoparticles Purified S protein 

nanoparticles produced in Sf9 

cells infected with specific 

recombinant baculovirus 

cloned with MERS-CoV S 

protein gene sequence (Al-

Hasa_1_2013) 

BALB/c mice, 6 to 8 

weeks old (2 i.m. 

immunizations on days 0 

& 21) 

Inducted nAb in mice receiving MERS-CoV S 

inoculation with adjuvants Matrix M1 or Alum, but 

not in those receiving MERS-CoV S inoculation 

alone (Matrix M1 > Alum > no adjuvant); nAb levels 

were not significantly different between regimens 

consisting of 1 µg & 3 µg, & between sera obtained 

on days 21 &45 

(249) 

   S-RBD-Fc Recombinant protein 

containing RBD (residues 

377 to 662) of S1 (HCoV-

EMC/2012) 

Mice (2 s.c. 

immunizations on days 0 

& 14) 

Sera of vaccinated mice showed neutralizing activity 

(>96%) against MERS-CoV pseudo- (Huh-7 cells) & 

live (Vero E6 cells) virus infection 

(41) 

   358-to-588 S1-Fc RBD (residues 358 to 588) of 

S1 fused with human IgG Fc 

fragment (HCoV-EMC/2012) 

Vero cells (inoculation of 

sera containing 

polyclonal Ab raised in 

immunized rabbits) 

Polyclonal antibodies against 358-to-588 S1-Fc 

variant efficiently neutralized virus infectivity 

(34) 

   S377-588-Fc Truncated 212-aa fragment of 

RBD (residues 377 to 588) of 

S1 fused with human IgG Fc 

fragment (HCoV-EMC/2012) 

BALB/c mice, 6 to 8 

weeks old (3 s.c. 

immunizations) 

↑ neutralizing IgG1 (Th2) & IgG2a (Th1) Ab 

responses specific for the RBD in the S1 subunit 

were induced after each immunization with 

Montanide ISA 51 adjuvant 

(31, 42)  

     BALB/c mice, 4 to 6 

weeks old (5 s.c. or i.n. 

immunizations at days 0, 

21, 42, 3 months & 6 

months) 

i.n. vaccination with Poly(I:C) adjuvant induced 

similar degree of systemic humoral immune 

responses, including nAb, & more robust systemic 

cellular & local (lung) mucosal immune responses as 

comparable to those induced by s.c. vaccination with 

Montanide ISA 51 adjuvant 

(43) 



102 
 

  BALB/c mice, 6 to 8 

weeks old (3 s.c. 

immunizations); & 

rabbits (3 

immunizations) 

Among 5 versions of RBD fragments, the S377-588-

Fc showed the highest DPP4-binding affinity, & 

induced the highest-titer IgG Ab in mice & 

neutralizing Ab in rabbits 

(36) 

   rRBD (combined with 

different adjuvants) 

Recombinant RBD protein 

containing a 240-aa fragment 

of RBD (residues 367-606) 

of S1(HCoV-EMC/2012) 

combined with different 

adjuvants [Alum alone, Alum 

plus CpG-ODNs, Alum plus 

Poly(I:C), or CpG-ODNs 

plus IFA] 

BALB/c mice, 6 to 8 

weeks old (3 i.m. or s.c. 

immunizations at days 0, 

21 & 42) 

The combination of rRBD and Alum plus CpG-

ODNs given by the i.m. route provided the most 

robust RBD-specific humoral and cellular immunity. 

(251) 

Passive immunization     

   Adoptive transfer of sera Sera containing anti-MERS-

CoV-S Ab (HCoV-

EMC/2012) 

Ad5-hDPP4-transduced 

BALB/c mice (sera 

obtained 2-4 weeks after 

immunization with VRP-

S, & transferred into 

mice i.p. 1 day before 

infection) 

Adoptive transfer of sera containing anti-MERS-

CoV-S Ab blocked virus attachment & accelerated 

virus clearance to nearly undetectable levels by 5 dpi 

(174) 

Abbreviations: aa, amino acid; Ab, antibody; Ad5-hDPP4, adenoviral vectors expressing human dipeptidyl peptidase 4; Alum, 1428 

aluminium hydroxide; CpG-ODNs, cysteine-phosphate-guanine oligodeoxynucleotides; dpi, days post infection; IFA, incomplete 1429 

Freund’s adjuvant; i.m., intramuscular; i.n., intranasal; i.p., intraperitoneal; nAb, neutralizing antibody; Poly(I:C), polyriboinosinic 1430 

acid; RBD, receptor-binding domain; S, Spike; s.c., subcutaneous. 1431 

1432 
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TABLE 12 Animals tested for susceptibility to MERS-CoV in experimental and natural infection 1433 

Animal species 

& age 

Dose and 

route of 

inoculation 

(virus strain) 

Point of 

evaluation 

(days) 

Clinical, virological, & immunological 

findings 

Histopathological & IHC results References 

Susceptible      

   Rhesus 

macaques 

(Macaca 

mulatta); 6-10 

years 

7 × 106 TCID50 

i.t., i.n., oral & 

ocular (HCoV-

EMC/2012) 

Up to 6 Clinical: mild to moderate symptoms 

including nasal swelling, piloerection, ↓ 

bowel opening, ↑ or ↓ respiratory rate, ↓ 

food intake, & hunched posture on 1-6 

dpi; leukocytosis with neutrophilia & 

lymphopenia on 1 dpi 

Virological: viral RNA detected in upper 

& lower respiratory tract specimens, 

conjunctiva, & lymphoid tissues 

(mediastinal & tonsils) from 1 dpi, & in 1 

macaque’s urogenital swab on 1 dpi 

Immunological: significant up-

regulation of genes associated with 

proinflammatory process (IL-6, CXCL1, 

MMP9); rapid resolution of controlled 

interferon-mediated innate immune 

response 

Macroscopic: multifocal to coalescent, 

mild to marked interstitial pneumonia 

Microscopic: thickening of alveolar 

septae by edema fluid & fibrin with 

predominantly macrophages; BOOP-like 

changes with multinucleate syncytia 

formed by alveolar macrophages, fibrin 

aggregates, & occluded small airways by 

sloughed pulmonary epithelium, & 

perivascular infiltrates of inflammatory 

cells; type II pneumocyte hyperplasia; 

hyaline membrane formation 

IHC: viral Ag detected in types I & II 

pneumocytes, & macrophages/monocytes 

or dendritic cells 

(165, 166) 

   Rhesus 

macaques 

(Macaca 

mulatta); 2-3 

years 

6.5 × 107 

TCID50 i.t. 

(HCoV-

EMC/2012) 

Up to 28 Clinical: fever & reduced water intake on 

1-2 dpi; CXR showed varying degrees of 

localized infiltration & interstitial 

markings on 3-5 dpi 

Virological: viral RNA detected in lungs 

on 3 dpi 

Immunological: neutralizing Ab detected 

at 7 dpi, & peaked at 14 dpi 

Macroscopic: congestion & palpable 

nodules scattered in distribution 

Microscopic: multifocal mild-to-moderate 

interstitial pneumonia & exudative 

changes in lungs 

IHC: viral Ag detected in types I & II 

pneumocytes, & alveolar macrophages 

(167) 

   Common 

marmosets 

(Callithrix 

jacchus); 2-6 

years 

5.2 × 106 

TCID50 i.t., i.n., 

oral & ocular 

(HCoV-

EMC/2012) 

Up to 55 Clinical: moderate to severe symptoms 

including ↑respiratory rate, open mouth 

and/or labored breathing, frothy 

hemorrhagic discharge from mouth, ↓ 

food intake, & ↓ activity level since 1-3 

dpi & peaked o 4-6 dpi. Clinical scores 

retuned to baseline by 13 dpi; 2/9 animals 

Macroscopic: multifocal, extensive, 

severe lesions especially in lower lobes; 

lungs were firm, failed to collapse, & fluid 

filled 

Microscopic: multifocal to coalescing, 

moderate to marked acute 

bronchointerstitial pneumonia centered on 

terminal bronchioles, with influx of 

(168) 
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were euthanized because of severe 

disease; CXR showed varying degrees of 

interstitial infiltration on 3-4 dpi 

Virological: viral RNA detected in upper 

(since 1 dpi) & lower respiratory tract 

specimens, blood, & multiple organs 

(conjunctiva, lymph nodes, tonsils, 

kidneys, heart, adrenal glands, liver, 

spleen, pancreas, colon, ileum, frontal 

lobe, cerebellum, brain stem, urinary 

bladder, & testes) since 3 dpi    

Immunological: tissue differentiation 

with development of pulmonary fibrosis 

as evidenced by activation of pathways 

associated with chemotaxis & ell 

migration, cell cycle progression, cell 

proliferation, fibrogenesis, inflammation, 

vascularization, endothelial activation, 

smooth muscle cell proliferation, & tissue 

repair; upregulation of innate & adaptive 

immune genes; induction of type I IFNs, 

IL-2, IL-4, & IL-6; inhibition of type II 

IFNs, IL-1 & TNFα 

neutrophils & macrophages; thickening of 

alveolar septa; edema, hemorrhage & 

fibrin filled the alveolar spaces (3-4 dpi); 

type II pneumocyte hyperplasia & 

formation of hyaline membrane (6 dpi) 

IHC: viral Ag detected in affected areas, 

especially in type I pneumocytes & 

alveolar macrophages 

    C57BL/6 & 

BALB/c mice 

with Ad5-hDPP4 

transduction; 6-12 

weeks (young) & 

18-22 months 

(aged) 

1 × 105 PFU 

i.n. (HCoV-

EMC/2012) 

Up to 14 Clinical: young BALB/C mice failed to 

gain weight, aged C57BL/6 & BALC/c 

mice lost weight 

Virological: clearance of virus by 6-8 dpi 

in young mice & 10-14 in aged mice 

Immunological: requirement of type I 

IFN induction & signaling, CD8 T cells 

& Ab for virus clearance; low level of 

cross-reactivity between MERS-CoV & 

SARS-CoV 

Macroscopic: vascular congestion & 

inflammation 

Microscopic: perivascular & 

peribronchial lymphoid infiltration 

initially, with progression to an interstitial 

pneumonia 

IHC: viral Ag detected in lungs 

(175) 

   Dromdary 

camels (Camelus 

dromedarius); 2-5 

years (adults) 

107 TCID50 i.t., 

i.n. & ocular 

(HCoV-

EMC/2012) 

 Clinical: mild upper respiratory tract 

symptoms including rhinoorhea & mild 

↑ temperature 

Virological: infectious virus detected in 

nasal (up to 7 dpi & 108 PFU/ml) & oral 

(up to 5 dpi & 102 PFU/ml) swabs; viral 

RNA detected in nasal (up to 35 dpi & 

Macroscopic: lesions found in the upper 

respiratory tract, trachea, bronchi & 

bronchioles, but not in the alveoli (up to 

28 dpi) 

Microscopic: mild to moderate acute 

intraepithelial & submucosal inflammation 

with multifocal necrosis, loss of 

(259) 
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106 TCID50 equivalent/ml) & oral (up to 

35 dpi & 104 TCID50 equivalent/ml) 

swabs  

Immunological: neutralizing Ab detected 

at 14 dpi, & peaked at 35 dpi 

pseudostratified epithelial cells & 

infiltration of small numbers of 

neutroprophils & macrophages (up to 28 

dpi) 

IHC: viral Ag detected in affected areas 

(up to 28 dpi) 

   Goats N/A N/A Clinical: asymptomatic to mildly 

symptomatic 

Immunological: seroconversion in all 14 

goats by 14 dpi 

N/A (258) 

   Jamaican fruit 

bats 

N/A N/A Clinical: no clinical signs or elevation in 

temperature 

Virological: virus shedding from 

respiratory & intestinal tract for up to 9 

dpi 

N/A (257) 

Non-susceptible      

   Syrian hamster 

(Mesocricetus 

auratus) 

4 × 102 TCID50 

aerosols,  103 

TCID50 i.t., or 

106 TCID50 i.t. 

(HCoV-

EMC/2012) 

Up to 21 Clinical: no significant weight loss or 

fever 

Virological: no viral RNA detected in 

nasal, oropharyngeal, urogenital & rectal 

swabs from 1-11 dpi; & lungs, spleen & 

mandibular lymph nodes on 2, 4, & 8 dpi 

Immunological: no seroconversion 

Macroscopic: no gross lesions 

Microscopic: no lesions in trachea, heart, 

lung, spleen, liver, kidney, ileum, colon, 

urinary bladder, nasal turbinates, & brain 

tissues 

(333) 

   BALB/c, 

129/SvEv, & 

129/SvEv STAT1 

knockout mice; 8 

weeks 

120 or 1200 

TCID50 i.n. 

(HCoV-

EMC/2012) 

Up to 9 Clinical: no significant weight loss 

Virological: no detectable virus in lungs 

Microscopic: no sign of viral infection 

(apoptotic cells & syncytia formation); 

129S6/SvEv & 129/SvEv STAT1 

knockout mice had only minor signs of 

pathological lesions or inflammatory 

response, with a few lesions of focal 

interstitial pneumonitis composed of 

neutrophils & macrophages; BALB/c mice 

had perivascular cuffing with scattered 

neutrophils & foci of pneumonia around 

proximal airways 

(334) 

   Ferret (Mustela 

putorius furo) 

1 × 106 TCID50 

i.n. & i.t. 

(HCoV-

EMC/2012) 

Up to 14 Virological: no infectious virus was 

detected in nose & throat swabs 

Immunological: no seroconversion 

 

In vitro: ferret primary kidney cells did 

not bind recombinant S protein S1 & could 

not be infected with MERS-CoV, despite 

DPP4 surface expression 

(49) 

Abbreviations: Ab, antibody; Ad5-hDPP4, adenoviral vectors expressing human dipeptidyl peptidase 4; Ag, antigen; BOOP, 1434 
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bronchiolitis obliterans organizing pneumonia; CXCL1, chemokine C-X-C ligand 1; dpi, days post inoculation; IFN, interferon; IHC, 1435 

immunohistochemistry; IL, interleukin; i.n., intranasal; i.t., intratracheal; MMP9, matrix metalloproteinase 9; N/A, not available; PFU, 1436 

plaque-forming unit; S, spike; TCID50, 50% tissue culture infectious dose.  1437 
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FIGURE LEGENDS 1438 

 1439 

FIG. 1A. Taxonomy of Coronaviridae according to the International Committee on Taxonomy 1440 

of Viruses. 1441 

 1442 

FIG. 1B. Phylogenetic tree of 50 coronaviruses with partial nucleotide sequences of RNA-1443 

dependent RNA polymerase. The tree was constructed by the neighbor-joining method using 1444 

MEGA 5.0. The scale bar indicates the estimated number of substitutions per 20 nucleotides. 1445 

Abbreviations (accession number): AntelopeCoV, sable antelope coronavirus (EF424621); 1446 

BCoV, bovine coronavirus (NC_003045); BdCoV HKU22, bottlenose dolphin coronavirus 1447 

HKU22 (KF793826); BuCoV HKU11, bulbul coronavirus HKU11 (FJ376619); BWCoV-SW1, 1448 

beluga whale coronavirus SW1 (NC_010646); CMCoV HKU21, common moorhen coronavirus 1449 

HKU21 (NC_016996); DcCoV HKU23, dromedary camel coronavirus HKU23 (KF906251); 1450 

ECoV, equine coronavirus (NC_010327); ErinaceousCoV, Betacoronavirus 1451 

Erinaceus/VMC/DEU/2012 (NC_022643); FIPV, feline infectious peritonitis virus (AY994055); 1452 

HCoV-229E, human coronavirus 229E (NC_002645); HCoV-HKU1, human coronavirus HKU1 1453 

(NC_006577); HCoV-NL63, human coronavirus NL63 (NC_005831); HCoV-OC43, human 1454 

coronavirus OC43 (NC_005147); Hi-BatCoV HKU10, Hipposideros bat coronavirus HKU10 1455 

(JQ989269); IBV-partridge, partridge coronavirus (AY646283); IBV-peafowl, peafowl 1456 

coronavirus (AY641576); MERS-CoV, Middle East respiratory syndrome coronavirus 1457 

(NC_019843.3); MERS-CoV KSA-CAMEL-363, Middle East respiratory syndrome coronavirus 1458 

isolate KSA-CAMEL-363 (KJ713298);  MHV, murine hepatitis virus (NC_001846); Mi-BatCoV 1459 

1A, Miniopterus bat coronavirus 1A (NC_010437); Mi-BatCoV 1B, Miniopterus bat coronavirus 1460 
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1B (NC_010436); Mi-BatCoV HKU7, Miniopterus bat coronavirus HKU7 (DQ249226); Mi-1461 

BatCoV HKU8, Miniopterus bat coronavirus HKU8 (NC_010438); MRCoV HKU18, magpie 1462 

robin coronavirus HKU18(NC_016993); MunCoV HKU13, munia coronavirus HKU13 1463 

(FJ376622); My-BatCoV HKU6, Myotis bat coronavirus HKU6 (DQ249224); NeoCoV, 1464 

coronavirus Neoromicia/PML-PHE1/RSA/2011 (KC869678); NHCoV HKU19, night heron 1465 

coronavirus HKU19 (NC_016994); PEDV, porcine epidemic diarrhoea virus (NC_003436); 1466 

PHEV, porcine haemagglutinating encephalomyelitis virus (NC_007732); Pi-BatCoV-HKU5, 1467 

Pipistrellus bat coronavirus HKU5 (NC_009020); PorCoV HKU15, porcine coronavirus HKU15 1468 

(NC_016990); PRCV, porcine respiratory coronavirus (DQ811787); RbCoV HKU14, rabbit 1469 

coronavirus HKU14 (NC_017083); RCoV parker, rat coronavirus parker (NC_012936); Rh-1470 

BatCoV HKU2, Rhinolophus bat coronavirus HKU2 (EF203064); Ro-BatCoV-HKU9, Rousettus 1471 

bat coronavirusHKU9 (NC_009021); Ro-BatCoV HKU10, Rousettus bat coronavirus HKU10 1472 

(JQ989270); SARS-CoV, SARS coronavirus (NC_004718); SARSr-CiCoV, SARS-related palm 1473 

civet coronavirus (AY304488); SARSr-Rh-BatCoV HKU3, SARS-related Rhinolophus bat 1474 

coronavirus HKU3 (DQ022305); Sc-BatCoV 512, Scotophilus bat coronavirus 512 1475 

(NC_009657); SpCoV HKU17, sparrow coronavirus HKU17 (NC_016992); TCoV, turkey 1476 

coronavirus (NC_010800); TGEV, transmissible gastroenteritis virus (NC_002306); ThCoV 1477 

HKU12, thrush coronavirus HKU12 (FJ376621); Ty-BatCoV-HKU4, Tylonycteris bat 1478 

coronavirus HKU4 (NC_009019); WECoV HKU16, white-eye coronavirus HKU16 1479 

(NC_016991); WiCoV HKU20, wigeon coronavirus HKU20 (NC_016995). 1480 

 1481 

FIG. 2. Genome arrangement of MERS-CoV with emphasis on the clinical applications of the 1482 

key non-structural and structural genes. * denotes furin cleavage sites. Abbreviations: 3CLpro, 1483 
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3C-like protease; AP, accessory protein; CP, cytoplasmic domain; E, envelope; FP, fusion 1484 

peptide; Hel, helicase; HR, heptad repeat; IFN, interferon; M, membrane; mAb, monoclonal 1485 

antibody; N, nucleocapsid; nsp, non-structural protein; ORF, open reading frame; pp, 1486 

polyprotein; PLpro, papain-like protease; RBD, receptor binding domain; RdRp, polymerase; 1487 

RT-RPA; reverse transcription isothermal Recombinase Polymerase Amplification; S, spike; SP, 1488 

signal peptide; TM, transmembrane domain. 1489 

 1490 

FIG. 3. Candidate antiviral agents for MERS-CoV in relation to the viral replication cycle. (+) 1491 

and (-) denotes positive- and negative-strand RNA respectively. Abbreviations: AKT, protein 1492 

kinase B; Cyps, cyclophilins; DPP4, dipeptidyl peptidase-4; E, envelope; ER, endoplasmic 1493 

reticulum; ERGIC, endoplasmic reticulum Golgi intermediate compartment; ERK, extracellular 1494 

signal-regulated kinases; HR2P, heptad repeat 2 peptide; IFN, interferon; M, membrane; mAb, 1495 

monoclonal antibody; MAPK, mitogen-activated protein kinases; MPA, mycophenolic acid; 1496 

mRNA, messenger RNA; mTOR, mammalian target of rapamycin; N, nucleocpasid; NFAT, 1497 

nuclear factor of activated T-cells; nsp, non-structural protein; ORF, open reading frame; PI3K, 1498 

phosphatidylinositide 3-kinases; S, spike; TMPRSS2, transmembrane protease serine protease-2.  1499 

 1500 

FIG. 4. Phylogenetic tree of representative human and camel strains of MERS-CoV rooted by 1501 

NeoCoV (KC869678.4) according to reference (111).  1502 



110 
 

REFERENCES 1503 

1. Chan JF, To KK, Tse H, Jin DY, Yuen KY. 2013. Interspecies transmission and 1504 
emergence of novel viruses: lessons from bats and birds. Trends Microbiol. 21:544-555. 1505 

2. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, 1506 
Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY. 2003. 1507 
Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319-1508 
1325. 1509 

3. Cheng VC, Lau SK, Woo PC, Yuen KY. 2007. Severe acute respiratory syndrome 1510 
coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 1511 
20:660-694. 1512 

4. To KK, Chan JF, Chen H, Li L, Yuen KY. 2013. The emergence of influenza A H7N9 1513 
in human beings 16 years after influenza A H5N1: a tale of two cities. Lancet Infect. Dis. 1514 
13:809-821. 1515 

5. Yuen KY, Chan PK, Peiris M, Tsang DN, Que TL, Shortridge KF, Cheung PT, To 1516 
WK, Ho ET, Sung R, Cheng AF. 1998. Clinical features and rapid viral diagnosis of 1517 
human disease associated with avian influenza A H5N1 virus. Lancet 351:467-471. 1518 

6. MacNeil A, Rollin PE. 2012. Ebola and Marburg hemorrhagic fevers: neglected tropical 1519 
diseases? PLoS Negl. Trop. Dis. 6:e1546. 1520 

7. Marsh GA, Wang LF. 2012. Hendra and Nipah viruses: why are they so deadly? Curr. 1521 
Opin. Virol. 2:242-247. 1522 

8. To KK, Ng  KH, Que TL, Chan JM, Tsang KY, Tsang AK, Chen H, Yuen KY. 2012. 1523 
Avian influenza A H5N1 virus: a continuous threat to humans. Emerging Microbes & 1524 
Infections 1, e25. 1525 

9. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. 1526 
Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. 1527 
Med. 367:1814-1820. 1528 

10. Chan JF, Li KS, To KK, Cheng VC, Chen H, Yuen KY. 2012. Is the discovery of the 1529 
novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another 1530 
SARS-like pandemic? J. Infect. 65:477-489. 1531 

11. Chan JF, Lau SK, Woo PC. 2013. The emerging novel Middle East respiratory 1532 
syndrome coronavirus: the "knowns" and "unknowns". J. Formos Med. Assoc. 112:372-1533 
381. 1534 

12. Woo PC, Lau SK, Yuen KY. 2006. Infectious diseases emerging from Chinese wet-1535 
markets: zoonotic origins of severe respiratory viral infections. Curr. Opin. Infect. Dis. 1536 
19:401-407. 1537 

13. Woo PC, Wang M, Lau SK, Xu H, Poon RW, Guo R, Wong BH, Gao K, Tsoi HW, 1538 
Huang Y, Li KS, Lam CS, Chan KH, Zheng BJ, Yuen KY. 2007. Comparative 1539 
analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals 1540 
unique group and subgroup features. J. Virol. 81:1574-1585. 1541 

14. Woo PC, Lau SK, Li KS, Poon RW, Wong BH, Tsoi HW, Yip BC, Huang Y, Chan 1542 
KH, Yuen KY. 2006. Molecular diversity of coronaviruses in bats. Virology 351:180-1543 
187. 1544 

15. Woo PC, Lau SK, Huang Y, Yuen KY. 2009. Coronavirus diversity, phylogeny and 1545 
interspecies jumping. Exp. Biol. Med. (Maywood) 234:1117-1127. 1546 

16. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, 1547 



111 
 

Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RA. 2012. 1548 
Genomic characterization of a newly discovered coronavirus associated with acute 1549 
respiratory distress syndrome in humans. mBio 3:e00473-12. 1550 

17. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA, 1551 
Galiano M, Gorbalenya AE, Memish ZA, Perlman S, Poon LL, Snijder EJ, Stephens 1552 
GM, Woo PC, Zaki AM, Zambon M, Ziebuhr J. 2013. Middle East respiratory 1553 
syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J. 1554 
Virol. 87:7790-7792. 1555 

18. Bermingham A, Chand MA, Brown CS, Aarons E, Tong C, Langrish C, Hoschler K, 1556 
Brown K, Galiano M, Myers R, Pebody RG, Green HK, Boddington NL, Gopal R, 1557 
Price N, Newsholme W, Drosten C, Fouchier RA, Zambon M. 2012. Severe 1558 
respiratory illness caused by a novel coronavirus, in a patient transferred to the United 1559 
Kingdom from the Middle East, September 2012. Euro. Surveill. 17:20290. 1560 

19. Pollack MP, Pringle C, Madoff LC, Memish ZA. 2013. Latest outbreak news from 1561 
ProMED-mail: novel coronavirus -- Middle East. Int. J. Infect. Dis. 17:e143-144. 1562 

20. Cotten M, Lam TT, Watson SJ, Palser AL, Petrova V, Grant P, Pybus OG, Rambaut 1563 
A, Guan Y, Pillay D, Kellam P, Nastouli E. 2013. Full-genome deep sequencing and 1564 
phylogenetic analysis of novel human betacoronavirus. Emerg. Infect. Dis. 19:736-742B. 1565 

21. Woo PC, Lau SK, Li KS, Tsang AK, Yuen KY. 2012. Genetic relatedness of the novel 1566 
human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus 1567 
bat coronavirus HKU5. Emerging Microbes & Infections 1, e35. 1568 

22. Frey KG, Redden CL, Bishop-Lilly KA, Johnson R, Hensley LE, Raviprakash K, 1569 
Luke T, Kochel T, Mokashi VP, Defang GN. 2014. Full-genome sequence of human 1570 
betacoronavirus 2c jordan-n3/2012 after serial passage in Mammalian cells. Genome 1571 
Announc. 2. 1572 

23. Qian Z, Dominguez SR, Holmes KV. 2013. Role of the spike glycoprotein of human 1573 
Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia 1574 
formation. PLoS One 8:e76469. 1575 

24. Yang Y, Zhang L, Geng H, Deng Y, Huang B, Guo Y, Zhao Z, Tan W. 2013. The 1576 
structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East 1577 
respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein 1578 
Cell 4:951-961. 1579 

25. Siu KL, Yeung ML, Kok KH, Yuen KS, Kew C, Lui PY, Chan CP, Tse H, Woo PC, 1580 
Yuen KY, Jin DY. 2014. Middle east respiratory syndrome coronavirus 4a protein is a 1581 
double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I 1582 
and MDA5 in the innate antiviral response. J. Virol. 88:4866-4876. 1583 

26. Matthews KL, Coleman CM, van der Meer Y, Snijder EJ, Frieman MB. 2014. The 1584 
ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and 1585 
two related bat coronaviruses localize to the nucleus and inhibit innate immune 1586 
signalling. J. Gen. Virol. 95:874-882. 1587 

27. Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, Suliman T, Barchet W, 1588 
Weber F, Drosten C, Muller MA. 2013. Middle East respiratory syndrome coronavirus 1589 
accessory protein 4a is a type I interferon antagonist. J. Virol. 87:12489-12495. 1590 

28. Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, Chen Z. 2014. Proteolytic processing, 1591 
deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome 1592 
coronavirus papain-like protease. J. Gen. Virol. 95:614-626. 1593 



112 
 

 1594 
29. Chen Y, Rajashankar KR, Yang Y, Agnihothram SS, Liu C, Lin YL, Baric RS, Li F. 1595 

2013. Crystal structure of the receptor-binding domain from newly emerged Middle East 1596 
respiratory syndrome coronavirus. J. Virol. 87:10777-10783. 1597 

30. Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, Zhang 1598 
B, Shi Y, Yan J, Gao GF. 2013. Molecular basis of binding between novel human 1599 
coronavirus MERS-CoV and its receptor CD26. Nature 500:227-231. 1600 

31. Du L, Zhao G, Kou Z, Ma C, Sun S, Poon VK, Lu L, Wang L, Debnath AK, Zheng 1601 
BJ, Zhou Y, Jiang S. 2013. Identification of a receptor-binding domain in the S protein 1602 
of the novel human coronavirus Middle East respiratory syndrome coronavirus as an 1603 
essential target for vaccine development. J. Virol. 87:9939-9942. 1604 

32. Jiang S, Lu L, Du L, Debnath AK. 2013. A predicted receptor-binding and critical 1605 
neutralizing domain in S protein of the novel human coronavirus HCoV-EMC. J. Infect. 1606 
66:464-466. 1607 

33. Jiang S, Lu L, Du L, Debnath AK. 2013. Putative conformations of the receptor-1608 
binding domain in S protein of hCoV-EMC in complex with its receptor dipeptidyl 1609 
peptidase-4. J. Infect. 67:156-158. 1610 

34. Mou H, Raj VS, van Kuppeveld FJ, Rottier PJ, Haagmans BL, Bosch BJ. 2013. The 1611 
receptor binding domain of the new Middle East respiratory syndrome coronavirus maps 1612 
to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. 1613 
J. Virol. 87:9379-9383. 1614 

35. Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, Guo D, Fu L, Cui Y, Liu X, 1615 
Arledge KC, Chen YH, Zhang L, Wang X. 2013. Structure of MERS-CoV spike 1616 
receptor-binding domain complexed with human receptor DPP4. Cell Res. 23:986-993. 1617 

36. Ma C, Wang L, Tao X, Zhang N, Yang Y, Tseng CT, Li F, Zhou Y, Jiang S, Du L. 1618 
2014. Searching for an ideal vaccine candidate among different MERS coronavirus 1619 
receptor-binding fragments-The importance of immunofocusing in subunit vaccine 1620 
design. Vaccine 32:6170-6176. 1621 

37. Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou Z, Tao X, Yu H, Sun S, Tseng CT, Jiang 1622 
S, Li F, Zhou Y. 2014. A conformation-dependent neutralizing monoclonal antibody 1623 
specifically targeting receptor-binding domain in middle East respiratory syndrome 1624 
coronavirus spike protein. J. Virol. 88:7045-7053. 1625 

38. Ying T, Du L, Ju TW, Prabakaran P, Lau CC, Lu L, Liu Q, Wang L, Feng Y, Wang 1626 
Y, Zheng BJ, Yuen KY, Jiang S, Dimitrov DS. 2014. Exceptionally potent 1627 
neutralization of Middle East respiratory syndrome coronavirus by human monoclonal 1628 
antibodies. J. Virol. 88:7796-7805. 1629 

39. Jiang L, Wang N, Zuo T, Shi X, Poon KM, Wu Y, Gao F, Li D, Wang R, Guo J, Fu L, 1630 
Yuen KY, Zheng BJ, Wang X, Zhang L. 2014. Potent neutralization of MERS-CoV by 1631 
human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci. Transl. 1632 
Med. 6:234ra259. 1633 

40. Tang XC, Agnihothram SS, Jiao Y, Stanhope J, Graham RL, Peterson EC, Avnir Y, 1634 
Tallarico AS, Sheehan J, Zhu Q, Baric RS, Marasco WA. 2014. Identification of 1635 
human neutralizing antibodies against MERS-CoV and their role in virus adaptive 1636 
evolution. Proc. Natl. Acad. Sci. U. S. A. 111:E2018-2026. 1637 

41. Zhao G, Du L, Ma C, Li Y, Li L, Poon VK, Wang L, Yu F, Zheng BJ, Jiang S, Zhou 1638 
Y. 2013. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing 1639 



113 
 

antibodies and screen for viral entry inhibitors against the novel human coronavirus 1640 
MERS-CoV. Virol. J. 10:266. 1641 

42. Du L, Kou Z, Ma C, Tao X, Wang L, Zhao G, Chen Y, Yu F, Tseng CT, Zhou Y, 1642 
Jiang S. 2013. A truncated receptor-binding domain of MERS-CoV spike protein 1643 
potently inhibits MERS-CoV infection and induces strong neutralizing antibody 1644 
responses: implication for developing therapeutics and vaccines. PLoS One 8:e81587. 1645 

43. Ma C, Li Y, Wang L, Zhao G, Tao X, Tseng CT, Zhou Y, Du L, Jiang S. 2014. 1646 
Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike 1647 
protein induces much stronger local mucosal immune responses than subcutaneous 1648 
immunization: Implication for designing novel mucosal MERS vaccines. Vaccine 1649 
32:2100-2108. 1650 

44. Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, Wang Q, Chan JF, Du L, Yu F, Ma C, Ye 1651 
S, Yuen KY, Zhang R, Jiang S. 2014. Structure-based discovery of Middle East 1652 
respiratory syndrome coronavirus fusion inhibitor. Nat. Commun. 5:3067. 1653 

45. Gao J, Lu G, Qi J, Li Y, Wu Y, Deng Y, Geng H, Li H, Wang Q, Xiao H, Tan W, Yan 1654 
J, Gao GF. 2013. Structure of the fusion core and inhibition of fusion by a heptad repeat 1655 
peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J. 1656 
Virol. 87:13134-13140. 1657 

46. Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, Muth D, Demmers 1658 
JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ, 1659 
Haagmans BL. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging 1660 
human coronavirus-EMC. Nature 495:251-254. 1661 

47. Lambeir AM, Durinx C, Scharpe S, De Meester I. 2003. Dipeptidyl-peptidase IV from 1662 
bench to bedside: an update on structural properties, functions, and clinical aspects of the 1663 
enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 40:209-294. 1664 

48. van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T, Robertson S, Scott 1665 
D, Kinne J, McLellan JS, Zhu J, Munster VJ. 2014. Host Species Restriction of 1666 
Middle East Respiratory Syndrome Coronavirus through its Receptor Dipeptidyl 1667 
Peptidase 4. J. Virol. 88:9220-32. 1668 

49. Raj VS, Smits SL, Provacia LB, van den Brand JM, Wiersma L, Ouwendijk WJ, 1669 
Bestebroer TM, Spronken MI, van Amerongen G, Rottier PJ, Fouchier RA, Bosch 1670 
BJ, Osterhaus AD, Haagmans BL. 2014. Adenosine deaminase acts as a natural 1671 
antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory 1672 
syndrome coronavirus. J. Virol. 88:1834-1838. 1673 

50. Ohnuma K, Haagmans BL, Hatano R, Raj VS, Mou H, Iwata S, Dang NH, Bosch 1674 
BJ, Morimoto C. 2013. Inhibition of Middle East respiratory syndrome coronavirus 1675 
infection by anti-CD26 monoclonal antibody. J. Virol. 87:13892-13899. 1676 

51. Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Kramer-Kuhl A, Welsch K, 1677 
Winkler M, Meyer B, Drosten C, Dittmer U, von Hahn T, Simmons G, Hofmann H, 1678 
Pohlmann S. 2013. The spike protein of the emerging betacoronavirus EMC uses a novel 1679 
coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by 1680 
neutralizing antibodies. J. Virol. 87:5502-5511. 1681 

52. Shirato K, Kawase M, Matsuyama S. 2013. Middle East respiratory syndrome 1682 
coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. 1683 
Virol. 87:12552-12561. 1684 

53. Gierer S, Muller MA, Heurich A, Ritz D, Springstein B, Karsten CB, Schendzielorz 1685 



114 
 

A, Gnirss K, Drosten C, Pohlmann S. 2014. Inhibition of proprotein convertases 1686 
abrogates processing of the MERS-coronavirus spike protein in infected cells but does 1687 
not reduce viral infectivity. J. Infect. Dis. pii: jiu407. [Epub ahead of print] 1688 

54. Millet JK, Whittaker GR. 2014. Host cell entry of Middle East respiratory syndrome 1689 
coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. 1690 
Acad. Sci. U. S. A.  111:15214-15219. 1691 

55. Thomas G. 2002. Furin at the cutting edge: from protein traffic to embryogenesis and 1692 
disease. Nat. Rev. Mol. Cell Biol. 3:753-766. 1693 

56. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W. 1992. Inhibition 1694 
of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360:358-361. 1695 

57. Shiryaev SA, Remacle AG, Ratnikov BI, Nelson NA, Savinov AY, Wei G, Bottini M, 1696 
Rega MF, Parent A, Desjardins R, Fugere M, Day R, Sabet M, Pellecchia M, 1697 
Liddington RC, Smith JW, Mustelin T, Guiney DG, Lebl M, Strongin AY. 2007. 1698 
Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial 1699 
toxins and viral pathogens. J. Biol. Chem. 282:20847-20853. 1700 

58. de Wilde AH, Raj VS, Oudshoorn D, Bestebroer TM, van Nieuwkoop S, Limpens 1701 
RW, Posthuma CC, van der Meer Y, Barcena M, Haagmans BL, Snijder EJ, van den 1702 
Hoogen BG. 2013. MERS-coronavirus replication induces severe in vitro cytopathology 1703 
and is strongly inhibited by cyclosporin A or interferon-alpha treatment. J. Gen. Virol. 1704 
94:1749-1760. 1705 

59. Lu L, Liu Q, Du L, Jiang S. 2013. Middle East respiratory syndrome coronavirus 1706 
(MERS-CoV): challenges in identifying its source and controlling its spread. Microbes 1707 
Infect. 15:625-629. 1708 

60. Lei J, Mesters JR, Drosten C, Anemuller S, Ma Q, Hilgenfeld R. 2014. Crystal 1709 
structure of the papain-like protease of MERS coronavirus reveals unusual, potentially 1710 
druggable active-site features. Antiviral Res. 109C:72-82. 1711 

61. Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S, Klenk HD, Rappuoli 1712 
R. 2003. SARS--beginning to understand a new virus. Nat. Rev. Microbiol. 1:209-218. 1713 

62. Corman VM, Muller MA, Costabel U, Timm J, Binger T, Meyer B, Kreher P, 1714 
Lattwein E, Eschbach-Bludau M, Nitsche A, Bleicker T, Landt O, Schweiger B, 1715 
Drexler JF, Osterhaus AD, Haagmans BL, Dittmer U, Bonin F, Wolff T, Drosten C. 1716 
2012. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) 1717 
infections. Euro. Surveill. 17. pii: 20334. 1718 

63. Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, 1719 
Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, Makhdoom HQ, Zumla AI, 1720 
Memish ZA. 2013. Epidemiological, demographic, and clinical characteristics of 47 1721 
cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a 1722 
descriptive study. Lancet Infect. Dis. 13:752-761. 1723 

64. Albarrak AM, Stephens GM, Hewson R, Memish ZA. 2012. Recovery from severe 1724 
novel coronavirus infection. Saudi Med. J. 33:1265-1269. 1725 

65. Memish ZA, Zumla AI, Assiri A. 2013. Middle East respiratory syndrome coronavirus 1726 
infections in health care workers. N. Engl. J. Med. 369:884-886. 1727 

66. Al-Abdallat MM, Payne DC, Alqasrawi S, Rha B, Tohme RA, Abedi GR, Al Nsour 1728 
M, Iblan I, Jarour N, Farag NH, Haddadin A, Al-Sanouri T, Tamin A, Harcourt JL, 1729 
Kuhar DT, Swerdlow DL, Erdman DD, Pallansch MA, Haynes LM, Gerber SI. 1730 
2014. Hospital-associated outbreak of middle East respiratory syndrome coronavirus: a 1731 



115 
 

serologic, epidemiologic, and clinical description. Clin. Infect. Dis. 59:1225-1233. 1732 
67. Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. 2013. Family 1733 

cluster of Middle East respiratory syndrome coronavirus infections. N. Engl. J. Med. 1734 
368:2487-2494. 1735 

68. Mailles A, Blanckaert K, Chaud P, van der Werf S, Lina B, Caro V, Campese C, 1736 
Guery B, Prouvost H, Lemaire X, Paty MC, Haeghebaert S, Antoine D, Ettahar N, 1737 
Noel H, Behillil S, Hendricx S, Manuguerra JC, Enouf V, La Ruche G, Semaille C, 1738 
Coignard B, Levy-Bruhl D, Weber F, Saura C, Che D. 2013. First cases of Middle 1739 
East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, 1740 
investigations and implications for the prevention of human-to-human transmission, 1741 
France, May 2013. Euro. Surveill. 18. pii: 20502. 1742 

69. Guberina H, Witzke O, Timm J, Dittmer U, Muller MA, Drosten C, Bonin F. 2014. A 1743 
patient with severe respiratory failure caused by novel human coronavirus. Infection 1744 
42:203-206. 1745 

70. Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak AM. 2013. 1746 
A family cluster of Middle East Respiratory Syndrome Coronavirus infections related to a 1747 
likely unrecognized asymptomatic or mild case. Int. J. Infect. Dis. 17:e668-672. 1748 

71. Guery B, Poissy J, el Mansouf L, Sejourne C, Ettahar N, Lemaire X, Vuotto F, 1749 
Goffard A, Behillil S, Enouf V, Caro V, Mailles A, Che D, Manuguerra JC, Mathieu 1750 
D, Fontanet A, van der Werf S. 2013. Clinical features and viral diagnosis of two cases 1751 
of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial 1752 
transmission. Lancet 381:2265-2272. 1753 

72. Drosten C, Seilmaier M, Corman VM, Hartmann W, Scheible G, Sack S, Guggemos 1754 
W, Kallies R, Muth D, Junglen S, Muller MA, Haas W, Guberina H, Rohnisch T, 1755 
Schmid-Wendtner M, Aldabbagh S, Dittmer U, Gold H, Graf P, Bonin F, Rambaut 1756 
A, Wendtner CM. 2013. Clinical features and virological analysis of a case of Middle 1757 
East respiratory syndrome coronavirus infection. Lancet Infect. Dis. 13:745-751. 1758 

73. Health Protection Agency (HPA) UK Novel Coronavirus Investigation team. 2013. 1759 
Evidence of person-to-person transmission within a family cluster of novel coronavirus 1760 
infections, United Kingdom, February 2013. Euro. Surveill. 18:20427. 1761 

74. Abroug F, Slim A, Ouanes-Besbes L, Hadj Kacem MA, Dachraoui F, Ouanes I, Lu 1762 
X, Tao Y, Paden C, Caidi H, Miao C, Al-Hajri MM, Zorraga M, Ghaouar W, 1763 
BenSalah A, Gerber SI; World Health Organization Global Outbreak Alert and 1764 
Response Network Middle East Respiratory Syndrome Coroanvirus International 1765 
Investigation Team. 2014. Family cluster of Middle East respiratory syndrome 1766 
coronavirus infections, Tunisia, 2013. Emerg. Infect. Dis. 20:1527-1530. 1767 

75. Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, 1768 
Alabdullatif ZN, Assad M, Almulhim A, Makhdoom H, Madani H, Alhakeem R, Al-1769 
Tawfiq JA, Cotten M, Watson SJ, Kellam P, Zumla AI, Memish ZA. 2013. Hospital 1770 
outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 369:407-1771 
416. 1772 

76. Tsiodras S, Baka A, Mentis A, Iliopoulos D, Dedoukou X, Papamavrou G, Karadima 1773 
S, Emmanouil M, Kossyvakis A, Spanakis N, Pavli A, Maltezou H, Karageorgou A, 1774 
Spala G, Pitiriga V, Kosmas E, Tsiagklis S, Gkatzias S, Koulouris N, Koutsoukou A, 1775 
Bakakos P, Markozanhs E, Dionellis G, Pontikis K, Rovina N, Kyriakopoulou M, 1776 
Efstathiou P, Papadimitriou T, Kremastinou J, Tsakris A, Saroglou G. 2014. A case 1777 



116 
 

of imported Middle East Respiratory Syndrome coronavirus infection and public health 1778 
response, Greece, April 2014. Euro. Surveill. 19:20782. 1779 

77. Bialek SR, Allen D, Alvarado-Ramy F, Arthur R, Balajee A, Bell D, Best S, 1780 
Blackmore C, Breakwell L, Cannons A, Brown C, Cetron M, Chea N, Chommanard 1781 
C, Cohen N, Conover C, Crespo A, Creviston J, Curns AT, Dahl R, Dearth S, 1782 
DeMaria A, Echols F, Erdman DD, Feikin D, Frias M, Gerber SI, Gulati R, Hale C, 1783 
Haynes LM, Heberlein-Larson L, Holton K, Ijaz K, Kapoor M, Kohl K, Kuhar DT, 1784 
Kumar AM, Kundich M, Lippold S, Liu L, Lovchik JC, Madoff L, Martell S, 1785 
Matthews S, Moore J, Murray LR, Onofrey S, Pallansch MA, Pesik N, Pham H, 1786 
Pillai S, Pontones P, Pringle K, Pritchard S, Rasmussen S, Richards S, Sandoval M, 1787 
Schneider E, Schuchat A, Sheedy K, Sherin K, Swerdlow DL, Tappero JW, Vernon 1788 
MO, Watkins S, Watson J. 2014. First confirmed cases of Middle East respiratory 1789 
syndrome coronavirus (MERS-CoV) infection in the United States, updated information 1790 
on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, 1791 
and public health authorities - May 2014. MMWR Morb. Mortal. Wkly. Rep. 63:431-1792 
436. 1793 

78. Premila Devi J, Noraini W, Norhayati R, Chee Kheong C, Badrul AS, Zainah S, 1794 
Fadzilah K, Hirman I, Lokman Hakim S, Noor Hisham A. 2014. Laboratory-1795 
confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection 1796 
in Malaysia: preparedness and response, April 2014. Euro. Surveill. 19. pii: 20797. 1797 

79. Kraaij-Dirkzwager M, Timen A, Dirksen K, Gelinck L, Leyten E, Groeneveld P, 1798 
Jansen C, Jonges M, Raj S, Thurkow I, van Gageldonk-Lafeber R, van der Eijk A, 1799 
Koopmans M. 2014. Middle East respiratory syndrome coronavirus (MERS-CoV) 1800 
infections in two returning travellers in the Netherlands, May 2014. Euro. Surveill. 19. 1801 
pii: 20817. 1802 

80. Al-Tawfiq JA, Hinedi K, Ghandour J, Khairalla H, Musleh S, Ujayli A, Memish ZA. 1803 
2014. Middle East respiratory syndrome coronavirus: a case-control study of hospitalized 1804 
patients. Clin. Infect. Dis. 59:160-165. 1805 

81. Kapoor M, Pringle K, Kumar A, Dearth S, Liu L, Lovchik J, Perez O, Pontones P, 1806 
Richards S, Yeadon-Fagbohun J, Breakwell L, Chea N, Cohen NJ, Schneider E, 1807 
Erdman D, Haynes L, Pallansch M, Tao Y, Tong S, Gerber S, Swerdlow D, Feikin 1808 
DR. 2014. Clinical and Laboratory Findings of the First Imported Case of Middle East 1809 
Respiratory Syndrome Coronavirus to the United States. Clin. Infect. Dis. 59:1511-1518. 1810 

82. Drosten C, Muth D, Corman V, Hussain R, Al Masri M, HajOmar W, Landt O, 1811 
Assiri A, Eckerle I, Al Shangiti A, Al-Tawfiq JA, Albarrak A, Zumla A, Rambaut A, 1812 
Memish Z. 2014. An observational, laboratory-based study of outbreaks of MERS-1813 
Coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014. Clin. Infect. Dis. pii: 1814 
ciu812. [Epub ahead of print] 1815 

83. Memish ZA, Cotten M, Watson SJ, Kellam P, Zumla A, Alhakeem RF, Assiri A, 1816 
Rabeeah AA, Al-Tawfiq JA. 2014. Community case clusters of Middle East respiratory 1817 
syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic 1818 
study. Int. J. Infect. Dis. 23:63-68. 1819 

84. Pebody RG, Chand MA, Thomas HL, Green HK, Boddington NL, Carvalho C, 1820 
Brown CS, Anderson SR, Rooney C, Crawley-Boevey E, Irwin DJ, Aarons E, Tong 1821 
C, Newsholme W, Price N, Langrish C, Tucker D, Zhao H, Phin N, Crofts J, 1822 
Bermingham A, Gilgunn-Jones E, Brown KE, Evans B, Catchpole M, Watson JM. 1823 



117 
 

2012. The United Kingdom public health response to an imported laboratory confirmed 1824 
case of a novel coronavirus in September 2012. Euro. Surveill. 17:20292. 1825 

85. Drosten C, Meyer B, Muller MA, Corman VM, Al-Masri M, Hossain R, Madani H, 1826 
Sieberg A, Bosch BJ, Lattwein E, Alhakeem RF, Assiri AM, Hajomar W, Albarrak 1827 
AM, Al-Tawfiq JA, Zumla AI, Memish ZA. 2014. Transmission of MERS-coronavirus 1828 
in household contacts. N. Engl. J. Med. 371:828-835. 1829 

86. Penttinen PM, Kaasik-Aaslav K, Friaux A, Donachie A, Sudre B, Amato-Gauci AJ, 1830 
Memish ZA, Coulombier D. 2013. Taking stock of the first 133 MERS coronavirus 1831 
cases globally--Is the epidemic changing? Euro. Surveill. 18. pii: 20596. 1832 

87. WHO MERS-CoV Research Group. 2013. State of Knowledge and Data Gaps of 1833 
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans. PLoS Curr. 5. 1834 
pii: ecurrents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8. 1835 

88. Arabi YM, Arifi AA, Balkhy HH, Najm H, Aldawood AS, Ghabashi A, Hawa H, 1836 
Alothman A, Khaldi A, Al Raiy B. 2014. Clinical course and outcomes of critically ill 1837 
patients with Middle East respiratory syndrome coronavirus infection. Ann. Intern. Med. 1838 
160:389-397. 1839 

89. Alghamdi IG, Hussain, II, Almalki SS, Alghamdi MS, Alghamdi MM, El-Sheemy 1840 
MA. 2014. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: 1841 
a descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int. J. 1842 
Gen. Med. 7:417-423. 1843 

90. Breban R, Riou J, Fontanet A. 2013. Interhuman transmissibility of Middle East 1844 
respiratory syndrome coronavirus: estimation of pandemic risk. Lancet 382:694-699. 1845 

91. Alqurashi KA, Aljabri KS, Bokhari SA. 2011. Prevalence of diabetes mellitus in a 1846 
Saudi community. Ann. Saudi Med. 31:19-23. 1847 

92. Zumla AI, Memish ZA. 2014. Middle East respiratory syndrome coronavirus: epidemic 1848 
potential or a storm in a teacup? Eur. Respir. J. 43:1243-1248. 1849 

93. Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai 1850 
JJ, Luk WK, Poon LL, Wong SS, Guan Y, Peiris JS, Yuen KY. 2005. Characterization 1851 
and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients 1852 
with pneumonia. J. Virol. 79:884-895. 1853 

94. Woo PC, Lau SK, Tsoi HW, Huang Y, Poon RW, Chu CM, Lee RA, Luk WK, Wong 1854 
GK, Wong BH, Cheng VC, Tang BS, Wu AK, Yung RW, Chen H, Guan Y, Chan KH, 1855 
Yuen KY. 2005. Clinical and molecular epidemiological features of coronavirus HKU1-1856 
associated community-acquired pneumonia. J. Infect. Dis. 192:1898-1907. 1857 

95. Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, Cheng VC, Lee P, Tang BS, Cheung CH, 1858 
Lee RA, So LY, Lau YL, Chan KH, Yuen KY. 2006. Coronavirus HKU1 and other 1859 
coronavirus infections in Hong Kong. J. Clin. Microbiol. 44:2063-2071. 1860 

96. Chan CM, Tse H, Wong SS, Woo PC, Lau SK, Chen L, Zheng BJ, Huang JD, Yuen 1861 
KY. 2009. Examination of seroprevalence of coronavirus HKU1 infection with S protein-1862 
based ELISA and neutralization assay against viral spike pseudotyped virus. J. Clin. 1863 
Virol. 45:54-60. 1864 

97. Gierer S, Hofmann-Winkler H, Albuali WH, Bertram S, Al-Rubaish AM, Yousef 1865 
AA, Al-Nafaie AN, Al-Ali AK, Obeid OE, Alkharsah KR, Pohlmann S. 2013. Lack of 1866 
MERS coronavirus neutralizing antibodies in humans, eastern province, Saudi Arabia. 1867 
Emerg. Infect. Dis. 19:2034-2036. 1868 

98. Aburizaiza AS, Mattes FM, Azhar EI, Hassan AM, Memish ZA, Muth D, Meyer B, 1869 



118 
 

Lattwein E, Muller MA, Drosten C. 2014. Investigation of anti-middle East respiratory 1870 
syndrome antibodies in blood donors and slaughterhouse workers in Jeddah and Makkah, 1871 
Saudi Arabia, fall 2012. J. Infect. Dis. 209:243-246. 1872 

99. Lau SK, Li KS, Tsang AK, Lam CS, Ahmed S, Chen H, Chan KH, Woo PC, Yuen 1873 
KY. 2013. Genetic characterization of Betacoronavirus lineage C viruses in bats reveals 1874 
marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in 1875 
Japanese pipistrelle: implications for the origin of the novel Middle East respiratory 1876 
syndrome coronavirus. J. Virol. 87:8638-8650. 1877 

100. Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. 2014. Receptor 1878 
usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human 1879 
transmission of MERS coronavirus. Proc. Natl. Acad. Sci. U. S. A. 111:12516-12521. 1880 

101. Wang Q, Qi J, Yuan Y, Xuan Y, Han P, Wan Y, Ji W, Li Y, Wu Y, Wang J, Iwamoto 1881 
A, Woo PC, Yuen KY, Yan J, Lu G, Gao GF. 2014. Bat origins of MERS-CoV 1882 
supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe 1883 
16:328-337. 1884 

102. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan 1885 
KH, Yuen KY. 2005. Severe acute respiratory syndrome coronavirus-like virus in 1886 
Chinese horseshoe bats. Proc. Natl. Acad. Sci. U. S. A. 102:14040-14045. 1887 

103. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, Bai R, Teng JL, Tsang CC, 1888 
Wang M, Zheng BJ, Chan KH, Yuen KY. 2012. Discovery of seven novel Mammalian 1889 
and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the 1890 
gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene 1891 
source of gammacoronavirus and deltacoronavirus. J. Virol. 86:3995-4008. 1892 

104. Lau SK, Woo PC, Li KS, Huang Y, Wang M, Lam CS, Xu H, Guo R, Chan KH, 1893 
Zheng BJ, Yuen KY. 2007. Complete genome sequence of bat coronavirus HKU2 from 1894 
Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary 1895 
lineage from the rest of the genome. Virology 367:428-439. 1896 

105. Lau SK, Li KS, Huang Y, Shek CT, Tse H, Wang M, Choi GK, Xu H, Lam CS, Guo 1897 
R, Chan KH, Zheng BJ, Woo PC, Yuen KY. 2010. Ecoepidemiology and complete 1898 
genome comparison of different strains of severe acute respiratory syndrome-related 1899 
Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting 1900 
infection that allows recombination events. J. Virol. 84:2808-2819. 1901 

106. Lau SK, Poon RW, Wong BH, Wang M, Huang Y, Xu H, Guo R, Li KS, Gao K, 1902 
Chan KH, Zheng BJ, Woo PC, Yuen KY. 2010. Coexistence of different genotypes in 1903 
the same bat and serological characterization of Rousettus bat coronavirus HKU9 1904 
belonging to a novel Betacoronavirus subgroup. J. Virol. 84:11385-11394. 1905 

107. Lau SK, Li KS, Tsang AK, Shek CT, Wang M, Choi GK, Guo R, Wong BH, Poon 1906 
RW, Lam CS, Wang SY, Fan RY, Chan KH, Zheng BJ, Woo PC, Yuen KY. 2012. 1907 
Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from 1908 
Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies 1909 
transmission of coronavirus between bats of different suborders. J. Virol. 86:11906-1910 
11918. 1911 

108. Cui J, Eden JS, Holmes EC, Wang LF. 2013. Adaptive evolution of bat dipeptidyl 1912 
peptidase 4 (dpp4): implications for the origin and emergence of Middle East respiratory 1913 
syndrome coronavirus. Virol. J. 10:304. 1914 

109. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, Alhakeem R, 1915 



119 
 

Durosinloun A, Al Asmari M, Islam A, Kapoor A, Briese T, Daszak P, Al Rabeeah 1916 
AA, Lipkin WI. 2013. Middle East respiratory syndrome coronavirus in bats, Saudi 1917 
Arabia. Emerg. Infect. Dis. 19:1819-1823. 1918 

110. Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, 1919 
Drosten C, Drexler JF, Preiser W. 2013. Close relative of human Middle East 1920 
respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 19:1697-1699. 1921 

111. Corman VM, Ithete NL, Richards LR, Schoeman MC, Preiser W, Drosten C, 1922 
Drexler JF. 2014. Rooting the phylogenetic tree of middle East respiratory syndrome 1923 
coronavirus by characterization of a conspecific virus from an African bat. J. Virol. 1924 
88:11297-11303. 1925 

112. Cotten M, Watson SJ, Kellam P, Al-Rabeeah AA, Makhdoom HQ, Assiri A, Al-1926 
Tawfiq JA, Alhakeem RF, Madani H, AlRabiah FA, Al Hajjar S, Al-nassir WN, 1927 
Albarrak A, Flemban H, Balkhy HH, Alsubaie S, Palser AL, Gall A, Bashford-1928 
Rogers R, Rambaut A, Zumla AI, Memish ZA. 2013. Transmission and evolution of 1929 
the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic 1930 
study. Lancet 382:1993-2002. 1931 

113. Corman VM, Kallies R, Philipps H, Gopner G, Muller MA, Eckerle I, Brunink S, 1932 
Drosten C, Drexler JF. 2014. Characterization of a novel betacoronavirus related to 1933 
middle East respiratory syndrome coronavirus in European hedgehogs. J. Virol. 88:717-1934 
724. 1935 

114. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, 1936 
Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen 1937 
KY, Peiris JS, Poon LL. 2003. Isolation and characterization of viruses related to the 1938 
SARS coronavirus from animals in southern China. Science 302:276-278. 1939 

115. Wong S, Lau S, Woo P, Yuen KY. 2007. Bats as a continuing source of emerging 1940 
infections in humans. Rev. Med. Virol. 17:67-91. 1941 

116. Chan JF, Chan KH, Choi GK, To KK, Tse H, Cai JP, Yeung ML, Cheng VC, Chen 1942 
H, Che XY, Lau SK, Woo PC, Yuen KY. 2013. Differential cell line susceptibility to the 1943 
emerging novel human betacoronavirus 2c EMC/2012: implications for disease 1944 
pathogenesis and clinical manifestation. J. Infect. Dis. 207:1743-1752. 1945 

117. Muller MA, Raj VS, Muth D, Meyer B, Kallies S, Smits SL, Wollny R, Bestebroer 1946 
TM, Specht S, Suliman T, Zimmermann K, Binger T, Eckerle I, Tschapka M, Zaki 1947 
AM, Osterhaus AD, Fouchier RA, Haagmans BL, Drosten C. 2012. Human 1948 
coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad 1949 
replicative capability in mammalian cell lines. mBio 3:e00515-12. 1950 

118. Eckerle I, Corman VM, Muller MA, Lenk M, Ulrich RG, Drosten C. 2014. 1951 
Replicative Capacity of MERS Coronavirus in Livestock Cell Lines. Emerg. Infect. Dis. 1952 
20:276-279. 1953 

119. Cockrell AS, Peck KM, Yount BL, Agnihothram SS, Scobey T, Curnes NR, Baric 1954 
RS, Heise MT. 2014. Mouse dipeptidyl peptidase 4 is not a functional receptor for 1955 
Middle East respiratory syndrome coronavirus infection. J. Virol. 88:5195-5199. 1956 

120. Barlan A, Zhao J, Sarkar MK, Li K, McCray PB, Jr., Perlman S, Gallagher T. 2014. 1957 
Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus 1958 
infection. J. Virol. 88:4953-4961. 1959 

121. Reusken CB, Haagmans BL, Muller MA, Gutierrez C, Godeke GJ, Meyer B, Muth 1960 
D, Raj VS, Smits-De Vries L, Corman VM, Drexler JF, Smits SL, El Tahir YE, De 1961 



120 
 

Sousa R, van Beek J, Nowotny N, van Maanen K, Hidalgo-Hermoso E, Bosch BJ, 1962 
Rottier P, Osterhaus A, Gortazar-Schmidt C, Drosten C, Koopmans MP. 2013. 1963 
Middle East respiratory syndrome coronavirus neutralising serum antibodies in 1964 
dromedary camels: a comparative serological study. Lancet Infect. Dis. 13:859-866. 1965 

122. Perera RA, Wang P, Gomaa MR, El-Shesheny R, Kandeil A, Bagato O, Siu LY, 1966 
Shehata MM, Kayed AS, Moatasim Y, Li M, Poon LL, Guan Y, Webby RJ, Ali MA, 1967 
Peiris JS, Kayali G. 2013. Seroepidemiology for MERS coronavirus using 1968 
microneutralisation and pseudoparticle virus neutralisation assays reveal a high 1969 
prevalence of antibody in dromedary camels in Egypt, June 2013. Euro. Surveill. 18. pii: 1970 
20574. 1971 

123. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, de Wit E, 1972 
Munster VJ, Hensley LE, Zalmout IS, Kapoor A, Epstein JH, Karesh WB, Daszak P, 1973 
Mohammed OB, Lipkin WI. 2014. Middle East respiratory syndrome coronavirus 1974 
infection in dromedary camels in Saudi Arabia. mBio 5:e00884-00814. 1975 

124. Meyer B, Muller MA, Corman VM, Reusken CB, Ritz D, Godeke GJ, Lattwein E, 1976 
Kallies S, Siemens A, van Beek J, Drexler JF, Muth D, Bosch BJ, Wernery U, 1977 
Koopmans MP, Wernery R, Drosten C. 2014. Antibodies against MERS coronavirus in 1978 
dromedary camels, United Arab Emirates, 2003 and 2013. Emerg. Infect. Dis. 20:552-1979 
559. 1980 

125. Alexandersen S, Kobinger GP, Soule G, Wernery U. 2014. Middle East respiratory 1981 
syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, 1982 
in 2005. Transbound. Emerg. Dis. 61:105-108. 1983 

126. Reusken CB, Ababneh M, Raj VS, Meyer B, Eljarah A, Abutarbush S, Godeke GJ, 1984 
Bestebroer TM, Zutt I, Muller MA, Bosch BJ, Rottier PJ, Osterhaus AD, Drosten C, 1985 
Haagmans BL, Koopmans MP. 2013. Middle East Respiratory Syndrome coronavirus 1986 
(MERS-CoV) serology in major livestock species in an affected region in Jordan, June to 1987 
September 2013. Euro. Surveill. 18:20662. 1988 

127. Hemida MG, Perera RA, Wang P, Alhammadi MA, Siu LY, Li M, Poon LL, Saif L, 1989 
Alnaeem A, Peiris M. 2013. Middle East Respiratory Syndrome (MERS) coronavirus 1990 
seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013. Euro. Surveill. 1991 
18:20659. 1992 

128. Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ, Al Rabeeah AA, Corman 1993 
VM, Sieberg A, Makhdoom HQ, Assiri A, Al Masri M, Aldabbagh S, Bosch BJ, Beer 1994 
M, Muller MA, Kellam P, Drosten C. 2014. Human infection with MERS coronavirus 1995 
after exposure to infected camels, Saudi Arabia, 2013. Emerg. Infect. Dis. 20:1012-1015. 1996 

129. Hemida MG, Chu DK, Poon LL, Perera RA, Alhammadi MA, Ng HY, Siu LY, Guan 1997 
Y, Alnaeem A, Peiris M. 2014. MERS Coronavirus in Dromedary Camel Herd, Saudi 1998 
Arabia. Emerg. Infect. Dis. 20: 1231-1234. 1999 

130. Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, Gluecks I, 2000 
Lattwein E, Bosch BJ, Drexler JF, Bornstein S, Drosten C, Muller MA. 2014. 2001 
Antibodies against MERS Coronavirus in Dromedary Camels, Kenya, 1992-2013. 2002 
Emerg. Infect. Dis. 20: 1319-1322. 2003 

131. Raj VS, Farag EA, Reusken CB, Lamers MM, Pas SD, Voermans J, Smits SL, 2004 
Osterhaus AD, Al-Mawlawi N, Al-Romaihi HE, AlHajri MM, El-Sayed AM, Mohran 2005 
KA, Ghobashy H, Alhajri F, Al-Thani M, Al-Marri SA, El-Maghraby MM, 2006 
Koopmans MP, Haagmans BL. 2014. Isolation of MERS Coronavirus from a 2007 



121 
 

Dromedary Camel, Qatar, 2014. Emerg. Infect. Dis. 20: 1339-1342. 2008 
132. Müller MA, Corman VM, Jores J, Meyer B, Younan M, Liljander A, Bosch BJ, 2009 

Lattwein E, Hilali M, Musa BE, Bornstein S, Drosten C. 2014. MERS Coronavirus 2010 
Neutralizing Antibodies in Camels, Eastern Africa, 1983-1997. Emerg. Infect. Dis. 20: 2011 
doi: 10.3201/eid2012.141026. [Epub ahead of print] 2012 

133. Haagmans BL, Al Dhahiry SH, Reusken CB, Raj VS, Galiano M, Myers R, Godeke 2013 
GJ, Jonges M, Farag E, Diab A, Ghobashy H, Alhajri F, Al-Thani M, Al-Marri SA, 2014 
Al Romaihi HE, Al Khal A, Bermingham A, Osterhaus AD, AlHajri MM, Koopmans 2015 
MP. 2014. Middle East respiratory syndrome coronavirus in dromedary camels: an 2016 
outbreak investigation. Lancet Infect. Dis. 14:140-145. 2017 

134. Chu DK, Poon LL, Gomaa MM, Shehata MM, Perera RA, Abu Zeid D, El Rifay AS, 2018 
Siu LY, Guan Y, Webby RJ, Ali MA, Peiris M, Kayali G. 2014. MERS Coronaviruses 2019 
in Dromedary Camels, Egypt. Emerg. Infect. Dis. 20:1049-1053. 2020 

135. Hemida M, Perera R, Al Jassim R, Kayali G, Siu L, Wang P, Chu K, Perlman S, Ali 2021 
M, Alnaeem A, Guan Y, Poon L, Saif L, Peiris M. 2014. Seroepidemiology of Middle 2022 
East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia 2023 
(2014) and characterisation of assay specificity. Euro. Surveill. 19. pii: 20828. 2024 

136. Memish ZA, Alsahly A, Masri MA, Heil GL, Anderson BD, Peiris M, Khan SU, 2025 
Gray GC. 2014. Sparse evidence of MERS-CoV infection among animal workers living 2026 
in Southern Saudi Arabia during 2012. Influenza Other Respir. Viruses doi: 2027 
10.1111/irv.12287. [Epub ahead of print] 2028 

137. Briese T, Mishra N, Jain K, Zalmout IS, Jabado OJ, Karesh WB, Daszak P, 2029 
Mohammed OB, Alagaili AN, Lipkin WI. 2014. Middle East respiratory syndrome 2030 
coronavirus quasispecies that include homologues of human isolates revealed through 2031 
whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia. mBio 2032 
5:e01146-01114. 2033 

138. Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, 2034 
Madani TA. 2014. Evidence for camel-to-human transmission of MERS coronavirus. N. 2035 
Engl. J. Med. 370:2499-2505. 2036 

139. Azhar EI, Hashem AM, El-Kafrawy SA, Sohrab SS, Aburizaiza AS, Farraj SA, 2037 
Hassan AM, Al-Saeed MS, Jamjoom GA, Madani TA. 2014. Detection of the Middle 2038 
East respiratory syndrome coronavirus genome in an air sample originating from a camel 2039 
barn owned by an infected patient. mBio 5:e01450-01414. 2040 

140. Woo PC, Lau SK, Wernery U, Wong EY, Tsang AK, Johnson B, Yip CC, Lau CC, 2041 
Sivakumar S, Cai JP, Fan RY, Chan KH, Mareena R, Yuen KY. 2014. Novel 2042 
betacoronavirus in dromedaries of the Middle East, 2013. Emerg. Infect. Dis. 20:560-2043 
572. 2044 

141. Muyldermans S. 2001. Single domain camel antibodies: current status. J. Biotechnol. 2045 
74:277-302. 2046 

142. Fanoy EB, van der Sande MA, Kraaij-Dirkzwager M, Dirksen K, Jonges M, van der 2047 
Hoek W, Koopmans MP, van der Werf D, Sonder G, van der Weijden C, van der 2048 
Heuvel J, Gelinck L, Bouwhuis JW, van Gageldonk-Lafeber AB. 2014. Travel-related 2049 
MERS-CoV cases: an assessment of exposures and risk factors in a group of Dutch 2050 
travellers returning from the Kingdom of Saudi Arabia, May 2014. Emerg. Themes 2051 
Epidemiol. 11:16. 2052 

143. van Doremalen N, Bushmaker T, Karesh WB, Munster VJ. 2014. Stability of Middle 2053 



122 
 

East respiratory syndrome coronavirus in milk. Emerg. Infect. Dis. 20:1263-1264. 2054 
144. Reusken CB, Farag EA, Jonges M, Godeke GJ, El-Sayed AM, Pas SD, Raj VS, 2055 

Mohran KA, Moussa HA, Ghobashy H, Alhajri F, Ibrahim AK, Bosch BJ, Pasha 2056 
SK, Al-Romaihi HE, Al-Thani M, Al-Marri SA, AlHajri MM, Haagmans BL, 2057 
Koopmans MP. 2014. Middle East respiratory syndrome coronavirus (MERS-CoV) 2058 
RNA and neutralising antibodies in milk collected according to local customs from 2059 
dromedary camels, Qatar, April 2014. Euro. Surveill. 19. pii: 20829. 2060 

145. van Doremalen N, Bushmaker T, Munster VJ. 2013. Stability of Middle East 2061 
respiratory syndrome coronavirus (MERS-CoV) under different environmental 2062 
conditions. Euro surveillance 18. pii: 20590. 2063 

146. Cotten M, Watson SJ, Zumla AI, Makhdoom HQ, Palser AL, Ong SH, Al Rabeeah 2064 
AA, Alhakeem RF, Assiri A, Al-Tawfiq JA, Albarrak A, Barry M, Shibl A, Alrabiah 2065 
FA, Hajjar S, Balkhy HH, Flemban H, Rambaut A, Kellam P, Memish ZA. 2014. 2066 
Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. 2067 
mBio 5:e01062-13. 2068 

147. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong SK, Huang IC, Xu K, 2069 
Vasilieva N, Murakami A, He Y, Marasco WA, Guan Y, Choe H, Farzan M. 2005. 2070 
Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. 2071 
EMBO J. 24:1634-1643. 2072 

148. Sheahan T, Rockx B, Donaldson E, Sims A, Pickles R, Corti D, Baric R. 2008. 2073 
Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range 2074 
expansion in human airway epithelium. J. Virol. 82:2274-2285. 2075 

149. McRoy WC, Baric RS. 2008. Amino acid substitutions in the S2 subunit of mouse 2076 
hepatitis virus variant V51 encode determinants of host range expansion. J. Virol. 2077 
82:1414-1424. 2078 

150. Poletto C, Pelat C, Levy-Bruhl D, Yazdanpanah Y, Boelle PY, Colizza V. 2014. 2079 
Assessment of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic 2080 
in the Middle East and risk of international spread using a novel maximum likelihood 2081 
analysis approach. Euro. Surveill. 19. pii: 20824. 2082 

151. Cauchemez S, Fraser C, Van Kerkhove MD, Donnelly CA, Riley S, Rambaut A, 2083 
Enouf V, van der Werf S, Ferguson NM. 2014. Middle East respiratory syndrome 2084 
coronavirus: quantification of the extent of the epidemic, surveillance biases, and 2085 
transmissibility. Lancet Infect. Dis. 14:50-56. 2086 

152. Ajlan AM, Ahyad RA, Jamjoom LG, Alharthy A, Madani TA. 2014. Middle East 2087 
Respiratory Syndrome Coronavirus (MERS-CoV) Infection: Chest CT Findings. AJR 2088 
Am. J. Roentgenol. 203:782-787. 2089 

153. Cheng VC, To KK, Tse H, Hung IF, Yuen KY. 2012. Two years after pandemic 2090 
influenza A/2009/H1N1: what have we learned? Clin. Microbiol. Rev. 25:223-263. 2091 

154. To KK, Chan JF, Yuen KY. 2014. Viral lung infections: epidemiology, virology, clinical 2092 
features, and management of avian influenza A(H7N9). Curr. Opin. Pulm. Med. 20:225-2093 
232. 2094 

155. Yu L, Wang Z, Chen Y, Ding W, Jia H, Chan JF, To KK, Chen H, Yang Y, Liang W, 2095 
Zheng S, Yao H, Yang S, Cao H, Dai X, Zhao H, Li J, Bao Q, Chen P, Hou X, Li L, 2096 
Yuen KY. 2013. Clinical, virological, and histopathological manifestations of fatal 2097 
human infections by avian influenza A(H7N9) virus. Clin. Infect. Dis. 57:1449-1457. 2098 

156. To KK, Hung IF, Li IW, Lee KL, Koo CK, Yan WW, Liu R, Ho KY, Chu KH, Watt 2099 



123 
 

CL, Luk WK, Lai KY, Chow FL, Mok T, Buckley T, Chan JF, Wong SS, Zheng B, 2100 
Chen H, Lau CC, Tse H, Cheng VC, Chan KH, Yuen KY. 2010. Delayed clearance of 2101 
viral load and marked cytokine activation in severe cases of pandemic H1N1 2009 2102 
influenza virus infection. Clin. Infect. Dis. 50:850-859. 2103 

157. Eckerle I, Muller MA, Kallies S, Gotthardt DN, Drosten C. 2013. In-vitro renal 2104 
epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute 2105 
renal failure during Middle East Respiratory Syndrome (MERS) Coronavirus infection. 2106 
Virol. J. 10:359. 2107 

158. Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, Fung KS, Tang HL, Yan 2108 
WW, Chan HW, Lai TS, Tong KL, Lai KN. 2005. Acute renal impairment in 2109 
coronavirus-associated severe acute respiratory syndrome. Kidney Int. 67:698-705. 2110 

159. Fowler RA, Lapinsky SE, Hallett D, Detsky AS, Sibbald WJ, Slutsky AS, Stewart 2111 
TE. 2003. Critically ill patients with severe acute respiratory syndrome. JAMA 290:367-2112 
373. 2113 

160. Hung IF, Cheng VC, Wu AK, Tang BS, Chan KH, Chu CM, Wong MM, Hui WT, 2114 
Poon LL, Tse DM, Chan KS, Woo PC, Lau SK, Peiris JS, Yuen KY. 2004. Viral loads 2115 
in clinical specimens and SARS manifestations. Emerg. Infect. Dis. 10:1550-1557. 2116 

161. Park SJ, Kim GY, Choy HE, Hong YJ, Saif LJ, Jeong JH, Park SI, Kim HH, Kim 2117 
SK, Shin SS, Kang MI, Cho KO. 2007. Dual enteric and respiratory tropisms of winter 2118 
dysentery bovine coronavirus in calves. Arch. Virol. 152:1885-1900. 2119 

162. Al-Abdallat MM, Payne DC, Alqasrawi S, Rha B, Tohme RA, Abedi GR, Al Nsour 2120 
M, Iblan I, Jarour N, Farag NH, Haddadin A, Al-Sanouri T, Tamin A, Harcourt JL, 2121 
Kuhar DT, Swerdlow DL, Erdman DD, Pallansch MA, Haynes LM, Gerber SI. 2122 
2014. Hospital-Associated Outbreak of Middle East Respiratory Syndrome Coronavirus: 2123 
A Serologic, Epidemiologic, and Clinical Description. Clin. Infect. Dis. 59:1225-1233. 2124 

163. Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, Law KI, Tang BS, Hon 2125 
TY, Chan CS, Chan KH, Ng JS, Zheng BJ, Ng WL, Lai RW, Guan Y, Yuen KY. 2126 
2003. Clinical progression and viral load in a community outbreak of coronavirus-2127 
associated SARS pneumonia: a prospective study. Lancet 361:1767-1772. 2128 

164. Memish ZA, Al-Tawfiq JA, Assiri A, Alrabiah FA, Hajjar SA, Albarrak A, Flemban 2129 
H, Alhakeem RF, Makhdoom HQ, Alsubaie S, Al-Rabeeah AA. 2014. Middle East 2130 
Respiratory Syndrome Coronavirus Disease in Children. Pediatr. Infect. Dis. J. 33:904-2131 
906. 2132 

165. Munster VJ, de Wit E, Feldmann H. 2013. Pneumonia from human coronavirus in a 2133 
macaque model. N. Engl. J. Med. 368:1560-1562. 2134 

166. de Wit E, Rasmussen AL, Falzarano D, Bushmaker T, Feldmann F, Brining DL, 2135 
Fischer ER, Martellaro C, Okumura A, Chang J, Scott D, Benecke AG, Katze MG, 2136 
Feldmann H, Munster VJ. 2013. Middle East respiratory syndrome coronavirus 2137 
(MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc. 2138 
Natl. Acad. Sci. U. S. A. 110:16598-16603. 2139 

167. Yao Y, Bao L, Deng W, Xu L, Li F, Lv Q, Yu P, Chen T, Xu Y, Zhu H, Yuan J, Gu S, 2140 
Wei Q, Chen H, Yuen KY, Qin C. 2014. An animal model of MERS produced by 2141 
infection of rhesus macaques with MERS coronavirus. J. Infect. Dis. 209:236-242. 2142 

168. Falzarano D, de Wit E, Feldmann F, Rasmussen AL, Okumura A, Peng X, Thomas 2143 
MJ, van Doremalen N, Haddock E, Nagy L, LaCasse R, Liu T, Zhu J, McLellan JS, 2144 
Scott DP, Katze MG, Feldmann H, Munster VJ. 2014. Infection with MERS-CoV 2145 



124 
 

causes lethal pneumonia in the common marmoset. PLoS Pathog. 10:e1004250. 2146 
169. Prescott J, de Wit E, Falzarano D, Scott DP, Feldmann H, Munster VJ. 2014. 2147 

Defining the effects of immunosuppression in the rhesus model of Middle East 2148 
respiratory syndrome (MERS). Final Program 33rd Annual Meeting American Society 2149 
for Virology, Fort Collins, CO. 2150 

170. Menachery VD, Eisfeld AJ, Schafer A, Josset L, Sims AC, Proll S, Fan S, Li C, 2151 
Neumann G, Tilton SC, Chang J, Gralinski LE, Long C, Green R, Williams CM, 2152 
Weiss J, Matzke MM, Webb-Robertson BJ, Schepmoes AA, Shukla AK, Metz TO, 2153 
Smith RD, Waters KM, Katze MG, Kawaoka Y, Baric RS. 2014. Pathogenic influenza 2154 
viruses and coronaviruses utilize similar and contrasting approaches to control interferon-2155 
stimulated gene responses. mBio 5:e01174-01114. 2156 

171. Lau SK, Lau CC, Chan KH, Li CP, Chen H, Jin DY, Chan JF, Woo PC, Yuen KY. 2157 
2013. Delayed induction of proinflammatory cytokines and suppression of innate 2158 
antiviral response by the novel Middle East respiratory syndrome coronavirus: 2159 
implications for pathogenesis and treatment. J. Gen. Virol. 94:2679-2690. 2160 

172. Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC. 2014. MERS-2161 
CoV papain-like protease has deISGylating and deubiquitinating activities. Virology 450-2162 
451:64-70. 2163 

173. Deng X, Agnihothram S, Mielech AM, Nichols DB, Wilson MW, StJohn SE, Larsen 2164 
SD, Mesecar AD, Lenschow DJ, Baric RS, Baker SC. 2014. A chimeric virus-mouse 2165 
model system for evaluating the function and inhibition of papain-like proteases of 2166 
emerging coronaviruses. J. Virol. 88:11825-11833. 2167 

174. Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Gale MJ, Jr., Baric RS, 2168 
Enjuanes L, Gallagher T, McCray PB, Jr., Perlman S. 2014. Rapid generation of a 2169 
mouse model for Middle East respiratory syndrome. Proc. Natl. Acad. Sci. U. S. A. 2170 
111:4970-4975. 2171 

175. Falzarano D, de Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP, Brining 2172 
D, Bushmaker T, Martellaro C, Baseler L, Benecke AG, Katze MG, Munster VJ, 2173 
Feldmann H. 2013. Treatment with interferon-alpha2b and ribavirin improves outcome 2174 
in MERS-CoV-infected rhesus macaques. Nat. Med. 19:1313-1317. 2175 

176. Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, Bortolotti P, 2176 
Martinez L, Dubucquoi S, Dessein R, Gosset P, Mathieu D, Guery B. 2014. Distinct 2177 
immune response in two MERS-CoV-infected patients: can we go from bench to 2178 
bedside? PLoS One 9:e88716. 2179 

177. Josset L, Menachery VD, Gralinski LE, Agnihothram S, Sova P, Carter VS, Yount 2180 
BL, Graham RL, Baric RS, Katze MG. 2013. Cell host response to infection with 2181 
novel human coronavirus EMC predicts potential antivirals and important differences 2182 
with SARS coronavirus. mBio 4:e00165-00113. 2183 

178. Cameron MJ, Ran L, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, Muller 2184 
MP, Gold WL, Richardson SE, Poutanen SM, Willey BM, DeVries ME, Fang Y, 2185 
Seneviratne C, Bosinger SE, Persad D, Wilkinson P, Greller LD, Somogyi R, Humar 2186 
A, Keshavjee S, Louie M, Loeb MB, Brunton J, McGeer AJ, Kelvin DJ. 2007. 2187 
Interferon-mediated immunopathological events are associated with atypical innate and 2188 
adaptive immune responses in patients with severe acute respiratory syndrome. J. Virol. 2189 
81:8692-8706. 2190 

179. Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and 2191 



125 
 

pathogenesis. Nat. Rev. Microbiol. 7:439-450. 2192 
180. Ryzhakov G, Lai CC, Blazek K, To KW, Hussell T, Udalova I. 2011. IL-17 boosts 2193 

proinflammatory outcome of antiviral response in human cells. J. Immunol. 187:5357-2194 
5362. 2195 

181. Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, Enelow RI, Ross TM, 2196 
Witztum JL, Kolls JK. 2009. Critical role of IL-17RA in immunopathology of influenza 2197 
infection. J. Immunol. 183:5301-5310. 2198 

182. Poissy J, Goffard A, Parmentier-Decrucq E, Favory R, Kauv M, Kipnis E, Mathieu 2199 
D, Guery B. 2014. Kinetics and pattern of viral excretion in biological specimens of two 2200 
MERS-CoV cases. J. Clin. Virol. 61:275-278. 2201 

183. Buchholz U, Muller MA, Nitsche A, Sanewski A, Wevering N, Bauer-Balci T, Bonin 2202 
F, Drosten C, Schweiger B, Wolff T, Muth D, Meyer B, Buda S, Krause G, Schaade 2203 
L, Haas W. 2013. Contact investigation of a case of human novel coronavirus infection 2204 
treated in a German hospital, October-November 2012. Euro. Surveill. 18. pii 20406. 2205 

184. Spanakis N, Tsiodras S, Haagmans BL, Raj VS, Pontikis K, Koutsoukou A, 2206 
Koulouris NG, Osterhaus AD, Koopmans MP, Tsakris A. 2014. Virological and 2207 
serological analysis of a recent Middle East respiratory syndrome coronavirus infection 2208 
case on a triple combination antiviral regimen. Int. J. Antimicrob. Agents 44:528-532. 2209 

185. Tao X, Hill TE, Morimoto C, Peters CJ, Ksiazek TG, Tseng CT. 2013. Bilateral entry 2210 
and release of Middle East respiratory syndrome coronavirus induces profound apoptosis 2211 
of human bronchial epithelial cells. J. Virol. 87:9953-9958. 2212 

186. Zielecki F, Weber M, Eickmann M, Spiegelberg L, Zaki AM, Matrosovich M, 2213 
Becker S, Weber F. 2013. Human cell tropism and innate immune system interactions of 2214 
human respiratory coronavirus EMC compared to those of severe acute respiratory 2215 
syndrome coronavirus. J. Virol. 87:5300-5304. 2216 

187. Kindler E, Jonsdottir HR, Muth D, Hamming OJ, Hartmann R, Rodriguez R, 2217 
Geffers R, Fouchier RA, Drosten C, Muller MA, Dijkman R, Thiel V. 2013. Efficient 2218 
replication of the novel human betacoronavirus EMC on primary human epithelium 2219 
highlights its zoonotic potential. mBio 4:e00611-00612. 2220 

188. Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, 2221 
Graham RL, Swanstrom J, Bove PF, Kim JD, Grego S, Randell SH, Baric RS. 2013. 2222 
Reverse genetics with a full-length infectious cDNA of the Middle East respiratory 2223 
syndrome coronavirus. Proc. Natl. Acad. Sci. U. S. A. 110:16157-16162. 2224 

189. Hocke AC, Becher A, Knepper J, Peter A, Holland G, Tonnies M, Bauer TT, 2225 
Schneider P, Neudecker J, Muth D, Wendtner CM, Ruckert JC, Drosten C, Gruber 2226 
AD, Laue M, Suttorp N, Hippenstiel S, Wolff T. 2013. Emerging human middle East 2227 
respiratory syndrome coronavirus causes widespread infection and alveolar damage in 2228 
human lungs. American journal of respiratory and critical care medicine 188:882-886. 2229 

190. Chan RW, Chan MC, Agnihothram S, Chan LL, Kuok DI, Fong JH, Guan Y, Poon 2230 
LL, Baric RS, Nicholls JM, Peiris JS. 2013. Tropism of and innate immune responses 2231 
to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ 2232 
cultures. J. Virol. 87:6604-6614. 2233 

191. Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, Sun T, Lau CC, Wong KK, 2234 
Chan JY, Chan JF, To KK, Chan KH, Zheng BJ, Yuen KY. 2014. Active replication of 2235 
Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory 2236 
cytokines and chemokines in human macrophages: implications for pathogenesis. J. 2237 



126 
 

Infect. Dis. 209:1331-1342. 2238 
192. Ziegler AF, Ladman BS, Dunn PA, Schneider A, Davison S, Miller PG, Lu H, 2239 

Weinstock D, Salem M, Eckroade RJ, Gelb J, Jr. 2002. Nephropathogenic infectious 2240 
bronchitis in Pennsylvania chickens 1997-2000. Avian Dis. 46:847-858. 2241 

193. Chu H, Zhou J, Wong BH, Li C, Cheng ZS, Lin X, Poon VK, Sun T, Lau CC, Chan 2242 
JF, To KK, Chan KH, Lu L, Zheng BJ, Yuen KY. 2014. Productive replication of 2243 
Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells 2244 
modulates innate immune response. Virology 454-455:197-205. 2245 

194. Memish ZA, Al-Tawfiq JA, Makhdoom HQ, Assiri A, Alhakeem RF, Albarrak A, 2246 
Alsubaie S, Al-Rabeeah AA, Hajomar WH, Hussain R, Kheyami AM, Almutairi A, 2247 
Azhar EI, Drosten C, Watson SJ, Kellam P, Cotten M, Zumla A. 2014. Respiratory 2248 
Tract Samples, Viral Load and Genome Fraction Yield in patients with Middle East 2249 
Respiratory Syndrome. J. Infect. Dis. 210:1590-1594. 2250 

195. de Sousa R, Reusken C, Koopmans M. 2014. MERS coronavirus: data gaps for 2251 
laboratory preparedness. J. Clin. Virol. 59:4-11. 2252 

196. Cheng VC, Hung IF, Tang BS, Chu CM, Wong MM, Chan KH, Wu AK, Tse DM, 2253 
Chan KS, Zheng BJ, Peiris JS, Sung JJ, Yuen KY. 2004. Viral replication in the 2254 
nasopharynx is associated with diarrhea in patients with severe acute respiratory 2255 
syndrome. Clin. Infect. Dis. 38:467-475. 2256 

197. Chan KH, Poon LL, Cheng VC, Guan Y, Hung IF, Kong J, Yam LY, Seto WH, Yuen 2257 
KY, Peiris JS. 2004. Detection of SARS coronavirus in patients with suspected SARS. 2258 
Emerg. Infect. Dis. 10:294-299. 2259 

198. Memish ZA, Assiri AM, Al-Tawfiq JA. 2014. Middle East respiratory syndrome 2260 
coronavirus (MERS-CoV) viral shedding in the respiratory tract: an observational 2261 
analysis with infection control implications. Int. J. Infect. Dis. 29:307-308. 2262 

199. Palm D, Pereyaslov D, Vaz J, Broberg E, Zeller H, Gross D, Brown CS, Struelens 2263 
MJ. 2012. Laboratory capability for molecular detection and confirmation of novel 2264 
coronavirus in Europe, November 2012. Euro. Surveill. 17. pii: 20335. 2265 

200. Abd El Wahed A, Patel P, Heidenreich D, Hufert FT, Weidmann M. 2013. Reverse 2266 
transcription recombinase polymerase amplification assay for the detection of middle 2267 
East respiratory syndrome coronavirus. PLoS Curr. 5. pii: 2268 
ecurrents.outbreaks.62df1c7c75ffc96cd59034531e2e8364. 2269 

201. Shirato K, Yano T, Senba S, Akachi S, Kobayashi T, Nishinaka T, Notomi T, 2270 
Matsuyama S. 2014. Detection of Middle East respiratory syndrome coronavirus using 2271 
reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol. J. 2272 
11:139. 2273 

202. Agnihothram S, Gopal R, Yount BL, Jr., Donaldson EF, Menachery VD, Graham 2274 
RL, Scobey TD, Gralinski LE, Denison MR, Zambon M, Baric RS. 2014. Evaluation 2275 
of serologic and antigenic relationships between middle eastern respiratory syndrome 2276 
coronavirus and other coronaviruses to develop vaccine platforms for the rapid response 2277 
to emerging coronaviruses. J. Infec. Dis. 209:995-1006. 2278 

203. Chan KH, Chan JF, Tse H, Chen H, Lau CC, Cai JP, Tsang AK, Xiao X, To KK, Lau 2279 
SK, Woo PC, Zheng BJ, Wang M, Yuen KY. 2013. Cross-reactive antibodies in 2280 
convalescent SARS patients' sera against the emerging novel human coronavirus EMC 2281 
(2012) by both immunofluorescent and neutralizing antibody tests. J. Infect. 67:130-140. 2282 

204. Cheng VC, Tang BS, Wu AK, Chu CM, Yuen KY. 2004. Medical treatment of viral 2283 



127 
 

pneumonia including SARS in immunocompetent adult. J. Infect. 49:262-273. 2284 
205. Wong SS, Yuen KY. 2008. The management of coronavirus infections with particular 2285 

reference to SARS. J. Antimicrob. Chemother. 62:437-441. 2286 
206. Ho PL, Sin WC, Chan JF, Cheng VC, Chan KH. 2014. Severe influenza A H7N9 2287 

pneumonia with rapid virological response to intravenous zanamivir. Eur. Respir. J. 2288 
44:535-537. 2289 

207. Omrani AS, Saad MM, Baig K, Bahloul A, Abdul-Matin M, Alaidaroos AY, 2290 
Almakhlafi GA, Albarrak MM, Memish ZA, Albarrak AM. 2014. Ribavirin and 2291 
interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a 2292 
retrospective cohort study. Lancet Infect. Dis. 14:1090-1095. 2293 

208. Frausto SD, Lee E, Tang H. 2013. Cyclophilins as modulators of viral replication. 2294 
Viruses 5:1684-1701. 2295 

209. Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. 2013. 2296 
Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b 2297 
and ribavirin. Sci. Rep. 3:1686. 2298 

210. Chan JF, Chan KH, Kao RY, To KK, Zheng BJ, Li CP, Li PT, Dai J, Mok FK, Chen 2299 
H, Hayden FG, Yuen KY. 2013. Broad-spectrum antivirals for the emerging Middle East 2300 
respiratory syndrome coronavirus. J. Infect. 67:606-616. 2301 

211. Khalid M, Al Rabiah F, Khan B, Al Mobeireek A, Butt TS, Al Mutairy E. 2014. 2302 
Ribavirin and interferon (IFN)-alpha-2b as primary and preventive treatment for Middle 2303 
East respiratory syndrome coronavirus (MERS-CoV): a preliminary report of two cases. 2304 
Antivir. Ther. doi: 10.3851/IMP2792. [Epub ahead of print] 2305 

212. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, 2306 
Johnson RF, Olinger GG, Jr., Jahrling PB, Laidlaw M, Johansen LM, Lear-Rooney 2307 
CM, Glass PJ, Hensley LE, Frieman MB. 2014. Repurposing of clinically developed 2308 
drugs for treatment of middle East respiratory syndrome coronavirus infection. 2309 
Antimicrob. Agents Chemother. 58:4885-4893. 2310 

213. de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop 2311 
S, Bestebroer TM, van den Hoogen BG, Neyts J, Snijder EJ. 2014. Screening of an 2312 
FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle 2313 
East Respiratory Syndrome Coronavirus Replication in Cell Culture. Antimicrob. Agents 2314 
Chemother. 58:4875-4884. 2315 

214. Liu Q, Xia S, Sun Z, Wang Q, Du L, Lu L, Jiang S. 2014. Testing of MERS-CoV 2316 
replication inhibitors for their ability to block viral entry. Antimicrob. Agents Chemother. 2317 
pii: AAC.03977-14. [Epub ahead of print] 2318 

215. Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D, 2319 
Johnson RF, Dyall J, Kuhn JH, Olinger GG, Hensley LE, Jahrling PB. 2014. The 2320 
Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for 2321 
MERS-CoV Infection as Identified by Temporal Kinome Analysis. Antimicrob. Agents 2322 
Chemother. pii: AAC.03659-14. [Epub ahead of print] 2323 

216. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, Kao RY, Poon LL, 2324 
Wong CL, Guan Y, Peiris JS, Yuen KY. 2004. Role of lopinavir/ritonavir in the 2325 
treatment of SARS: initial virological and clinical findings. Thorax 59:252-256. 2326 

217. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah 2327 
NG, Nichol ST. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection 2328 
and spread. Virol. J. 2:69. 2329 



128 
 

218. Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Lauridsen L, Chan PK, 2330 
Sidwell RW. 2006. Evaluation of immunomodulators, interferons and known in vitro 2331 
SARS-coV inhibitors for inhibition of SARS-coV replication in BALB/c mice. Antivir. 2332 
Chem. Chemother. 17:275-284. 2333 

219. Barnard DL, Kumaki Y. 2011. Recent developments in anti-severe acute respiratory 2334 
syndrome coronavirus chemotherapy. Future Virol. 6:615-631. 2335 

220. Kilianski A, Baker SC. 2014. Cell-based antiviral screening against coronaviruses: 2336 
developing virus-specific and broad-spectrum inhibitors. Antiviral Res. 101:105-112. 2337 

221. Yang ZY, Werner HC, Kong WP, Leung K, Traggiai E, Lanzavecchia A, Nabel GJ. 2338 
2005. Evasion of antibody neutralization in emerging severe acute respiratory syndrome 2339 
coronaviruses. Proc. Natl. Acad. Sci. U. S. A. 102:797-801. 2340 

222. Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, Smith G, Jones S, 2341 
Proulx R, Deschambault Y, Grudeski E, Andonov A, He R, Li Y, Copps J, Grolla A, 2342 
Dick D, Berry J, Ganske S, Manning L, Cao J. 2004. Immunization with modified 2343 
vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory 2344 
syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 78:12672-12676. 2345 

223. Ren Z, Yan L, Zhang N, Guo Y, Yang C, Lou Z, Rao Z. 2013. The newly emerged 2346 
SARS-like coronavirus HCoV-EMC also has an "Achilles' heel": current effective 2347 
inhibitor targeting a 3C-like protease. Protein Cell 4:248-250. 2348 

224. Kilianski A, Mielech AM, Deng X, Baker SC. 2013. Assessing activity and inhibition of 2349 
Middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using 2350 
luciferase-based biosensors. J. Virol. 87:11955-11962. 2351 

225. Agnihothram S, Yount BL, Jr., Donaldson EF, Huynh J, Menachery VD, Gralinski 2352 
LE, Graham RL, Becker MM, Tomar S, Scobey TD, Osswald HL, Whitmore A, 2353 
Gopal R, Ghosh AK, Mesecar A, Zambon M, Heise M, Denison MR, Baric RS. 2014. 2354 
A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 2355 
variant. mBio 5:e00047-00014. 2356 

226. Adedeji AO, Singh K, Kassim A, Coleman CM, Elliott R, Weiss SR, Frieman MB, 2357 
Sarafianos SG. 2014. Evaluation of SSYA10-001 as a Replication Inhibitor of SARS, 2358 
MHV and MERS Coronaviruses. Antimicrob. Agents Chemother. 58:4894-4898. 2359 

227. Bosch BJ, Smits SL, Haagmans BL. 2014. Membrane ectopeptidases targeted by 2360 
human coronaviruses. Curr. Opin. Virol. 6:55-60. 2361 

228. Reinhold D, Bank U, Tager M, Ansorge S, Wrenger S, Thielitz A, Lendeckel U, 2362 
Faust J, Neubert K, Brocke S. 2008. DP IV/CD26, APN/CD13 and related enzymes as 2363 
regulators of T cell immunity: implications for experimental encephalomyelitis and 2364 
multiple sclerosis. Front. Biosci. 13:2356-2363. 2365 

229. Reinhold D, Brocke S. 2014. DPP4-directed therapeutic strategies for MERS-CoV. 2366 
Lancet Infect. Dis. 14:100-101. 2367 

230. Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM. 2005. Endosomal 2368 
proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308:1643-2369 
1645. 2370 

231. Marzi A, Reinheckel T, Feldmann H. 2012. Cathepsin B & L are not required for ebola 2371 
virus replication. PLoS Negl. Trop. Dis. 6:e1923. 2372 

232. Chen Y, Liang W, Yang S, Wu N, Gao H, Sheng J, Yao H, Wo J, Fang Q, Cui D, Li Y, 2373 
Yao X, Zhang Y, Wu H, Zheng S, Diao H, Xia S, Chan KH, Tsoi HW, Teng JL, Song 2374 
W, Wang P, Lau SY, Zheng M, Chan JF, To KK, Chen H, Li L, Yuen KY. 2013. 2375 



129 
 

Human infections with the emerging avian influenza A H7N9 virus from wet market 2376 
poultry: clinical analysis and characterisation of viral genome. Lancet 381:1916-1925. 2377 

233. To KK, Tsang AK, Chan JF, Cheng VC, Chen H, Yuen KY. 2014. Emergence in China 2378 
of human disease due to avian influenza A(H10N8)--cause for concern? J. Infect. 68:205-2379 
215. 2380 

234. Cheng VC, Chan JF, To KK, Yuen KY. 2013. Clinical management and infection 2381 
control of SARS: lessons learned. Antiviral Res. 100:407-419. 2382 

235. Memish ZA, Al-Tawfiq JA, Assiri A. 2013. Hospital-associated Middle East respiratory 2383 
syndrome coronavirus infections. The New England journal of medicine 369:1761-1762. 2384 

236. Coburn BJ, Blower S. 2014. Predicting the potential for within-flight transmission and 2385 
global dissemination of MERS. Lancet Infect. Dis. 14:99. 2386 

237. Thomas HL, Zhao H, Green HK, Boddington NL, Carvalho CF, Osman HK, Sadler 2387 
C, Zambon M, Bermingham A, Pebody RG. 2014. Enhanced MERS Coronavirus 2388 
Surveillance of Travelers from the Middle East to England. Emerg. Infect. Dis. 20:1562-2389 
1564. 2390 

238. Leclercq I, Batejat C, Burguiere AM, Manuguerra JC. 2014. Heat inactivation of the 2391 
Middle East respiratory syndrome coronavirus. Influenza Other Respir. Viruses 8:585-2392 
586. 2393 

239. Gautret P, Charrel R, Belhouchat K, Drali T, Benkouiten S, Nougairede A, Zandotti 2394 
C, Memish ZA, al Masri M, Gaillard C, Brouqui P, Parola P. 2013. Lack of nasal 2395 
carriage of novel corona virus (HCoV-EMC) in French Hajj pilgrims returning from the 2396 
Hajj 2012, despite a high rate of respiratory symptoms. Clin. Microbiol. Infect. 19:E315-2397 
317. 2398 

240. Gautret P, Charrel R, Benkouiten S, Belhouchat K, Nougairede A, Drali T, Salez N, 2399 
Memish ZA, Al Masri M, Lagier JC, Million M, Raoult D, Brouqui P, Parola P. 2400 
2014. Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims 2401 
after 2013 Hajj. Emerg. Infect. Dis. 20:728-730. 2402 

241. Memish ZA, Almasri M, Turkestani A, Al-Shangiti AM, Yezli S. 2014. Etiology of 2403 
severe community-acquired pneumonia during the 2013 Hajj-part of the MERS-CoV 2404 
surveillance program. Int. J. Infect. Dis. 25:186-190. 2405 

242. Memish ZA, Al-Rabeeah AA. 2013. Health conditions of travellers to Saudi Arabia for 2406 
the pilgrimage to Mecca (Hajj and Umra) for 1434 (2013). J. Epidemiol. Glob. Health 2407 
3:59-61. 2408 

243. Al-Tawfiq JA, Memish ZA. 2014. Mass gathering medicine: 2014 Hajj and Umra 2409 
preparation as a leading example. Int. J. Infect. Dis. 27:26-31. 2410 

244. Chung SJ, Ling ML, Seto WH, Ang BS, Tambyah PA. 2014. Debate on MERS-CoV 2411 
respiratory precautions: surgical mask or N95 respirators? Singapore Med. J. 55:294-297. 2412 

245. Cheng VC, Tai JW, Wong LM, Chan JF, Li IW, To KK, Hung IF, Chan KH, Ho PL, 2413 
Yuen KY. 2010. Prevention of nosocomial transmission of swine-origin pandemic 2414 
influenza virus A/H1N1 by infection control bundle. J. Hosp. Infect. 74:271-277. 2415 

246. Al-Gethamy M, Corman VM, Hussain R, Al-Tawfiq JA, Drosten C, Memish ZA. 2416 
2014. A case of long-term excretion and subclinical infection with MERS-Coronavirus in 2417 
a health care worker. Clin. Infect. Dis. pii: ciu1135. [Epub ahead of print] 2418 

247. Madani TA. 2014. Case definition and management of patients with MERS coronavirus 2419 
in Saudi Arabia. Lancet Infect. Dis. 14:911-913. 2420 

248. Song F, Fux R, Provacia LB, Volz A, Eickmann M, Becker S, Osterhaus AD, 2421 



130 
 

Haagmans BL, Sutter G. 2013. Middle East respiratory syndrome coronavirus spike 2422 
protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing 2423 
antibodies. J. Virol. 87:11950-11954. 2424 

249. Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, Glenn GM, Smith 2425 
GE, Frieman MB. 2014. Purified coronavirus spike protein nanoparticles induce 2426 
coronavirus neutralizing antibodies in mice. Vaccine 32:3169-3174. 2427 

250. He Y, Zhou Y, Wu H, Luo B, Chen J, Li W, Jiang S. 2004. Identification of 2428 
immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) 2429 
coronavirus: implication for developing SARS diagnostics and vaccines. J. Immunol. 2430 
173:4050-4057. 2431 

251. Lan J, Deng Y, Chen H, Lu G, Wang W, Guo X, Lu Z, Gao GF, Tan W. 2014. 2432 
Tailoring Subunit Vaccine Immunity with Adjuvant Combinations and Delivery Routes 2433 
Using the Middle East Respiratory Coronavirus (MERS-CoV) Receptor-Binding Domain 2434 
as an Antigen. PLoS One 9:e112602. 2435 

252. Zhang N, Jiang S, Du L. 2014. Current advancements and potential strategies in the 2436 
development of MERS-CoV vaccines. Expert Rev. Vaccines 13:761-774. 2437 

253. Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, Chan P, Wong KC, Leung 2438 
CB, Cheng G. 2005. Use of convalescent plasma therapy in SARS patients in Hong 2439 
Kong. Eur. J. Clin. Microbiol. Infect. Dis. 24:44-46. 2440 

254. Yeh KM, Chiueh TS, Siu LK, Lin JC, Chan PK, Peng MY, Wan HL, Chen JH, Hu 2441 
BS, Perng CL, Lu JJ, Chang FY. 2005. Experience of using convalescent plasma for 2442 
severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J. 2443 
Antimicrob. Chemother. 56:919-922. 2444 

255. Hung IF, To KK, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law 2445 
KI, Chow FL, Liu R, Lai KY, Lau CC, Liu SH, Chan KH, Lin CK, Yuen KY. 2013. 2446 
Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized 2447 
controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2448 
144:464-473. 2449 

256. Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, Liu R, Watt CL, Chan WM, 2450 
Lai KY, Koo CK, Buckley T, Chow FL, Wong KK, Chan HS, Ching CK, Tang BS, 2451 
Lau CC, Li IW, Liu SH, Chan KH, Lin CK, Yuen KY. 2011. Convalescent plasma 2452 
treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 2453 
virus infection. Clin. Infect. Dis. 52:447-456. 2454 

257. van Doremalen N, de Wit E, Falzarano D, Scott DP, Schountz T, Bowen D, McLellan 2455 
JS, Zhu J, Munster VJ. 2014. Modeling the host ecology of Middle East respiratory 2456 
syndrome coronavirus (MERS-CoV): from host reservoir to disease. Final Program 33rd 2457 
Annual Meeting American Society for Virology, Fort Collins, CO. 2458 

258. Adney DR, Brown VR, Dominguez SR, Bielefeldt-Ohmann H, Bowen RA. 2014. 2459 
Experimental infectioin of goats and insectivorous bats with MERS-CoV. Final Program 2460 
33rd Annual Meeting American Society for Virology, Fort Collins, CO. 2461 

259. Adney DR, van Doremalen N, Brown VR, Bushmaker T, Scott D, de Wit E, Bowen 2462 
RA, Munster VJ. 2014. Replication and Shedding of MERS-CoV in Upper Respiratory 2463 
Tract of Inoculated Dromedary Camels. Emerg. Infect. Dis. 20:1999-2005. 2464 

260. Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM, Leung YH, Lau SK, Woo PC, 2465 
Suen KY, Yuen KY, Guan Y, Peiris JS. 2005. Identification of a novel coronavirus in 2466 
bats. J. Virol. 79:2001-2009. 2467 



131 
 

261. Woo PC, Lau SK, Huang Y, Tsoi HW, Chan KH, Yuen KY. 2005. Phylogenetic and 2468 
recombination analysis of coronavirus HKU1, a novel coronavirus from patients with 2469 
pneumonia. Arch. Virol. 150:2299-2311. 2470 

262. Woo PC, Huang Y, Lau SK, Tsoi HW, Yuen KY. 2005. In silico analysis of ORF1ab in 2471 
coronavirus HKU1 genome reveals a unique putative cleavage site of coronavirus HKU1 2472 
3C-like protease. Microbiol. Immunol. 49:899-908. 2473 

263. Woo PC, Lau SK, Yip CC, Huang Y, Tsoi HW, Chan KH, Yuen KY. 2006. 2474 
Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and 2475 
evidence of natural recombination in coronavirus HKU1. J. Virol. 80:7136-7145. 2476 

264. Huang Y, Lau SK, Woo PC, Yuen KY. 2008. CoVDB: a comprehensive database for 2477 
comparative analysis of coronavirus genes and genomes. Nucleic Acids Res. 36:D504-2478 
511. 2479 

265. Woo PC, Lau SK, Lam CS, Lai KK, Huang Y, Lee P, Luk GS, Dyrting KC, Chan 2480 
KH, Yuen KY. 2009. Comparative analysis of complete genome sequences of three avian 2481 
coronaviruses reveals a novel group 3c coronavirus. J. Virol. 83:908-917. 2482 

266. Woo PC, Lau SK, Yip CC, Huang Y, Yuen KY. 2009. More and More Coronaviruses: 2483 
Human Coronavirus HKU1. Viruses 1:57-71. 2484 

267. Woo PC, Huang Y, Lau SK, Yuen KY. 2010. Coronavirus genomics and bioinformatics 2485 
analysis. Viruses 2:1804-1820. 2486 

268. Lau SK, Lee P, Tsang AK, Yip CC, Tse H, Lee RA, So LY, Lau YL, Chan KH, Woo 2487 
PC, Yuen KY. 2011. Molecular epidemiology of human coronavirus OC43 reveals 2488 
evolution of different genotypes over time and recent emergence of a novel genotype due 2489 
to natural recombination. J. Virol. 85:11325-11337. 2490 

269. Lau SK, Woo PC, Yip CC, Fan RY, Huang Y, Wang M, Guo R, Lam CS, Tsang AK, 2491 
Lai KK, Chan KH, Che XY, Zheng BJ, Yuen KY. 2012. Isolation and characterization 2492 
of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from 2493 
domestic rabbits. J. Virol. 86:5481-5496. 2494 

270. Woo PC, Lau SK, Lam CS, Tsang AK, Hui SW, Fan RY, Martelli P, Yuen KY. 2014. 2495 
Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine 2496 
mammal coronavirus in Gammacoronavirus. Journal of virology 88:1318-1331. 2497 

271. Pereyaslov D, Rosin P, Palm D, Zeller H, Gross D, Brown C, Struelens M. 2014. 2498 
Laboratory capability and surveillance testing for Middle East respiratory syndrome 2499 
coronavirus infection in the WHO European Region, June 2013. Euro. Surveill. 2500 
19:20923. 2501 

272. Woo PC, Lau SK, Teng JL, Tsang AK, Joseph M, Wong EY, Tang Y, Sivakumar S, 2502 
Xie J, Bai R, Wernery R, Wernery U, Yuen KY. 2014. New hepatitis E virus genotype 2503 
in camels, the Middle East. Emerg. Infect. Dis. 20:1044-1048. 2504 

273. Woo PC, Lau SK, Teng JL, Tsang AK, Joseph M, Wong EY, Tang Y, Sivakumar S, 2505 
Bai R, Wernery R, Wernery U, Yuen KY. 2014. Metagenomic analysis of viromes of 2506 
dromedary camel fecal samples reveals large number and high diversity of circoviruses 2507 
and picobirnaviruses. Virology 471-473C:117-125. 2508 

274. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang 2509 
H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. 2005. 2510 
Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676-679. 2511 

275. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang 2512 
W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, 2513 



132 
 

Wang LF, Daszak P, Shi ZL. 2013. Isolation and characterization of a bat SARS-like 2514 
coronavirus that uses the ACE2 receptor. Nature 503:535-538. 2515 

276. Chu CM, Cheng VC, Hung IF, Chan KS, Tang BS, Tsang TH, Chan KH, Yuen KY. 2516 
2005. Viral load distribution in SARS outbreak. Emerg. Infect. Dis. 11:1882-1886. 2517 

277. Lim PL, Kurup A, Gopalakrishna G, Chan KP, Wong CW, Ng LC, Se-Thoe SY, Oon 2518 
L, Bai X, Stanton LW, Ruan Y, Miller LD, Vega VB, James L, Ooi PL, Kai CS, Olsen 2519 
SJ, Ang B, Leo YS. 2004. Laboratory-acquired severe acute respiratory syndrome. N. 2520 
Engl. J. Med. 350:1740-1745. 2521 

278. Olsen SJ, Chang HL, Cheung TY, Tang AF, Fisk TL, Ooi SP, Kuo HW, Jiang DD, 2522 
Chen KT, Lando J, Hsu KH, Chen TJ, Dowell SF. 2003. Transmission of the severe 2523 
acute respiratory syndrome on aircraft. N. Engl. J. Med. 349:2416-2422. 2524 

279. Anderson RM, Fraser C, Ghani AC, Donnelly CA, Riley S, Ferguson NM, Leung 2525 
GM, Lam TH, Hedley AJ. 2004. Epidemiology, transmission dynamics and control of 2526 
SARS: the 2002-2003 epidemic. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359:1091-2527 
1105. 2528 

280. Wallinga J, Teunis P. 2004. Different epidemic curves for severe acute respiratory 2529 
syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 160:509-516. 2530 

281. Nishiura H, Kuratsuji T, Quy T, Phi NC, Van Ban V, Ha LE, Long HT, Yanai H, 2531 
Keicho N, Kirikae T, Sasazuki T, Anderson RM. 2005. Rapid awareness and 2532 
transmission of severe acute respiratory syndrome in Hanoi French Hospital, Vietnam. 2533 
Am. J. Trop. Med. Hyg. 73:17-25. 2534 

282. Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, van den 2535 
Hoogen BG, Peiris M, Lim W, Stohr K, Osterhaus AD. 2003. Aetiology: Koch's 2536 
postulates fulfilled for SARS virus. Nature 423:240. 2537 

283. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, 2538 
Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003. Angiotensin-2539 
converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450-2540 
454. 2541 

284. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. 2005. 2542 
Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. 2543 
Proc. Natl. Acad. Sci. U. S. A. 102:11876-11881. 2544 

285. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, 2545 
Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S. 2546 
2011. Evidence that TMPRSS2 activates the severe acute respiratory syndrome 2547 
coronavirus spike protein for membrane fusion and reduces viral control by the humoral 2548 
immune response. J. Virol. 85:4122-4134. 2549 

286. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. 2010. 2550 
Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by 2551 
the transmembrane protease TMPRSS2. J. Virol. 84:12658-12664. 2552 

287. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S. 2014. 2553 
TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 2554 
augments entry driven by the severe acute respiratory syndrome coronavirus spike 2555 
protein. J. Virol. 88:1293-1307. 2556 

288. Huang IC, Bosch BJ, Li F, Li W, Lee KH, Ghiran S, Vasilieva N, Dermody TS, 2557 
Harrison SC, Dormitzer PR, Farzan M, Rottier PJ, Choe H. 2006. SARS 2558 
coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-2559 



133 
 

expressing cells. J. Biol. Chem. 281:3198-3203. 2560 
289. Siu KL, Kok KH, Ng MH, Poon VK, Yuen KY, Zheng BJ, Jin DY. 2009. Severe acute 2561 

respiratory syndrome coronavirus M protein inhibits type I interferon production by 2562 
impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J. Biol. Chem. 2563 
284:16202-16209. 2564 

290. Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. 2565 
Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, 2566 
and nucleocapsid proteins function as interferon antagonists. J. Virol. 81:548-557. 2567 

291. Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng CT, 2568 
Makino S. 2008. Severe acute respiratory syndrome coronavirus nsp1 suppresses host 2569 
gene expression, including that of type I interferon, in infected cells. J. Virol. 82:4471-2570 
4479. 2571 

292. Devaraj SG, Wang N, Chen Z, Tseng M, Barretto N, Lin R, Peters CJ, Tseng CT, 2572 
Baker SC, Li K. 2007. Regulation of IRF-3-dependent innate immunity by the papain-2573 
like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. 2574 
Chem. 282:32208-32221. 2575 

293. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, 2576 
Rozanov M, Spaan WJ, Gorbalenya AE. 2003. Unique and conserved features of 2577 
genome and proteome of SARS-coronavirus, an early split-off from the coronavirus 2578 
group 2 lineage. J. Mol. Biol. 331:991-1004. 2579 

294. Woo PC, Lau SK, Tsoi HW, Chan KH, Wong BH, Che XY, Tam VK, Tam SC, Cheng 2580 
VC, Hung IF, Wong SS, Zheng BJ, Guan Y, Yuen KY. 2004. Relative rates of non-2581 
pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet 2582 
363:841-845. 2583 

295. Nie Y, Wang G, Shi X, Zhang H, Qiu Y, He Z, Wang W, Lian G, Yin X, Du L, Ren L, 2584 
Wang J, He X, Li T, Deng H, Ding M. 2004. Neutralizing antibodies in patients with 2585 
severe acute respiratory syndrome-associated coronavirus infection. J. Infect. Dis. 2586 
190:1119-1126. 2587 

296. Memish ZA, Al-Tawfiq JA, Makhdoom HQ, Assiri A, Alhakeem RF, Albarrak A, 2588 
Alsubaie S, Al-Rabeeah AA, Hajomar WH, Hussain R, Kheyami AM, Almutairi A, 2589 
Azhar EI, Drosten C, Watson SJ, Kellam P, Cotten M, Zumla A. 2014. Respiratory 2590 
tract samples, viral load, and genome fraction yield in patients with middle East 2591 
respiratory syndrome. J. Infect. Dis. 210:1590-1594. 2592 

297. Graham RL, Donaldson EF, Baric RS. 2013. A decade after SARS: strategies for 2593 
controlling emerging coronaviruses. Nat. Rev. Microbiol. 11:836-848. 2594 

298. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw FM, Lim WS, 2595 
Makki S, Rooney KD, Nguyen-Van-Tam JS, Beck CR. 2014. The Effectiveness of 2596 
Convalescent Plasma and Hyperimmune Immunoglobulin for the Treatment of Severe 2597 
Acute Respiratory Infections of Viral Etiology: A Systematic Review and Exploratory 2598 
Meta-analysis. J. Infect. Dis. 211:80-90. 2599 

299. Pfefferle S, Schopf J, Kogl M, Friedel CC, Muller MA, Carbajo-Lozoya J, 2600 
Stellberger T, von Dall'Armi E, Herzog P, Kallies S, Niemeyer D, Ditt V, Kuri T, 2601 
Zust R, Pumpor K, Hilgenfeld R, Schwarz F, Zimmer R, Steffen I, Weber F, Thiel V, 2602 
Herrler G, Thiel HJ, Schwegmann-Wessels C, Pohlmann S, Haas J, Drosten C, von 2603 
Brunn A. 2011. The SARS-coronavirus-host interactome: identification of cyclophilins 2604 
as target for pan-coronavirus inhibitors. PLoS Pathog. 7:e1002331. 2605 



134 
 

300. Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. 2606 
2011. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic 2607 
cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS 2608 
Pathog. 7:e1002433. 2609 

301. Cornillez-Ty CT, Liao L, Yates JR, 3rd, Kuhn P, Buchmeier MJ. 2009. Severe acute 2610 
respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein 2611 
complex involved in mitochondrial biogenesis and intracellular signaling. J. Virol. 2612 
83:10314-10318. 2613 

302. Lin MH, Chuang SJ, Chen CC, Cheng SC, Cheng KW, Lin CH, Sun CY, Chou CY. 2614 
2014. Structural and functional characterization of MERS coronavirus papain-like 2615 
protease. J. Biomed. Sci. 21:54. 2616 

303. Baez-Santos YM, Mielech AM, Deng X, Baker S, Mesecar AD. 2014. Catalytic 2617 
Function and Substrate Specificity of the Papain-Like Protease Domain of nsp3 from the 2618 
Middle East Respiratory Syndrome Coronavirus. J. Virol. 88:12511-12527. 2619 

304. Lei J, Mesters JR, Drosten C, Anemuller S, Ma Q, Hilgenfeld R. 2014. Crystal 2620 
structure of the papain-like protease of MERS coronavirus reveals unusual, potentially 2621 
druggable active-site features. Antiviral Res. 109:72-82. 2622 

305. Bailey-Elkin BA, Knaap RC, Johnson GG, Dalebout TJ, Ninaber DK, van Kasteren 2623 
PB, Bredenbeek PJ, Snijder EJ, Kikkert M, Mark BL. 2014. Crystal Structure of the 2624 
MERS Coronavirus Papain-Like Protease Bound to Ubiquitin Facilitates Targeted 2625 
Disruption of Deubiquitinating Activity to Demonstrate its Role in Innate Immune 2626 
Suppression. J. Biol. Chem. pii: jbc.M114.609644. [Epub ahead of print] 2627 

306. Lundin A, Dijkman R, Bergstrom T, Kann N, Adamiak B, Hannoun C, Kindler E, 2628 
Jonsdottir HR, Muth D, Kint J, Forlenza M, Muller MA, Drosten C, Thiel V, 2629 
Trybala E. 2014. Targeting membrane-bound viral RNA synthesis reveals potent 2630 
inhibition of diverse coronaviruses including the middle East respiratory syndrome virus. 2631 
PLoS Pathog. 10:e1004166. 2632 

307. te Velthuis AJ, van den Worm SH, Snijder EJ. 2012. The SARS-coronavirus 2633 
nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo 2634 
initiation and primer extension. Nucleic acids Res. 40:1737-1747. 2635 

308. Miknis ZJ, Donaldson EF, Umland TC, Rimmer RA, Baric RS, Schultz LW. 2009. 2636 
Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient 2637 
viral growth. J. Virol. 83:3007-3018. 2638 

309. Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z, Wu A, Sun Y, Yang Z, Tien P, Ahola T, 2639 
Liang Y, Liu X, Guo D. 2011. Biochemical and structural insights into the mechanisms 2640 
of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. 2641 
PLoS Pathog. 7:e1002294. 2642 

310. Menachery VD, Debbink K, Baric RS. 2014. Coronavirus non-structural protein 16: 2643 
Evasion, attenuation, and possible treatments. Virus Res. 194C:191-199. 2644 

311. Almazan F, DeDiego ML, Sola I, Zuniga S, Nieto-Torres JL, Marquez-Jurado S, 2645 
Andres G, Enjuanes L. 2013. Engineering a replication-competent, propagation-2646 
defective Middle East respiratory syndrome coronavirus as a vaccine candidate. mBio 2647 
4:e00650-00613. 2648 

312. Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, van 2649 
Boheemen S, Gopal R, Ballhause M, Bestebroer TM, Muth D, Muller MA, Drexler 2650 
JF, Zambon M, Osterhaus AD, Fouchier RM, Drosten C. 2012. Detection of a novel 2651 



135 
 

human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro. 2652 
Surveill. 17. pii: 20285. 2653 

313. Memish ZA, Al-Tawfiq JA, Assiri A, AlRabiah FA, Al Hajjar S, Albarrak A, 2654 
Flemban H, Alhakeem RF, Makhdoom HQ, Alsubaie S, Al-Rabeeah AA. 2014. 2655 
Middle East respiratory syndrome coronavirus disease in children. Pediatr. Infect. Dis. J. 2656 
33:904-906. 2657 

314. Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, Selim MA, Mutairi 2658 
MA, Nakhli DA, Aidaroos AY, Sherbeeni NA, Al-Khashan HI, Memish ZA, 2659 
Albarrak AM. 2014. Clinical aspects and outcomes of 70 patients with Middle East 2660 
respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. 2661 
Int. J. Infect. Dis. pii: S1201-9712(14)01622-1. 2662 

315. Yang L, Wu Z, Ren X, Yang F, Zhang J, He G, Dong J, Sun L, Zhu Y, Zhang S, Jin 2663 
Q. 2014. MERS-related betacoronavirus in Vespertilio superans bats, China. Emerg. 2664 
Infect. Dis. 20:1260-1262. 2665 

316. Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, Badu EK, 2666 
Anti P, Agbenyega O, Meyer B, Oppong S, Sarkodie YA, Kalko EK, Lina PH, 2667 
Godlevska EV, Reusken C, Seebens A, Gloza-Rausch F, Vallo P, Tschapka M, 2668 
Drosten C, Drexler JF. 2013. Human betacoronavirus 2c EMC/2012-related viruses in 2669 
bats, Ghana and Europe. Emerg. Infect. Dis. 19:456-459. 2670 

317. Lelli D, Papetti A, Sabelli C, Rosti E, Moreno A, Boniotti MB. 2013. Detection of 2671 
coronaviruses in bats of various species in Italy. Viruses 5:2679-2689. 2672 

318. Anthony SJ, Ojeda-Flores R, Rico-Chavez O, Navarrete-Macias I, Zambrana-2673 
Torrelio CM, Rostal MK, Epstein JH, Tipps T, Liang E, Sanchez-Leon M, 2674 
Sotomayor-Bonilla J, Aguirre AA, Avila-Flores R, Medellin RA, Goldstein T, Suzan 2675 
G, Daszak P, Lipkin WI. 2013. Coronaviruses in bats from Mexico. J. Gen. Virol. 2676 
94:1028-1038. 2677 

319. Goes LG, Ruvalcaba SG, Campos AA, Queiroz LH, de Carvalho C, Jerez JA, 2678 
Durigon EL, Davalos LI, Dominguez SR. 2013. Novel bat coronaviruses, Brazil and 2679 
Mexico. Emerg. Infect. Dis. 19:1711-1713. 2680 

320. Hemida MG, Chu DK, Poon LL, Perera RA, Alhammadi MA, Ng HY, Siu LY, Guan 2681 
Y, Alnaeem A, Peiris M. 2014. MERS coronavirus in dromedary camel herd, Saudi 2682 
Arabia. Emerg. Infect. Dis. 20:1231-1234. 2683 

321. Nowotny N, Kolodziejek J. 2014. Middle East respiratory syndrome coronavirus 2684 
(MERS-CoV) in dromedary camels, Oman, 2013. Euro. Surveill. 19:20781. 2685 

322. Hemida MG, Perera RA, Al Jassim RA, Kayali G, Siu LY, Wang P, Chu KW, 2686 
Perlman S, Ali MA, Alnaeem A, Guan Y, Poon LL, Saif L, Peiris M. 2014. 2687 
Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi 2688 
Arabia (1993) and Australia (2014) and characterisation of assay specificity. Euro. 2689 
Surveill. 19. pii: 20828. 2690 

323. Reusken CB, Messadi L, Feyisa A, Ularamu H, Godeke GJ, Danmarwa A, Dawo F, 2691 
Jemli M, Melaku S, Shamaki D, Woma Y, Wungak Y, Gebremedhin EZ, Zutt I, 2692 
Bosch BJ, Haagmans BL, Koopmans MP. 2014. Geographic Distribution of MERS 2693 
Coronavirus among Dromedary Camels, Africa. Emerg. Infect. Dis. 20:1370-1374. 2694 

324. Cai Y, Yú SQ, Postnikova EN, Mazur S, Bernbaum JG, Burk R, Zhāng T, 2695 
Radoshitzky SR, Müller MA, Jordan I, Bollinger L, Hensley LE, Jahrling PB, Kuhn 2696 
JH. 2014. CD26/DPP4 Cell-Surface Expression in Bat Cells Correlates with Bat Cell 2697 



136 
 

Susceptibility to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection 2698 
and Evolution of Persistent Infection. PLoS One 9:e112060. 2699 

325. van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T, Robertson S, Scott 2700 
D, Kinne J, McLellan JS, Zhu J, Munster VJ. 2014. Host species restriction of Middle 2701 
East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J. 2702 
Virol. 88:9220-9232. 2703 

326. Payne DC, Iblan I, Alqasrawi S, Al Nsour M, Rha B, Tohme RA, Abedi GR, Farag 2704 
NH, Haddadin A, Al Sanhouri T, Jarour N, Swerdlow DL, Jamieson DJ, Pallansch 2705 
MA, Haynes LM, Gerber SI, Al Abdallat MM. 2014. Stillbirth during infection with 2706 
Middle East respiratory syndrome coronavirus. J. Infect. Dis. 209:1870-1872. 2707 

327. Corman VM, Olschlager S, Wendtner CM, Drexler JF, Hess M, Drosten C. 2014. 2708 
Performance and clinical validation of the RealStar MERS-CoV Kit for detection of 2709 
Middle East respiratory syndrome coronavirus RNA. J. Clin. Virol. 60:168-171. 2710 

328. Lu X, Whitaker B, Sakthivel SK, Kamili S, Rose LE, Lowe L, Mohareb E, Elassal 2711 
EM, Al-sanouri T, Haddadin A, Erdman DD. 2014. Real-time reverse transcription-2712 
PCR assay panel for Middle East respiratory syndrome coronavirus. J. Clin. Microbiol. 2713 
52:67-75. 2714 

329. Reusken C, Mou H, Godeke GJ, van der Hoek L, Meyer B, Muller MA, Haagmans 2715 
B, de Sousa R, Schuurman N, Dittmer U, Rottier P, Osterhaus A, Drosten C, Bosch 2716 
BJ, Koopmans M. 2013. Specific serology for emerging human coronaviruses by protein 2717 
microarray. Euro. Surveill. 18:20441. 2718 

330. Hart BJ, Dyall J, Postnikova E, Zhou H, Kindrachuk J, Johnson RF, Olinger GG, 2719 
Jr., Frieman MB, Holbrook MR, Jahrling PB, Hensley L. 2014. Interferon-beta and 2720 
mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus 2721 
in cell-based assays. J. Gen. Virol. 95:571-577. 2722 

331. Tao X, Mei F, Agrawal A, Peters CJ, Ksiazek TG, Cheng X, Tseng CT. 2014. 2723 
Blocking of exchange proteins directly activated by cAMP leads to reduced replication of 2724 
Middle East respiratory syndrome coronavirus. J. Virol. 88:3902-3910. 2725 

332. Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. 2014. Ribavirin and interferon therapy 2726 
in patients infected with the Middle East respiratory syndrome coronavirus: an 2727 
observational study. Int. J. Infect. Dis. 20:42-46. 2728 

333. de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T, Lackemeyer MG, 2729 
Martellaro C, Milne-Price S, Haddock E, Haagmans BL, Feldmann H, Munster VJ. 2730 
2013. The Middle East respiratory syndrome coronavirus (MERS-CoV) does not 2731 
replicate in Syrian hamsters. PLoS One 8:e69127. 2732 

334. Coleman CM, Matthews KL, Goicochea L, Frieman MB. 2014. Wild-type and innate 2733 
immune-deficient mice are not susceptible to the Middle East respiratory syndrome 2734 
coronavirus. J. Gen. Virol. 95:408-412. 2735 










	Manuscript Text File
	Figure 1A & 1B
	Figure 2
	Figure 3
	Figure 4

