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Abstract

High throughput sequencing of 16S rRNA gene leads us into a deeper understanding on bacterial diversity for complex
environmental samples, but introduces blurring due to the relatively low taxonomic capability of short read. For wastewater
treatment plant, only those functional bacterial genera categorized as nutrient remediators, bulk/foaming species, and
potential pathogens are significant to biological wastewater treatment and environmental impacts. Precise taxonomic
assignment of these bacteria at least at genus level is important for microbial ecological research and routine wastewater
treatment monitoring. Therefore, the focus of this study was to evaluate the taxonomic precisions of different ribosomal
RNA (rRNA) gene hypervariable regions generated from a mix activated sludge sample. In addition, three commonly used
classification methods including RDP Classifier, BLAST-based best-hit annotation, and the lowest common ancestor
annotation by MEGAN were evaluated by comparing their consistency. Under an unsupervised way, analysis of consistency
among different classification methods suggests there are no hypervariable regions with good taxonomic coverage for all
genera. Taxonomic assignment based on certain regions of the 16S rRNA genes, e.g. the V1&V2 regions – provide fairly
consistent taxonomic assignment for a relatively wide range of genera. Hence, it is recommended to use these regions for
studying functional groups in activated sludge. Moreover, the inconsistency among methods also demonstrated that a
specific method might not be suitable for identification of some bacterial genera using certain 16S rRNA gene regions. As a
general rule, drawing conclusions based only on one sequencing region and one classification method should be avoided
due to the potential false negative results.
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Introduction

The activated sludge process is a key process in wastewater

treatment that removes organic pollutants and nutrients (N and P)

by the action of certain bacteria. Such bacteria include hetero-

trophic organic-utilizing bacteria, ammonia oxidizing bacteria

(AOB), nitrite oxidizing bacteria (NOB), denitrifiers, polypho-

sphate accumulating organisms (PAOs), and others [1]. Many of

these bacteria perform very specific functions (like AOB and

NOB), and their activity is positively correlated with treating

efficiencies [2,3,4]. These organisms are not only crucial in

wastewater treatment plants (WWTPs), but also playing key roles

in biogeochemistry [5]. This group of bacteria will hereafter be

referred to as functional remediators. However, some other

bacteria may cause operational problems to WWTPs. These

include foaming and bulking bacteria, which may hamper solid-

liquid separation [6,7,8]. This group of bacteria will hereafter be

referred to as the operational group. In addition, the occurrence

and abundance of bacterial pathogens in activated sludge is also a

concern, since it may be highly correlated with occurrence of

pathogens in effluent discharged into receiving water [9,10,11].

Generally, the performance and environmental impacts of

WWTPs are significantly affected by the above three functional

groups Identifying them at the sufficient taxonomic level (e.g.,

genus level) is significantly important for investigations on either

microbial ecology of both full-scale plants and lab-scale reactors or

linking microbial community with sewage treatment.

During the last two decades, molecular methods have enhanced

analysis of bacterial communities and their functions in activated

sludge. Various detection methods of bacterial identification that

use the 16S rRNA gene have been developed. These include

fluorescence in situ hybridization (FISH) [12], denaturing gradient

gel electrophoresis (DGGE) [13], terminal-restriction fragment

length polymorphism (T-RFLP) [14], clone library construction

[15], quantitative PCR (qPCR) [16], and microarray [17]. Such

methods have aided in revealing invaluable knowledge of the

microbial ecology of activated sludge. However, these methods

usually target certain bacterial groups or profile communities

without much detail or resolution. For complex bacterial

communities like activated sludge, traditional molecular methods

could not provide sufficient resolution to adequately characterize
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the bacterial community function. For example, the abundances of

AOB and NOB usually represent less than 1% of the total

bacterial population in activated sludge from full-scale WWTPs,

but they are extremely important for nitrogen removal [18].

Currently, high throughput sequencing techniques have proved

their superiority for profiling complex microbial communities

[19,20]. For engineering applications, the profiling of the

functional groups is more useful than enumerating the entire

bacterial community. Monitoring those functional bacterial groups

with high throughput sequencing may be served as routine analysis

of WWTPs components, at reduced cost and greater efficiency.

However, there are a number of limitations in analyzing 16S

rRNA by current high throughput sequencing methods such as

454 pyrosequencing and Illumina paired-end sequencing. There

are nine hypervariable regions separated by the conserved regions

across the full length 16S rRNA gene. The sequence length, i.e.

,450 bp for 454 pyrosequencing and ,200 bp for Illumina

paired-end sequencing could only cover two or three consecutive

hypervariable regions and several single regions of 16S rRNA

gene, respectively [21,22]. On one hand, a number of reports had

revealed that the selected primer sets targeting partial 16S rRNA

gene suffered from biases among taxa due to their coverage

[23,24]. On the other hand, the short read length undoubtedly

increases the uncertainty in taxonomic assignment [25]. Unfortu-

nately, most specific functional microorganisms are required to be

classified into genus level at least and the results at higher

taxonomic levels are much less meaningful for the correlation of

bacterial community and functions. Consequently it would be

valuable to study which regions may be more suitable for

identification of functional bacterial groups as precise as possible.

So far, a number of studies had evaluated the coverage the primers

for different hypervariable regions of 16S rRNA gene. Few of

them analyzed the taxonomic precision for various regions [26].

Moreover, in silico datasets usually derived from the full length

sequences are used for evaluation. These datasets may not exactly

reflect the experimental results. Also, for specific and significant

bacterial groups, such as the functional groups focused by the

present study, there is no systematic evaluation to fully check the

taxonomic precision of their partial 16S rRNA gene sequences.

In addition, the taxonomic annotation of sequences was realized

by specific classification tools. The three classification methods

commonly used in 16S rRNA gene-based prokaryotic taxonomic

analysis are Ribosomal Database Project (RDP) Classifier based on

the Bayesian algorithm, BLAST-based best-hit (BH) output that

only considers the similarity between query and reference, and

MEtaGenome ANalyzer (MEGAN) using BLAST-based lowest

common ancestor (LCA) algorithm, which cares both the

similarity between query and reference and the inconsistency of

results with close or the same similarity [27]. In some cases, these

three tools may give inconsistent results for some taxa, especially

using short reads [18,28], which will undoubtedly mislead some

judgments. Thus they should be assessed for the identification of

functional groups in activated sludge.

With an overall microbial community profiling, we recently

reported that pyrosequencing of V3V4 amplicon of 16S rRNA

gene obtained the highest bacterial diversity of a mixed AS sample

[29]. However, in this study, the same pyrosequencing data were

revisited to answer the following two questions: 1) what is the

optimal region for precise taxonomy of those functional genera in

AS samples? 2) How the biases are if using different classification

methods? Since the real bacterial community in the sample is

totally unknown, we chose to unsupervisedly compare the

classification consistency among different classification methods

to evaluate the taxonomic accuracy of different hypervariable

regions. It is well-understood that the consistently assigned results

are more likely correct. The results will be helpful not only for the

methodology of studying on microbial ecology in activated sludge

and other complex environmental samples by high throughput

sequencing, but also for routine monitoring of the functional

bacterial groups in activated sludge. More importantly, the results

will be informative to alert known biases when using pyrose-

quencing to profile the bacterial community in activated sludge or

other systems by different sequencing region or classification

methods.

Materials and Methods

List of functional groups
The assemblage of species in each functional group was selected

based on previous reports [1,10], as shown in Table 1. Bacteria in

the remediator group include typical and well-known genera of

AOB, NOB, denitrifiers, PAOs, glycogen accumulating organisms

(GAOs) and hydrolysers. As to the bulking and foaming bacteria

group, only the formally named genera were recruited. Members

of the pathogenic group, were classified as ‘potential pathogens’,

since in many cases the 16S rRNA gene can only be used for the

identification to the genus level, while the pathogens should be

identified to the species at least. In total, the list contains 73

genera, including three multifunctional genera, Rhodococcus,

Mycobacterium and Tetrasphaera that were assigned to more than

one group. Moreover, there are three candidate genera,

‘Accumulibacter’ ‘Competibacter’ and ‘Microthrix’, which could not be

recognized by the RDP Classifier or the LCA method due to

limitation of current databases. They can only be assigned by the

BH method.

Modified Greengenes database using validated
sequences of the functional groups

Nearly full length 16S rDNA sequences (.1,250 bp and

1,444 bp in average) of all the above 73 genera were manually

downloaded from Greengenes online database [30]. After that, the

identity assigned by RDP classifier (at 80% confidence threshold

cutoff) was compared with the original Greengene assignments of

all these sequences. If the RDP results were inconsistent with the

actual identity for one sequence, the set was removed from the

downloaded dataset (about 5.1% sequences were eliminated). The

remaining sequences were added to the pre-cleaned Greengenes

database (released at May 9, 2011, totally 385,791 reference

sequences with mean length of 1,405 bp), from which the 73

genera listed in Table 1 had been removed. This was done to

produce a more comprehensive and updated database to use in the

BLAST search in this study. After removing redundancies, the

modified Greengenes database contained 415,721 sequences, with

29,930 sequences belonging to the selected functional groups

(Table 1).

Activated sludge sample preparation, pyrosequencing
and data processing

FastDNAH SPIN Kit for Soil (MP Biomedicals, France) was

used to extract total DNA from the eleven activated sludge

samples [29], according to manufacturer’s instructions. We

confirm that: i) the sampling sites were not privately-owned or

protected in any way; and ii) the field studies did not involve

endangered or protected species. This kit has been found to be the

most efficient method for extracting DNA from activated sludge

[31]. Equal masses of DNA from different samples were mixed for

the following PCR amplification. The primers used in PCR and

their coverage for domain Bacteria determined by RDP ‘Probe

Variable Region Evaluation for Functional Bacteria
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Table 1. List of functional groups in activated sludge.

Functional group Subgroup Genusa
Reference sequence number in
databaseb

Nutrient remediators AOB Nitrosomonas 48/78(61.5%)

Nitrosospira 68/68(100%)

Nitrosococcus 19/19(100%)

NOB Nitrobacter 73/80(91.3%)

Nitrospira 21/21(100%)

Denitrifier Acidovorax 208/233(89.3%)

Arcobacter 92/92(100%)

Azoarcus 57/64(89.0%)

Comamonas 221/244(90.6%)

Curvibacter 12/14(85.7%)

Dechloromonas 31/34(91.2%)

Hyphomicrobium 61/65(93.8%)

Meganema 2/2(100%)

Methylobacillus 10/13(76.2%)

Methylophilus 26/29(89.7%)

Paracoccus 308/318(96.9%)

Rhodobacter 99/137(72.3%)

Rhodococcus 783/800(97.9%)

Thauera 61/61(100%)

Zoogloea 31/36(86.1%)

PAO ‘Accumulibacter’ 0/12(0%)

Tetrasphaera 21/21(100%)

GAO ‘Competibacter’ 0/1(0%)

Defluviicoccus 2/2(100%)

Hydrolyser Saprospira 4/11(36.4%)

Lewinella 19/19(100%)

Bulking and foaming group Bulking bacteria ‘Microthrix’ 18/18(0%)

Acinetobacter 1,677/1,690(99.2%)

Aquaspirillum 4/11(36.4%)

Beggiatoa 10/26(38.5%)

Caldilinea 2/2(100%)

Flexibacter 22/74(29.7%)

Gordonia 223/225(99.1%)

Haliscomenobacter 7/8(87.5%)

Leucothrix 4/5(80%)

Moraxella 84/123(68.3%)

Sphaerotilus 16/16(100%)

Thiothrix 70/72(97.2%)

Trichococcus 40/40(100%)

Foaming bacteria Isosphaera 2/12(16.7%)

Mycobacterium 1,063/1,068(99.5%)

Nocardia 768/777(98.8%)

Rhodococcus 783/800(97.9%)

Skermania 12/12(100%)

Tetrasphaera 21/21(100%)

Potential pathogen Aeromonas 768/770(99.7%)

Bordetella 186/192(96.9%)

Borrelia 322/322(100%)

Brucella 187/201(93.0%)

Variable Region Evaluation for Functional Bacteria
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Match’ were listed in Table S1 in file S1. The details for barcoded-

PCR and pyrosequencing can be found in reference [29]. We

sequenced the same amplicon from both directions. For instance,

two types of pyrotags, i.e. V12 (sequencing from V1 to V2) and

V21 (sequencing from V2 to V1) were obtained for V1&V2

regions and distinguished by the differently barcoded forward and

reverse primers. The two sub-datasets for the same amplicon

hypervariable regions were analyzed as duplications below.

After the raw reads were obtained, they were quality-checked to

remove all reads with any ambiguous bases. Then the barcodes

and primers were trimmed from the reads in RDP Pyrosequencing

Pipeline. The average sequencing length of reads (for those regions

over 400 bp) was approximately 400,430 bp, most reads could

fully cover the V1&V2 (,350 bp) and V5&V6 (,300 bp)

amplicons, but reads only partially covered the V3&V4

(440,470 bp) and V7&V8&V9 (,420 bp) amplicons. To avoid

bias caused by trimming with both primers, we trimmed the reads

of V3&V4 and V7&V8&V9 only with the single primer (at the

beginning of sequencing). Two mismatches for each primer were

allowed during trimming and only trimmed tags over certain

length (V5&V6, .200 bp; V1&V2, .250 bp; V3&V4 and

V7&V8&V9, .300 bp) were kept for further analysis. Then the

tags were further cleaned by Denoise [32] and Chimera Check

[33] using the software package of MOTHUR 1.22 [34]. After the

eight sets of cleaned pyrotags were obtained, they were randomly

normalized at the same depth of 32,000 each, except for V987 at

24,000. The raw. sff files for this study were uploaded to the

Sequence Read Archive of NCBI (SRR790735).

Evaluation of taxonomic precision of different
sequencing regions and classification methods

To evaluate taxonomic accuracies of the different variable

regions, we compared the consistency of results from three widely

used 16S-rDNA-based taxonomic assignment methods: 1) online

RDP Classifier [25], 2) BH output, and 3) MEGAN -LCA output

after BLAST against the modified Greengenes database. We

assumed that higher consistency among different methods

indicated higher precision of taxonomic assignment for that

variable region. Moreover, the more consistently classified tags

Table 1. Cont.

Functional group Subgroup Genusa
Reference sequence number in
databaseb

Campylobacter 450/452(99.6%)

Chlamydia 72/78(92.3%)

Chlamydophila 30/30(100%)

Clostridium 1,586/1,694(93.6%)

Corynebacterium 614/624(98.4%)

Escherichia 710/731(97.1%)

Enterococcus 843/856(98.5%)

Francisella 100/101(99.0%)

Haemophilus 882/964(91.5%)

Helicobacter 415/418(99.3%)

Klebsiella 517/806(64.1%)

Legionella 193/206(93.7%)

Leptospira 315/316(99.7%)

Listeria 190/190(100%)

Mycobacterium 1,063/1,068(99.5%)

Mycoplasma 356/533(66.8%)

Neisseria 1,229/1,235(99.5%)

Pseudomonas 5,819/6,057(96.1%)

Rickettsia 164/164(100%)

Salmonella 339/365(92.9%)

Serratia 629/652(96.5%)

Shigella 288/288(100%)

Staphylococcus 1,207/1,214(99.4%)

Streptococcus 2,289/2,311(99.0%)

Treponema 1,074/1,089(98.6%)

Vibrio 1,533/1,705(89.9%)

Yersinia 311/315(98.7%)

Total 29,930/31,522(94.9%)

a. Genus names with single quote marks were candidate genera that could not be classified by RDP classifier. They are kept in the final database.
b. The first number indicates the sequences that could be identically classified in RDP at genus level (except for the candidate genera) and thus are kept in the final
database. The second is the number of total downloaded sequences from Greengenes database. Percentage showed the portion of identically classified sequences.
doi:10.1371/journal.pone.0076185.t001
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suggest the higher efficiency derived from both taxonomic

capability and PCR recovery (i.e., primer coverage).

In most cases the confidence threshold for RDP classifier was set

at 80% if not mentioned. For the BLAST against the modified

Greengenes database, the expect-value (e-value) was set at 102100

and the top 50 hits were kept in the output file. The e-value was

approximately equal to 85% similarity for a 300 bp alignment

length. To filter the low similarity hits, the results were edited by

eliminating all hits with less than 95% (for LCA annotation) or

97% (for BH output) similarity. Because the IDs of the DNA

sequences from Greengenes in the BLAST output file are

Greengenes No., not names of taxa, a script was written in

Python to transform the Greengenes IDs into the lowest taxon

recorded in the modified Greengenes database. For the BH

method, a Python script was used to extract the first output line

(with the highest bit score) for each type of pyrotag, and the

abundance of all functional genera was counted by another script.

The LCA annotation by MEGAN (Version 4.70.4) was performed

using the default parameters except that ‘Min Support’ (the hit

number cutoff for output) was set at 1 instead of 5. The files

containing read names and their corresponding taxonomic names

were output at genus level for all the three methods. For each

genus and variable region, the number of pyrotags was concor-

dantly classified by all three methods, by two of the three methods,

or by only one of the methods were quantified using a Python

script.

Results

Database construction
Table 1 showed the functional groups (including remediators,

operational and pathogenic groups) of bacteria in activated sludge.

In total, 31,522 nearly full-length 16S rDNA sequences belonging

to the 73 genera were downloaded from Greengenes database,

therein 29,930 (94.9%) of them could be correctly identified by

RDP Classifier at confidence threshold of 80%. For most genera,

the eliminated sequences represented only a small portion of the

total (,10%). However, For Nitrosomonas, Beggiatoa, Klebsiella and

Mycoplasma, more than 20% were eliminated. For Saprospira,

Flexibacter, Aquaspirillum and Isosphaera, over half of the reference

sequences were eliminated.

Evaluation of hypervariable regions
The percentages of sequences that could be assigned into any

certain genus and all functional groups are shown in Fig. 1A and

B, respectively. About 28.2%,46.6% reads could be assigned into

a genus at 80% confidence threshold in RDP Classifier, while

approximately 25.5%,35.3% and 26.3%,41.7% reads were

assigned to a genus for BH and LCA methods, respectively

(Fig. 1A). For functional groups, as shown in Fig. 1B, bacteria

belonging to the functional groups accounted for 12.6%,25.8%

of total bacteria based on the RDP results. Also approximately

42.5%,55.7% of the sequence tags were assigned to genus level.

These results suggest that roughly half of the genera present did

not belong to the listed functional groups, and their roles in

activated sludge may need further exploration.

On average, analysis by all three methods indicated that genus-

level assignment was the most effective when using the V12 and

V21 sequences. This was true when including all species and when

only using bacteria belonging to the functional groups. The V34

and V789 regions had the least reads assigned by BH and LCA

methods, respectively. Interestingly, discrepancies between RDP

and BLAST-based methods for functional groups were not as large

as those for the total assemblage. This suggested that the three

methods were more consistent when focusing on the functional

groups than when including all species. It may be due to the fact

that bacteria in the functional groups are usually well-character-

ized compared with most other bacterial genera, which makes

them more likely to be classified correctly.

The percentages of members of the functional groups are

displayed using a heat map in Fig. 2 according to 16S rRNA gene

region and classification method used. Five genera, such as

Nitrococcus, ‘Competibacter’, Campylobacter, Chlamydophila and Helico-

bacter were not detected for all regions and classification methods

used (detection limit at 0.003%). Two candidate genera, ‘Micro-

thrix’ and ‘Accumulibacter’ were only detected by the BH method

because they were not included in the RDP taxonomic system and

MEGAN-LCA annotation. There were 45 to 58 genera that

belonged to the functional groups, depending on the 16S rRNA

gene region and classification method used. Four genera with

.1% average abundance were Zoogloea (3.53%), Dechloromonas

(2.47%), Nitrospira (1.53%) and Trichococcus (1.52%). Because the

mixed activated sludge samples were collected from eleven

municipal WWTPs located in several countries, these highly

abundant genera represented the common key groups in

municipal activated sludge. For example, Zoogloea, one of the

most common genera, is not only a denitrifier, but also a specific

floc-forming bacterium, and may be important in the organization

of activated sludge [35].

The results from cluster analysis of the classification results using

different regions, sequencing direction, and annotation methods, is

also shown in Fig. 2. These results indicate that sequences were

clustered first according to regions. However, except for the RDP

results, V56 and V65 clustered with the V34 region. Moreover,

Figure 1. Percentages of pyrotags that could be assigned at
genus level (A) and concerned functional genera (B) by three
annotation methods of RDP Classifier, Best-hit and LCA.
doi:10.1371/journal.pone.0076185.g001
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there was usually less than 80%,90% similarity among results

determined by different classification methods of the same

sequencing regions, indicating the classification methods could

cause noticeable biases as well as the sequencing regions.

The classification consistencies using different multi-variable

regions were evaluated by comparing results from the three

classification methods and were summarized in Fig. 3. Results

were classified according to 3 categories: 1) Those consistently

assigned to the same genus by all three methods 2) those assigned

to the same genus by two different methods and 3) those assigned

to a genus by only one classification method. Obviously, sequence

tags that were consistently classified tags by all three methods or by

two methods are more likely correct than those exclusively

assigned. Using this criterion, the V1&V2 (average of V12 and

V21) and V3&V4 region is good for classifying all the functional

group. And V1&V2 is slightly better than V3&V4 due to its high

percentage of consistently assigned tags for remediators. On the

other hand, the V7&V8&V9 region is not recommended for any

of the functional groups, due to a large proportion of inconsis-

tently-assigned tags.

Other than the overall presentation of Fig. 3, Fig. 4 summarized

the most and the least efficient regions for moderately abundant

genera (over 0.1% abundance as determined by at least one

method), supporting by the abundance of consistently assigned

tags (see the left box chart). It is obvious that no region could have

a good coverage for all 25 genera since every region have the

several lowest-classified genera. For different genera, abundances

of consistently assigned tags fluctuated from 1.5 to 30.4 folds

among different regions, if not considering the undetected genera

in certain regions (Nitrosonomas, Caldilinea, Curvibacter and Azoarcus).

It was suggested that quantification of those functional genera

might be seriously biased with a bad choice of hypervariable

regions. The variation of quantification results should be derived

from either primer coverage (PCR efficiency) or taxonomic

precision of different segments. The abundance of consistently

assigned tags was affected by both primer coverage and taxonomic

precision of the selected region. However, the consistencies among

methods only potentially reflect the taxonomic precision of specific

hypervariable regions. In general, agreed with Fig. 3, V1&V2

showed relatively high efficiency, regarding to both the abundance

of consistently assigned tags (left box chart) and the consistency

among methods (right box chart). Many genera (10 genera),

especially for most of the high-ranked genera (six of top ten

genera), got the best consistent assignment while only 4 (Caldilinea,

Curvibacter, Paracoccus and Haliscomenobacter) got the poorest consis-

tencies for V1&V2. On the contrary, it could be drawn that

V7&V8&V9 is not recommended for profiling functional bacteria

in activated sludge due to too many genera get the fewest

consistently assigned tags (13 genera) in this region and the poorest

assignment consistency (16 genera) for the 25 genera.

Further, we estimated how uncertain the inconsistent assigned

results were, i.e. whether the sequences could be correctly assigned

at higher taxonomic levels (e.g. family and order). The most

inconsistently assigned genus (see Fig. 4), Acidovorax were only

analyzed here. As illustrated in Fig. S1 in file S1, the tags that

could only be solely assigned by LCA or BH were checked by

RDP Classifier at the confidence threshold of 80%. In most cases,

the assignments were correct at order levels except for the V3&V4

sequences that were solely assigned as Acidovorax by LCA. The

V789 amplicons were often mis-annotated at family level. The

V1&V2 and V5&V6 regions exhibited well accuracy at family

level, suggesting the relatively higher taxonomic accuracy for this

family on the other side.

Evaluation of different classification methods
Firstly, since the tags solely assigned by RDP Classifier with

80% confidence threshold usually account for large portions of

total assigned tags for all regions (Fig. 3), it is worth to figure out

whether this method is precise enough under various confidence

thresholds. We tested 50%, 80%, 95% and 100% thresholds and

found that the consistency between RDP and other two methods

was increased with the strictness (Fig. 5). Generally, about

30%,50% classified tags were filtered out if increasing the

confidence threshold from 50% to 100%. Among all the tags

assigned as concerned groups, 23.9%,45.2% of them were solely

assigned by RDP at 50% confidence, while the ratios decreased to

5.3%,18.1% at 100% confidence. The consistencies at 100%

confidence threshold are relatively high in V3&V4 and V1&V2.

The region of V7&V8&V9 showed the worst performance because

there was about 20% reads assigned to the functional groups could

not be recognized by BH and LCA.

Even more importantly, this result also suggested that the

current version RDP Classifier may have some biases because

many tags that were identified very surely (at 100% confidence)

could not be agreed by BLASTn-based methods, which exhibit the

real phylogenetic distances between sequences. Although the

overall error rate for RDP Classifier is not high, it may introduce

significant biases for some important groups, such as Nitrosomonas

[18]. Under this consideration, a further investigation on the

detected moderately abundant genera (.0.1% abundance at least

in one of four multi-variable regions) was conducted. Here, two

indexes, one for potential underestimation and the other for

potential overestimation, were proposed. The former is the

percentage of tags that were exclusively classified by BH and/or

LCA to total classified tags and the latter is percentage of tags that

were exclusively classified by RDP Classifier to total tags. Larger

indexes (typically over 50%) suggested the higher potential biases.

As listed in Table 2, there were some genera that could be

underestimated or overestimated for all multi-variable regions.

Caldilinea were always potentially over-counted, while Nitrosomonas,

Rhodobacter, Curvibacter and Leptospira tended to be seriously

underestimated no matter which multi-variable region was

selected. It agreed with our previous report about mistakenly

assigned the AOB genus Nitrosomonas by RDP [18]. Table 1 also

showed Nitrosomonas and Rhodobacter got many inconsistent

taxonomic assignments between Greengenes database and RDP

Classifier even using full length of 16S rRNA gene. Further, we

found that at stricter confidence thresholds the potential overes-

timation decreases dramatically, but the situation of underestima-

tion becomes reasonably more serious, and vice versa for looser

confidence threshold.

Further, we also compared the divergence between BH and

LCA for different multi-variable regions. The results were

presented in Table S2 in file S1. The two BLAST-based methods

also exhibited divergences. The pyrotags that could be assigned by

BH but not by LCA should be resulted from the share of similar

partial sequence of references among different taxa. Interestingly,

in most cases this type of inconsistency existed in certain regions.

For instance, V1&V2 exhibited high capability in classification of

Tetrasphaera, while other regions were mostly LCA-negative. On

the other hand, there are many tags only could be assigned by

LCA. It indicated many tags are over 95% but less than 97%

similarity to the references. Their phylogenetic position is still hard

to be evaluated. They may be the uncharacterized species or

genera closely related to the references.
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Figure 2. Percentages of pyrotags identified as concerned genera for various multi-variable-regions by three methods. The cluster
among columns was based on the mean Bray-Curtis distances calculated by the percentages of each genus to total pyrotags. The outer, meddle and
inner rings are corresponding to remediators, operational group and potential pathogens.
doi:10.1371/journal.pone.0076185.g002

Figure 3. Agreement of pyrotags assigned as functional bacteria among RDP classifier, BH and LCA methods. The inner, middle and
outer rings are corresponded to the remediators, operational groups and potential pathogens, respectively. The percentages in the pies are the ratios
of pyrotags assigned by all the three methods to total tags. Higher shared tag portions and percentage of assigned pyrotags suggested higher
efficiencies of the variable regions.
doi:10.1371/journal.pone.0076185.g003
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Figure 4. Comparison of consistently assigned tags by 3 methods among different sequencing regions for the moderately
abundant genera. In the left box chart, abundance is the percentage of consistently assigned tags for 4 regions (V1&V2, V3&V4, V5&V6 and
V7&V8&V9, abundance of V1&V2 is the mean value of V12 and V21). Only 25 genera which were over 0.1% abundance as determined by at least one
method were listed. Azoarcus had no consistently assigned tag although its abundance is high as determined by LCA annotation. Red dots showed
the logarithmetics of the ratios of maximum identified tags to minimum ones among different regions. No dots for Nitrosonomas, Caldilinea,
Curvibacter and Azoarcus because they get at least one 0-hit region. Percentages of 3-method consistently assigned tags to total assigned tags for
each region were compared in the right box chart. Shown are the minimum, 25% quantile, median, 75% quantile and maximum. Stars indicated the
average value. For each genus, colored lines link to the most abundant/consistently assigned region (green) and the least abundant/consistently
assigned region (red). More links of green lines indicated the priority of the regions, such as V1&V2, while more red ones suggested the poor
performance of the region (like V7&V8&V9) for these abundant genera.
doi:10.1371/journal.pone.0076185.g004

Figure 5. The consistencies between the RDP-classifier and other two methods under different confidence thresholds for different
multi-variable regions. Raw results from RDP classifier were filtered with different confidence thresholds by a Python script, and then compared
with the other two methods through another script. The percentages of consistently classified tags were increased with more strict thresholds, while
the solely classified tags showed the opposite trend.
doi:10.1371/journal.pone.0076185.g005
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Discussion

For factors affecting on bacterial consortia profiling by high

throughput sequencing, current methodological investigations

mainly focused on DNA extraction [31] and primer coverage

[29,36]. The shortages from short read length are not often

mentioned partially because the technique unprecedentedly

refined the resolution of community profile and quantitative

capability. However, in order to achieve the best taxonomic

resolution for certain groups, the selection of sequencing regions

and classification methods should be evaluated. Therefore, the real

purpose for our study is to avoid the wrong or insufficient

taxonomic assignments for those sequences that were truly

generated from certain genera as possible and to get pre-

evaluation of the potential biases for the concerned genera.

Noticeably, these biases had been luckily amended in some studies

and may be undermined in the others [18,28].

Many studies had examined the classification capability of

different variable region [23,26,37]. However, most of them

analyzed the consistency between the artificially cut partial

segments and their mother full-length sequences, which are not

really generated by PCR. More importantly, all the previously

reports targeted the overall classification without considering the

weight of those significant functional groups. Recently, a report

surveying 16S rRNA gene sequences from many environments

showed that there was no perfect primer sets to cover all the

examined sources [38]. The authors proposed that validation of

primer sets (or regions) must be pre-evaluated for specific samples.

However, besides matching of primers, obviously the different

regions of 16S rRNA gene sequences and annotation methods

have different validities for specific genera. Although our study

only focused on the highly concerned functional genera in

wastewater treatment systems, the results suggested that even for

a specific sample, it is still hard, even impossible to get unbiased

taxonomic information due to primer coverage, PCR amplifica-

tion, taxonomic precision of the various sequencing regions and

different annotation methods. To get pre-evaluated information

for the highly concerned bacterial taxa rather than sample types is

an alternative way to avoid significant biases.

For the selection of pyrosequencing region to analyze major

functional bacterial community in activated sludge, based on both

the abundance of consistently classified tags and the consistencies

among methods, V1&V2 is the preferred region and V7&V8&V9 is

the worst choice of 16S rRNA gene pyrosequencing. V1&V2 is very

suitable in length for current pyrosequencing (around 350 bp

amplicon). This primer set had been widely adopted in many

previous studies among various sample types [39,40]. Nevertheless,

we also found that several functional genera would be underesti-

mated or got the poorest taxonomic consistency in this region, such

as Caldilinea, Curvibacter, Hyphomicrobium and Streptococcus.

The result is thought to be somewhat contradictive with our

previous report that V3&V4 region is the most powerful for

bacterial diversity profiling of activated sludge [29]. Thus, it was

raised a concerning on whether there was a perfect selection of

variable regions for pyrosequencing of 16S rRNA gene for

different intentions, such as investigations on overall community or

specific groups. Our results suggested that the selection would be

never perfect even within very limited groups (genera). It also

reminded us that the classification results may be ‘fake’ or

‘blurred’. To get pre-evaluation for the most important bacteria

will be helpful for judgments.

Another interesting result is that the V1&V2 region has the

most classified pyrotags at genus-level for overall community and

functional groups. We found that the used primer set for this

region is the only one without any degenerated base. Using

degenerated base for primer will expand their coverage undoubt-

edly. However, whether it affects the quantification need further

tests.

The precision and accuracy of classification methods are highly

dependent on their databases. It should be noted that the RDP

Classifier and LCA algorithm will be very precise if their databases

are perfect since they are tree-based and supervised, respectively.

However, the Best-Hit method is only dependent on the similarity

unsupervisedly, which could hardly be consistently correct by

using a single cutoff for all bacteria. RDP classifier is very powerful

in dealing with large datasets due to its simple algorithm and the

high precision for long sequences under high confidence threshold.

Regarding to the speed, online RDP Classifier could get the

classification of the 32,000 pyrotags within a few minutes, while

several days is needed for BLAST-based methods (against

Greengenes database, with a single CPU of 2.8 G Hz). However,

the RDP might make wrong assignments for short reads [25]. In

this study, we found that RDP Classifier overestimated and/or

underestimated several genera in some regions or even all regions.

It should be highly careful to avoid drawing conclusions from the

negative results based on the absence of specific genera, which are

investigated by amplifying the inefficient region or using biased

annotation method. The false negative results were much more

misleading since significantly false positivity is hardly possible for

the complex community like activated sludge. Thus, the problem

of underestimation or even missing of certain genera using RDP

Classifier, which could only be realized and solved by applying

other methods, is more serious than overestimation. Moreover, it

was found that some genera were innately less distinguishable by

RDP Classifier no matter what regions were selected, such as

Nitrosomonas and Leptospira (see Table 2).

On the other hand, BLAST-based methods also generated

potential errors [28,41]. For taxonomic assignment of the short 16S

rDNA segments, these bugs are mainly derived from highly similar

reference sequences (at specific variable regions) that belong to

different taxa, even at genus or higher levels. The LCA algorithm

that based on the agreement of qualified ‘voters’ was invented to

solve this confuse [27]. Moreover, the reliability of BLAST-based

taxonomy elementarily relies on the accuracy and integrity of

database and suitable parameter setup. For example, the top 10%

score-cutoff (default setting) for the LCA methods in MEGAN may

require to be evaluated for the annotation on short tags.

In summary, high throughput sequencing of the segments of 16S

rRNA genes is like taking high-resolution images for microbial

community. However, current short read length that only cover a

couple of hypervariable regions may make some ‘pixels’ defective

due to PCR bias and low taxonomic precision. For studies on some

specific groups, it may introduce large and unexplainable biases

although these ‘‘pixels’’ may be insignificant in the studies about

overall microbial communities. Thus pre-evaluation is needed to

select the suitable regions and annotation methods for the

concerned specific groups. This study focusing on the highly

concerned bacterial genera in the activated sludge demonstrated an

example for the pre-evaluation on different regions and classifica-

tion methods. The results showed that there was no perfect region

for all concerning abundant functional genera, except for some

regions with less bias, i.e. V1&V2, which could be the preferred

region of functional groups in activated sludge. On the other hand,

the results also demonstrated the divergences among different

classification methods, which may cause misleading results. To

avoid drawing wrong conclusion from negative results based on only

one region or method, cross-checking using multiple regions and
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annotation methods should be proposed for taxonomic assignment

of pyrosequences of short 16S rRNA gene amplicons.
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File S1 File containing Figure S1, Tables S1 and S2.
Figure S1. Accuracies at family and order levels for the tags that

solely assigned as Acidovorax by LCA (A) or BH (B) of different

regions. The tags were extracted and then checked with RDP

Classifier at confidence thresholds of 80%. The RDP results of

Comamonadaceae at family level and Burkholderiales at order level were

cataloged as accurate assignments. The V12 amplicons had no tag
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