
Clustering in Geo-Social Networks

Dingming Wu, Nikos Mamoulis, and Jieming Shi
Department of Computer Science, The University of Hong Kong

Pokfulam Road, Hong Kong
{dmwu,nikos,jmshi}@cs.hku.hk

Abstract

The rapid growth of Geo-Social Networks (GeoSNs) provides a new and rich form of data. Users of
GeoSNs can capture their geographic locations and share them with other users via an operation named
checkin. Thus, GeoSNs can track the connections (and the time of these connections) of geographic
data to their users. In addition, the users are organized in a social network, which can be extended
to a heterogeneous network if the connections to places via checkins are also considered. The goal
of this paper is to analyze the opportunities in clustering this rich form of data. We first present a
model for clustering geographic locations, based on GeoSN data. Then, we discuss how this model
can be extended to consider temporal information from checkins. Finally, we study how the accuracy
of community detection approaches can be improved by taking into account the checkins of users in a
GeoSN.

1 Introduction

Clustering is a common task of data mining, which divides a set of objects into groups such that objects in
the same group (called a cluster) are similar to each other while objects in different clusters are dissimilar.
Clustering finds applications in machine learning, pattern recognition, image analysis, information retrieval, and
bioinformatics. Specific applications include grouping homologous sequences into gene families in bioinformat-
ics, partitioning the general population of consumers into groups in market research, recognizing communities
within large groups of people in social networks, dividing a digital image into distinct regions for border detec-
tion or object recognition. Clustering can be achieved by various algorithms that may differ significantly in how
they define clusters. Popular definitions of clusters are groups with small distances among the cluster members,
dense areas of the data space, intervals or particular statistical distributions. The distance function, the density
threshold or the number of expected clusters to use depend on the data to be clustered and the intended use of
the clustering results.

The enormous growth of Geo-Social Networks (GeoSNs) not only brings more interesting data to clustering,
but also poses challenges. In GeoSNs, such as Gowalla1, Foursquare2, and Facebook Places3, users are allowed
to capture their geographic locations and share them by an operation named checkin. A checkin is a triplet

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1http://gowalla.com
2https://foursquare.com
3https://www.facebook.com/about/location

47

⟨u, p, time⟩ modeling the fact that user u visited place with point location p = ⟨x, y⟩ at a certain time . Thus,
on one hand, GeoSNs provide geographic places (e.g. points of interest) an opportunity to be (temporally)
connected with social networks. On the other hand, the users of social networks are associated with their
checkin point locations. The purpose of this paper is to investigate how clustering can be applied on this rich
form of data.

Different from the traditional clustering of geographic locations, where only the spatial dimension is consid-
ered, clustering places in a GeoSN involves geo-social or geo-social-temporal dimensions. The geo-social place
clusters discovered in a GeoSN find important application in the generalization and characterization of places.
For example, discovering regions populated with similar places with respect to the people who live in them or
visit them is a common task in geographic data analysis. Taking another example in urban planning, land man-
agers are interested in identifying regions which have consistent demographic statistics, e.g., areas where elderly
people prefer to visit, or, in general, people who belong to certain communities and have special transportation
or living needs. The place clusters found in GeoSNs may benefit marketing as well. The fact that two (or more)
commercial places belong to the same cluster indicates that there is a high likelihood that a user who likes one
place would also be interested to visit the other(s). Therefore, campaigns may be initiated to users who visited
other places in the same cluster, or a set of places could do collaborative promotion (e.g., a discount for users
who visit multiple places in the cluster). By considering also the temporal information in the data (i.e., when
did users checkin at the various places), the discovered clusters can be further refined and can become valuable
for urban activity analysis, local authorities, service providers, decision makes, etc. For example, a certain set of
places (e.g., shopping spots) may be characterized as a cluster for only restricted time periods or intervals (e.g.,
during Saturday morning hours). In addition, the user-groups that are relevant to a cluster could be relative to
certain time periods. For example, shopping places in downtown are visited during the evening by people who
have to work and could not shop at daytime, while supermarkets and small shops in the suburbs are usually vis-
ited by housewives in the daytime. Such geo-social-temporal clusters can be useful to marketing or advertising
companies, which may benefit from understanding the (time sensitive) shopping habits of various social groups.

GeoSN data can also be used for clustering social network users. Different to classic social networks, which
do not have checkin information, GeoSNs allow users to be clustered not only based on their social links but
also based on their checkin behavior. Using both the social relationships and the checked in places by users can
help discovering user clusters (called local communities) such that users in the same cluster not only have close
social relationships, but also have similar mobility behavior in terms of their checkin places. The discovered
local communities may provide useful information to local advertisers and social travel recommendation services
such as facebook.com/36hrs.in and gogobot.com.

In this paper we investigate the possibilities of clustering geographic locations (i.e., places) and users based
on the rich information tracked by GeoSNs. We first present the Density-based Clustering Places in Geo-
Social Networks (DCPGS) model in Section 2 that detects geo-social place clusters in GeoSNs, considering
both the spatial and the social distances between places. The DCPGS model (originally, proposed in [12])
extends traditional density-based clustering for spatial locations to consider the social relationships of users
who visit them in a GeoSN. Next, we discuss possible definitions and future research directions for the geo-
social-temporal place clustering and the local community detection problems in GeoSNs, in Sections 3 and 4,
respectively. Finally, Section 5 concludes the paper.

2 Geo-Social Place Clustering

Among various clustering techniques, density-based clustering [4] is an effective approach for spatial data with
low dimensionality [13]. It discovers arbitrary shaped clusters and is robust to outliers. The DCPGS model
extends the density-based clustering framework by introducing a new distance function that takes both the spatial
proximity and the social relationship between places into account. Section 2.1 formulates the DCPGS problem

48

and defines the social distance measure between places that we use. DCPGS algorithms based on R-tree and
grid partitioning are proposed in Section 2.2. We report part of our findings in Section 2.3.

2.1 Model and Definitions

The input of the DCPGS model includes a social network G and the set of checkins CK of a set of users U to a
set of places P . The social network is an undirected graph G = (U,E), where U is the set of all users and each
edge (ui, uj) ∈ E indicates that users ui, uj ∈ U are friends. Each place pk ∈ P is identified by a unique GPS
coordinate. Set CK = {⟨ui, pk, tr⟩|ui ∈ U, pk ∈ P} includes all checkins generated by users in U . For a place
pk, its visiting user set is defined by Upk = {ui|⟨ui, pk, ∗⟩ ∈ CK}, where ∗ means any time.

u4

u7

u6

u5

u3

u1

u2

pjpi

t1 t2

t3
t4

t5

t6

t7

u4

u2

u1

u5

u3

u1

u6

Upi

u7

Upj

pi : <lai, loi> pj : <laj, loj>

(a) A toy example

u4

u7

u6

u5

u3

u1

u2

pjpi

t1 t2

t3
t4

t5

t6

t7

u4

u2

u1

u5

u3

u1

u6

Upi

u7

Upj

pi : <lai, loi> pj : <laj, loj>

(b) Abstraction

Figure 1: Example and storage structure of GeoSNs

2.1.1 DCPGS Model

DCPGS extends the model of DBSCAN [4]; for each place pi ∈ P , DCPGS finds its geo-social ϵ-neighborhood
Nϵ(pi), which includes all places pj such that Dgs(pi, pj) ≤ ϵ, DS(pi, pj) ≤ τ , and E(pi, pj) ≤ maxD .
For two places pi, pj , E(pi, pj) is the Euclidean distance, DS(pi, pj) is the social distance, and Dgs(pi, pj) =
f(DS(pi, pj), E(pi, pj)) is the geo-social distance, defined as a function of E(pi, pj) and DS(pi, pj). Parameter
ϵ is geo-social distance threshold, while τ and maxD are two sanity constraints for the social and the spatial
distances between places, respectively. If the geo-social ϵ-neighborhood of a place pi contains at least MinPts
places, then pi is a core place; in this case, pi and all places in its geo-social ϵ-neighborhood should belong to
a cluster r(pi). If another core place pj belongs to cluster r(pi), then r(pi) = r(pj), i.e., the clusters defined
by pi and pj are merged. After identifying all core places and merging the corresponding clusters, DCPGS
ends up with a set of (disjoint) clusters and a set of outliers (i.e., places that do not belong to the geo-social
ϵ-neighborhood of any core place).
Parameters. ϵ and MinPts are the main parameters of DCPGS. MinPts (i.e., the minimum number of places in
the neighborhood of a core place) is set as in the original DBSCAN model (see [4]); a typical value is 5. ϵ takes a
value between 0 and 1, because, as we explain later on, we define Dgs(pi, pj) to take values in this range. Since
the geo-social distance Dgs(pi, pj) is a function of a spatial and a social distance, τ and maxD constrain these
individual distances to avoid the following two cases that negatively affect the quality of geo-social clusters.

• The geo-social distance between two places pi and pj could be less than ϵ if they are extremely close to
each other in space, but have no social connection at all. This may lead to putting places close to each
other spatially, but having no social relationship, into the same cluster.

• The geo-social distance between two places pi and pj could be less than ϵ if they have very small social
distance, but they are extremely far from each other spatially. This may lead to putting places with close
social distances, but large spatial distances, into the same cluster.

49

Constraints τ and maxD are defined for quality control and can be set by experts or according to the ana-
lyst’s experience. We experimentally study how clustering quality is affected by the two constraints and ϵ in
Section 2.3.
Distance Functions. The social distance DS(pi, pj) takes in the visiting user sets Upi and Upj of places pi and
pj , respectively, and returns a value between 0 and 1. In Section 2.1.2, we present our definition for DS(pi, pj).
Before defining the geo-social distance Dgs(pi, pj), we normalize the Euclidean distance E(pi, pj) to a spatial
distance DP (pi, pj) =

E(pi,pj)
maxD that takes values between 0 and 1. Finally, Dgs(pi, pj) is defined as weighted

sum of DS(pi, pj) and DP (pi, pj), i.e.,

Dgs(pi, pj) = ω ·DP (pi, pj) + (1− ω) ·DS(pi, pj), (27)

where ω ∈ [0, 1].

2.1.2 Social Distance Between Places

The social distance DS(pi, pj) between pi and pj naturally depends on the social network relationships between
the visiting user sets Upi and Upj of places pi and pj , respectively. Our definition for DS(pi, pj) is based on the
set CU ij of contributing users between two places pi and pj :

Definition 1: (Contributing Users) Given two places pi and pj with visiting user sets Upi and Upj , respectively,
the set of contributing users CU ij for the place pair (pi, pj) is defined as CU ij = {ua ∈ Upi |ua ∈ Upj ∨ ∃ub ∈
Upj , (ua, ub) ∈ E} ∪ {ua ∈ Upj |ua ∈ Upi ∨ ∃ub ∈ Upi , (ua, ub) ∈ E}

Specifically, if a user ua has visited both pi and pj , then ua is a contributing user. Also if ua has visited place
pi, ub has visited pj , and ua and ub are friends, both ua and ub are contributing users. Users in CU ij contribute
positively (negatively) to the social similarity (distance) between pi and pj . Formally:

Definition 2: (Social Distance) Given two places pi and pj with visiting users Upi and Upj , respectively, the
social distance between pi and pj is defined as

DS(pi, pj) = 1− |CU ij |
|Upi ∪ Upj |

(28)

The above definition of DS(pi, pj) takes both the set similarity between sets Upi and Upj and the social
relationships among users in Upi and Upj into account. In addition, the distance measure penalizes pairs of places
pi and pj which are popular (i.e., Upi and/or Upj are large) but their set of contributing users is relatively small
(see Equation 28). The reason is that such place pairs are not characteristic to their (loose) social connections.

As an example, consider places pi and pj of Figure 1. Figure 1(b) shows Upi and Upj for the two places pi
and pj of the toy example in Figure 1(a). The figure also connects the user pairs in the two sets who are linked
by friendship edges in the social network. Note that user u8 does not belong to either Upi or Upj , but connects
users u4 and u7 in the social graph.

To compute DS(pi, pj), we first set Upi = {u1, u2, u4} and Upj = {u1, u3, u5, u6}. All users in Upi and Upj

are checked one by one to obtain the contributing users between pi and pj . We derive CU ij = {u1, u2, u3, u5},
since (i) u1 have visited both pi and pj , (ii) user u2, who visited pi, has a friend u5 who visited pj , (iii) sym-
metrically, user u5, who visited pj , has a friend u2 who visited pi, and (iv) u3 (∈ Upj) has a friend u1 hav-
ing been to pi. According to Definition 2, the social distance DS(pi, pj) between pi and pj in Figure 1 is
1− |CU ij |/(|Upi ∪ Upj |) = 1− 4/6 ≈ 0.3333.

50

2.2 Algorithms

We propose two algorithms for computing geo-social clusters using DCPGS model. Algorithm DCPGS-R (Sec-
tion 2.2.1) is based on the R-tree index, while algorithm DCPGS-G (Section 2.2.2) uses a grid partitioning.

2.2.1 Algorithm DCPGS-R: R-tree based

Algorithm DCPGS-R is a direct extension of the DBSCAN algorithm; it uses an R-tree to facilitate the search
of the geo-social ϵ-neighborhood for a given place. Initially, all places are bulk-loaded into an R-tree. Then,
DCPGS-R examines all places and, given a place pi, it performs a range query centered at pi with radius maxD
to get a set of candidate places that may fall in the geo-social ϵ-neighborhood of pi, i.e., Nϵ(pi). Recall that
maxD is the maximum allowed spatial distance between place pi and places in its geo-social ϵ-neighborhood.
Then, DCPGS-R keeps in Nϵ(pi) only the candidates that satisfy the social distance constraint τ and the geo-
social distance threshold ϵ. Clusters are identified by merging core places and their geo-social ϵ-neighborhoods.

2.2.2 Algorithm DCPGS-G: Grid based

DCPGS-R conducts a spatial range query for each place to obtain the candidate places for the purpose of dis-
covering geo-social clusters. Even though individual R-tree based range queries are very efficient, discovering
geo-social clusters in a GeoSN with millions of places requires millions of such queries (e.g., there are 1,280,969
places in the Gowalla dataset used in our experiments). Given two places pi and pj that are spatially close to
each other, as Figure 2(a) shows, the results of the two range queries with radius maxD centered at pi and pj ,
respectively, are almost identical. In algorithm DCPGS-R, independently issuing similar range queries on the
R-tree searches almost the same space, resulting in redundant traversing paths and computations. To overcome
this drawback, we develop a dynamic grid partitioning technique and a new algorithm DCPGS-G.

pi

pj

maxD

maxD

(a) Nearby spatial range queries (b) Grid partitioning

Figure 2: Nearby spatial range queries and grid partitioning

Grid Partitioning. The area covered by the whole data set is partitioned using a grid of size maxD/
√
2 ×

maxD/
√
2. The non-empty grid cells are indexed by a hash table with the grid cell coordinates as search keys.

Neighbor Cells. The neighbor cells of a cell c are the cells that intersect the union of four circles, each centered
at a corner of cell c with radius maxD . For example, in Figure 2(b), the 20 gray cells (except c) are the neighbor
cells of c, denoted as NC (c). We can trivially show that for any place p inside c, the content of p’s geo-social
ϵ-neighborhood is contained in NC (c) and c itself.
Cluster Discovery. Algorithm DCPGS-G includes three phases. First, it maps all places into grid cells. Second,
it computes the geo-social ϵ-neighborhoods of places at the grid cell level. Specifically, for each non-empty and
unprocessed cell c, its neighbor cells NC (c) are retrieved. This operation filters out the pairs of places (pi, pj)
with spatial distance greater than maxD . A cell is ‘unprocessed’ if its neighbor cells have not been retrieved

51

before. Then the pairs of places (pi, pj) that satisfy the social distance constraint τ and the geo-social distance
threshold ϵ are identified and the geo-social ϵ-neighborhoods Nϵ(pi) and Nϵ(pj) are updated. After all cells have
been processed, meaning that the geo-social ϵ-neighborhoods of all places in the GeoSN are acquired, the third
phase discovers all geo-social clusters following the framework of algorithm DCPGS-R, except that the Nϵ(pi)
of each place pi has already been computed in the second phase.
Complexity. With the help of grid partitioning, the geo-social ϵ-neighborhood of all places in cell c can be
obtained by checking all c’s neighbor cells; the whole process can be completed within a single pass of the
data. Thus, the complexity of DCPGS-G is O(n), as each of its three phases makes one pass over the data.
However, algorithm DCPGS-R computes the geo-social ϵ-neighborhoods of each place one by one. Hence its
cost is O(n log n), given that the expected cost of a single range query on the R-tree is O(log n).

2.3 Evaluation Results

In [12], we evaluated the DCPGS model and algorithms using two data sets from real geo-social networks4

from two perspectives: effectiveness and efficiency. To assess effectiveness, we conducted a visualization-
based analysis and a social quality evaluation in terms of two measures: social entropy and community score.
In general, it has been demonstrated that the social relationships between users who visit places have great
impact in place clustering and cannot be overlooked. The social distance measure we propose is more effective
compared to competitor measures. To evaluate efficiency, we implemented the R-tree based and the grid-based
DCPGS algorithms to apply using alternative distance measures and compared their performance under various
parameter settings. The results show that the grid-based implementation is more efficient than the R-tree based
implementation and our proposed social distance measure between places is more efficient to compute compare
to more complex alternatives. The detailed evaluation results can be found in [12]. In this section, we show
part of our visualization-based analysis, which compares the clusters found by DCPGS and competitor methods
in the area of Manhattan on the Gowalla dataset (Figures 3(a)–3(f)) and also in the area of Chicago, on the
Brightkite dataset (Figures 4(a)–4(b)).

Competitor DBSCAN [15] disregards the social network and finds density-based clusters using only the
Euclidean distance between places. Competitor PureSocialDistance is an extreme case of DCPGS where ω is set
to 0 in Equation 27. Competitor LinkClustering constructs a place network PN where two places pi and pj are
connected if E(pi, pj) ≤ maxD and DS(pi, pj) ≤ τ . The edge weight is set to Wgs(pi, pj) = 1−Dgs(pi, pj).
Then, an offline community detection algorithm [1, 2] is applied on PN to discover place clusters. Competitor
Jaccard replaces the social distance in DCPGS with the Jaccard similarity between the visiting user sets of two
places. Finally, competitor SimRank applies the Minimax version of SimRank [7] to measure the similarity
between the visiting user sets of two places. Compared to these five competitors, our proposed DCPGS finds
geo-social clusters with the following features.
Geo-Social Splitting/Merging Criteria. Clusters found by DBSCAN due to their spatial closeness are split by
DCPGS because of their weak social relationships, while clusters split by DBSCAN due to relatively low spatial
density are merged by DCPGS due to their strong social ties. For example, Figure 3(a) and 3(b) shows that
the layouts of the clusters discovered by DCPGS and DBSCAN are totally different. Specifically, comparing
region A in Figures 3(a) with the corresponding region A′ in Figure 3(b), DCPGS and DBSCAN detect different
cluster structures. The clusters found by DCPGS cannot be discovered by DBSCAN even if the parameters are
tuned, since the densities of the small clusters in the half bottom of region A′ are similar and they are close to
each other. Hence, DBSCAN will consider the places in the half bottom of region A′ as either a single cluster or
several fragmented clusters (Figure 3(b)), under different parameter settings. Sometimes, DCPGS is able to split
spatially dense clusters due to some natural barriers, such as rivers, and walls. It is inconvenient for the users to
travel from one side of the barrier to the other side, so that the social ties between the places from the two sides

4snap.stanford.edu/data/index.html

52

of the barrier are weak, resulting in a splitting effect. As an example, in Figures 4(a) and 4(b), a cluster (region
C) found by DBSCAN is split into two DCPGS clusters (regions C1 and C2) by the river. Although it might be
possible for DBSCAN to detect the two DCPGS clusters by reducing the value of eps , such parameter settings
will make some existing significant clusters disappear, resulting in too many outliers.
Spatially Loose Clusters. Some geo-social clusters found by DCPGS in region B of Figure 3(a) are considered
as outliers by DBSCAN, shown as region B′ in Figure 3(b), since the places in region B′ is spatially too sparse to
satisfy the density requirement of DBSCAN, and thus most places inside it are considered as outliers. However,
these places (in region B of Figure 3(a)) are grouped into clusters by DCPGS due to the reason that the users
who checked in those places have strong social relationships. If reducing the density parameters of DBSCAN,
such spatially loose clusters can also be discovered. Nevertheless, many other clusters may be merged, making
denser clusters indistinguishable.
Fuzzy Boundary Clusters. The boundaries of some DCPGS geo-social clusters are fuzzy, which makes sense in
the real world, since groups of socially connected users may spatially overlap. In contrast, the clusters detected
by DBSCAN have clearly strict boundaries. For instance, in Figure 3(a), no strict boundary exists between the
four clusters enclosed in region A. Competitor PureSocialDistance also produces clusters with fuzzy boundaries
(shown in Figure 3(c)). However, these clusters are spatially indistinguishable and of no interest, i.e., for the
applications mentioned in the Introduction.

Competitor LinkClustering produces thousands of small clusters with average size around 3, shown in Fig-
ure 3(d), which are typically not well-separated spatially. Because of the sparse geo-social network data, the
constructed place network consists of a lot of connected components that are disconnected with each other.
For example, the place network built given τ = 0.7, maxD = 100, and ω = 0.5 contains 34,496 connected
components with 4.3 nodes and 8.2 edges on average.

Competitors Jaccard and SimRank replace our DS definition (Definition 2) by the Jaccard and the SimRank
based measures. Figures 3(e) and 3(f) shows their clustering results. Competitor Jaccard produces small clus-
ters and too many outliers, since large distance values are given for most pairs of places pi and pj due to the
reason that the set of common users for two places in Jaccard (i.e., Upi ∩ Upj) is expected to be small. On the
contrary, competitor SimRank produces clusters of slightly larger sizes compared to DCPGS. We observed that
the probability distribution of the SimRank-based measure is skewed towards small values, so that a lot of pairs
of places are given low bipartite minimax SimRank social distance.

3 Geo-Social-Temporal Place Clustering

A checkin in GeoSNs is a triplet ⟨u, p, time⟩ modeling the fact that user u visited place with point location
p = ⟨x, y⟩ at a certain time . The geo-social clusters found by the DCPGS model (presented in the previous
section) compute the social distance between places based on the social network relationships between the
visiting user sets of the places. However, temporal information is completely disregarded by the DCPGS model.
It would be interesting to extend the DCPGS model such that the temporal information is taken into account
in clustering and investigate how the temporal information affects the clustering result. In this section, we
investigate the discovery of geo-social-temporal clusters in GeoSNs, which are spatio-temporal regions visited
by groups of socially connected users.

In order to compute such geo-social-temporal clusters, a possible method would be to extend the definition
of social distance between places to a socio-temporal distance DST . Using the social-temporal distance DST ,
the DCPGS model can then replace the geo-social distance Dgs by a newly defined geo-social-temporal distance
as follows:

Dgst(pi, pj) = ω ·DP (pi, pj) + (1− ω) ·DST (pi, pj). (29)

An intuitive definition of the socio-temporal distance DST would be to consider a pair of places socio-temporally
close if they share many visiting users that have checked in the places within a small time period. On the other

53

(a) DCPGS: ϵ = 0.4, τ = 0.7,
maxD = 100m

(b) DBSCAN: eps = 40m (c) PureSocialDistance: ϵ = 0.2,
τ = 1, maxD = 1000m

(d) LinkClustering: τ = 0.7,
maxD = 100m

(e) Jaccard: ϵ = 0.4, τ = 0.7,
maxD = 100m

(f) SimRank: ϵ = 0.3, τ = 0.7,
maxD = 100m

Figure 3: Place clusters of Gowalla found in Manhattan

hand, two places are socio-temporally far from each other if they do not have common visitors within a short
time interval. The temporal dimension captures the evolution of place visits, and thus reflects the changes of the
social distance between places. Based on the above, we suggest that the following three possible definitions of
DST should be investigated.
Temporal Threshold. The socio-temporal distance extends the social distance (Equation 28) by replacing the
contributing users CUij with the temporally contributing users TCUij , i.e.,

DS(pi, pj) = 1− |TCU ij |
|Upi ∪ Upj |

. (30)

The temporally contributing users are socially connected users who checked in pi and pj within a time interval
θ. Let T (ua, pi) be the time when user ua checked in place pi; formally:

Definition 3: (Temporally Contributing Users) Given two places pi and pj with visiting user sets Upi and Upj ,
respectively, the set TCU ij of temporally contributing users for the place pair (pi, pj) is defined as TCU ij =
{ua ∈ Upi |(ua ∈ Upj∧|T (ua, pi)−T (ua, pj)| ≤ θ)∨(∃ub ∈ Upj , (ua, ub) ∈ E∧|T (ua, pi)−T (ub, pj)| ≤ θ}∪
{ua ∈ Upj |(ua ∈ Upi∧|T (ua, pi)−T (ua, pj)| ≤ θ)∨(∃ub ∈ Upi , (ua, ub) ∈ E∧|T (ub, pi)−T (ua, pj)| ≤ θ)}.

This definition of TCU ij favors place pairs to which socially connected users paid visits what were close in
time.
Damping Window. This method assigns each contributing user ua an exponential decay factor etc−T (ua,pi),
where tc is the current time and T (ua, pi) is the time when user ua checked in place pi. The contributing users
who made checkins recently are weighed high. Instead of counting 1 for each user when computing the social

54

(a) DBSCAN: eps = 60m (b) DCPGS: ϵ = 0.4 s.t. τ = 0.7,
maxD = 120m

Figure 4: Clusters of Brightkite found by DBSCAN and DCPGS in Chicago

distance (Equation 28), this method counts the exponential decay factor of each user when computing the social-
temporal distance DST . This definition favors place pairs to which the socially connected users have paid recent
visits.
History-frame Clustering. This method performs geo-social clustering for each time period separately. For
example, we can generate a different clustering of places for each month, by only using the checkin data recorded
in that month. The clustering results would be useful in finding out how the place clusters evolve over time. It is
also possible to track which place enters or leaves a cluster at a particular month and which parts of the clusters
are time-insensitive.

4 Local Community Detection in GeoSNs

Community detection is an analytics tool for studying the social relationships among users. When detecting
communities, there are two possible sources of information one can use: the social network structure and the
features and attributes of users. Existing algorithms, however, typically focus on one of these two data modal-
ities: community detection algorithms traditionally consider only on the network structure, while clustering
algorithms mostly consider only user (node) attributes. Recently, algorithm CESNA [16] has been proposed to
detect overlapping communities in networks with node attributes. CESNA statistically models the interaction
between the network structure and the node attributes, which leads to more accurate community detection as
well as improved robustness in the presence of noise in the structure. Later, Shakarian et al. [11] used a variant
of Newman-Girvan modularity with the Louvain algorithm to address the problem of mining for geographically
dispersed communities.

In GeoSNs, it would be interesting to detect local user communities taking both the social network structure
and the checkin information into account, so that groups of socially connected users that checkin in the same
or geographically close places are discovered. Existing algorithms that use either the network structure or node
attributes cannot achieve the goal of local community detection. In addition, although CESNA could be applied
by considering the checkin places as attributes of nodes (i.e., users), it may not achieve satisfactory results,
because the proximity of places is not taken into account (i.e., only users that check in identical places would be
considered as similar). Typically, the probability that two users have a significant overlap in their visiting places
is low, therefore it makes sense to consider proximity as a factor of similarity between users in local community
detection. Finally, although Shakarian et al. [11] provide a way to leverage spatial information in addition to
network connection topology when mining networks for communities, they assume that each node in the social
network is associated with only one home location. This approach is not applicable for the case when the users
in GeoSNs have multiple check-in locations.

55

To implement local community detection in GeoSNs, we first need to model the users’ mobile behaviors
according to their checkin locations. Next, in the social network, we assign weights on the edges based on
the similarity between the mobility behaviors of the corresponding users. Then, the resulting edge-weighted
graph can be fed to existing community detection algorithms for weighted graphs, such as ISCoDe [6] and the
algorithm proposed by Liu et al. [9], to identify the local communities. We suggest the following three ways for
modeling the mobility behaviors of users.
Trajectory-based. The checkin locations of each user can be connected according to the time of the checkins
to form a trajectory for the user. This trajectory models the mobility behavior of the user. Trajectory similarity
can then be used to model the similarity between two users that are connected in a social network. Measures for
trajectory similarity include Euclidean distance [10], dynamic time warping [8], edit distance [3], and longest
common subsequence [5].
Image-based. The mobile behavior of each user is modeled as a black-and-white image where each pixel
corresponds to the coordinates of a checkin location. The light intensity (gray value) of a pixel is determined by
the frequency of visits at the corresponding place. The similarity between two images can be computed using the
Minkowski metric on their contained pixels or more complicated measures incorporating specific task-dependent
features [14].
Frequently Visited Region based. By analyzing the checkin locations of users, we can identify one or multiple
frequently visited regions or areas for each of them. The granularity of the frequently visited regions can be
determined by superimposing a grid on the map that includes all checkin locations. Then, each user is associated
with one or multiple regions (cells) which s/he has frequently visited. For two users, we can use the spatial
relationships (e.g., Euclidean distance or overlapping ratio) between their frequently visited regions to determine
the similarity between the users.

5 Conclusions

Although geographic data clustering and community detection have been extensively studied for decades and
many effective algorithms have been proposed, the rapid growth of the geo-social networks bring to these two
problems a new and rich form of data together with new challenges. Clustering places by considering both their
spatial proximity and the users who visit them (as well as the ties between these users) results in significantly
different clusters compared to just using place locations. The time of the user checkins to places can be used
to further refine the clusters. Differences and interesting insights can also be found in the user communities
discovered when both the social relationships between users and the proximity between places they check in are
considered.

In this paper, we have presented the Density-based Clustering Places in Geo-Social Networks (DCPGS)
model [12] that discovers spatially and socially relevant place clusters. Our empirical studies prove the effec-
tiveness of the model. We also discussed how to extend the DCPGS model to consider temporal information in
the check-in data. Finally, we introduced the local community detection problem in GeoSNs, where the users
forming a cluster are not only socially close but also exhibit similar mobility behavior in terms of their check-in
locations.

References
[1] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale complexity in networks. Nature,

466:761–764, 2010.

[2] I. R. Brilhante, M. Berlingerio, R. Trasarti, C. Renso, J. A. F. de Macêdo, and M. A. Casanova. Cometogether:
Discovering communities of places in mobility data. In MDM, 2012.

56

[3] L. Chen and R. Ng. On the marriage of lp-norms and edit distance. In VLDB, pages 792–803. VLDB Endowment,
2004.

[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial
databases with noise. In KDD, 1996.

[5] T. Ichiye and M. Karplus. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular
dynamics and normal mode simulations. Proteins, 11(3):205–217, 1991.

[6] E. Jaho, M. Karaliopoulos, and I. Stavrakakis. Iscode: A framework for interest similarity-based community detection
in social networks. In Computer Communications Workshops (INFOCOM WKSHPS), IEEE Conference on, pages
912–917, 2011.

[7] G. Jeh and J. Widom. Simrank: A measure of structural-context similarity. Technical Report 2001-41, Stanford
InfoLab, 2001.

[8] J. B. Kruskal. An overview of sequence comparison. In Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, pages 1–44. Addison-Wesley, Reading, MA, 1983.

[9] R. Liu, S. Feng, R. Shi, and W. Guo. Weighted graph clustering for community detection of large social networks.
Procedia Computer Science, 31(0):85 – 94, 2014.

[10] A. C. Sanderson and A. K. C. Wong. Pattern trajectory analysis of nonstationary multivariate data. IEEE Transactions
on Systems, Man, and Cybernetics, 10(7):384–392, 1980.

[11] P. Shakarian, P. Roos, D. Callahan, and C. Kirk. Mining for geographically disperse communities in social networks
by leveraging distance modularity. In KDD, pages 1402–1409, 2013.

[12] J. Shi, N. Mamoulis, D. Wu, and D. W. Cheung. Density-based place clustering in geo-social networks. In SIGMOD,
pages 99–110, 2014.

[13] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley, 2005.

[14] A. B. Watson, editor. Digital Images and Human Vision. MIT Press, Cambridge, MA, USA, 1993.

[15] D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen. On socio-spatial group query for location-based social networks.
In KDD, 2012.

[16] J. Yang, J. J. McAuley, and J. Leskovec. Community detection in networks with node attributes. In ICDM, pages
1151–1156, 2013.

57

