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ABSTRACT 10 
 11 

Conventional discrete transportation network design problem deals with the optimal decision on 12 
new link addition, assuming the capacity of each candidate link addition is predetermined and 13 
fixed. In this paper, we address a novel yet general discrete network design problem formulation 14 

that aims to determine the optimal new link addition and their optimal capacities simultaneously, 15 
which answers the questions on whether a new link should be added or not, and if added, what 16 

should be the optimal link capacity. A global optimization method employing linearization, outer 17 

approximation and range reduction techniques is developed to solve the formulated model. 18 

Key words: Network design problem, User equilibrium, Mixed-integer linear programming, Global 19 
optimization, Range reduction 20 

 21 

1. Introduction 22 

The discrete network design problem (DNDP) involves the optimal decision on addition of new 23 
links or roadway segments to an existing transportation network, subject to a limited investment 24 

budget. Traditionally, given a group of candidate links with fixed capacities, the DNDP is 25 

formulated as 0-1 decision problem aiming to determine the optimal road construction plan. The 26 

objective of DNDP is to optimize transportation network performance while considering the 27 
drivers' routing behavior, for example, following deterministic user equilibrium (DUE) (Sheffi, 28 
1985). The DNDP is typically formulated as a bi-level program with the upper-level minimizing 29 

the total travel time cost and the lower-level describing the equilibrium flow pattern.  30 

The DNDP has been widely investigated in previous research works, and it is widely recognized 31 
as one of the most difficult frontiers in transportation study due to its computational difficulties 32 

in solving the mixed-integer nonlinear nonconvex, bi-level program formulation. Yang and Bell 33 
(1998) reviewed a number of models and solution algorithms for network design problem (NDP) 34 
based on bi-level programming. Magnanti and Wong (1984) presented a unifying framework for 35 

deriving a bunch of algorithms for DNDP and reviewed some computational experience in 36 
solving NDP. LeBlanc (1975) proposed a branch-and-bound (B&B) algorithm for solving the 37 
upper-level problem of DNDP. Poorzahedy and Turnguist (1982) adopted a well-behaved 38 



2 
 

function to substitute the original total user cost objective function and formulated a single-level 1 
model. A B&B based heuristic algorithm was also given in their research. By applying the 2 
concept of support function to express the relationship between improvement flows and new 3 
addition links, Gao et al. (2005) transformed the bi-level programming of DNDP into a general 4 

nonlinear problem and thus traditional constrained optimization algorithms can be used. Solanki 5 
et al. (1998) decomposed the DNDP into a sequence of sub-problems and presented a quasi-6 
optimization heuristic algorithm. Furthermore, heuristic/meta-heuristic approaches were studied 7 
to solve DNDP, including ant system/cooperating agents algorithm (Poorzahedy and 8 
Abulghasemi, 2005), genetic algorithms (Drezner and Wesolowsky, 2003; Kim and Kim, 2006) 9 

and so on. Some methods of hybrid meta-heuristic were also designed and compared among each 10 
other (Poorzahedy and Rouhani, 2007). More recently, global optimal algorithms for NDP have 11 

generated interest amongst researchers. Wang and Lo (2010) employed single-level mixed-12 
integer linear programming (MILP) to approximating continuous network design problem 13 
(CNDP), which dealt with continuous expansion of existing links. The nonlinearity of travel time 14 
function was removed by applying a convex-combination based piecewise linear approximation. 15 

Luathep et al. (2011) further extended this method to solve mixed network design problem 16 
(MNDP), which is a combination of CNDP and DNDP. The DUE condition was depicted by a 17 

variational inequality (VI) problem and a cutting constraint based algorithm was proposed to 18 
seek the optimal solution. Farvaresh and Sepehri (2011) developed a single-level mixed-integer 19 
linear programming by transforming the lower-level DUE constraints into the equivalent Karush-20 

Kuhn-Tucker (KKT) condition. Li et al. (2012) presented a global optimal approach for CNDP 21 

based on the concept of gap function and penalty. Wang et al. (2013) developed a NDP model 22 
with discrete multiple capacity levels to address the problem of adding an optimal number of 23 
lanes to existing candidate links. Furthermore, Fontaine and Minner (2014) proposed a solution 24 

method based on bender decomposition to solve linearized discrete network design problem. A 25 
global optimal method is designed by making use of the relationship between user equilibrium 26 

traffic assignment and system optimal principle. Szeto et al. (2014) address a sustainable road 27 
network design problem with land use transportation interaction over time. Liu and Wang (2015) 28 
proposed a global optimization solution approach for CNDP with stochastic user equilibrium 29 

travel flow pattern.  30 

In previous studies, the discrete network design problems (DNDP) assume pre-determined road 31 

capacity for candidate link addition, while only addressing the issue that whether or not a new 32 
link will be constructed. However, it is more interesting to answer the question that whether or 33 

not a new link should be added, and simultaneously, if added, what is the optimal link capacity. 34 
In this paper, we exploit a DNDP problem with consideration of link capacity optimization, 35 
which aims to optimize the network performance via determining which links should be added 36 

from a set of candidate links and what capacities the new links to be constructed should have. 37 
The decision variables for a candidate link simultaneously include both discrete (binary) 38 
variables, which indicates whether the candidate link will be added or not, and continuous 39 
variables, i.e. the link capacity variables (the scenario with only discrete capacity levels is also 40 
considered in this paper). The DUE condition is used to describe the equilibrium traffic flow. 41 

Taking the advantage of variational inequality formulation in representing the DUE condition, 42 

this study firstly formulates a mathematical program with equilibrium constraints. Then, a global 43 

optimization method is proposed to solve the problem. As the transport network design problem 44 
is naturally formulated as an inherently nonlinear and non-convex problem, the advantage and 45 
benefit of finding the globally optimal solution is obvious, to ensure that the network design plan 46 
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is exactly the “best plan” to achieve the targeted goal. Indeed, no previous studies have ever 1 
developed global optimization solution method for solving the transport network design problem 2 
presented in this paper, and this study could contribute in filling in this research gap in the 3 
literature. Noting that the nonlinearity of the problem stems from the bilinear terms and 4 

nonlinear travel time functions in the programming, this study applies two different techniques to 5 
deal with them. For the bilinear functions, we apply a Reformulation-linearization technique 6 
(Sherali and Adams, 1994, 1998) to transform them into a set of equivalent linear constraints; 7 
meanwhile, for the multi-variable travel time functions, we firstly take logarithm of them and 8 
then derive its mixed-integer linear relaxation through an outer-approximation technique. By 9 

doing so, a mixed-integer linear program (MILP) relaxation model is obtained, whose solution 10 
provides a tight lower bound of the original model solution. Then, a range reduction technique is 11 

applied to update and improve the lower bound until the gap between the lower bound and upper 12 
bound fulfills certain stopping criteria. The solution algorithm is proved to converge to the global 13 

optimal solution of the original problem. 14 

This study considers a novel, yet more general NDP problem, which is sought to provide 15 
transportation network planners more indicative information not only on new candidate link 16 
additions, but also on optimal capacity of the new links, which are otherwise assumed to be 17 

given in previous DNDP studies. The developed model is more general formulation, which may 18 
include other conventional network design problems as particular cases. For example, when the 19 

capacity for each new link addition is given, this model will reduce to traditional DNDP in the 20 
literature; when the discrete variables on new link addition plan is predetermined, this problem is 21 

indeed a classical continuous network design problem (CNDP). Assuming road capacities to be 22 
continuous, the solutions of CNDP provide a “first-best” road capacity expansion plan. In 23 

practice, the CNDP modeling and solution algorithm is more useful when signalization or ramp 24 
metering is considered (Yang and Bell, 1998). Besides, in this study, it is also demonstrated that 25 
the model formulation can be used to solve the case of DNDP assuming discrete link capacity 26 

(discrete number of lanes) for new link additions. For the model formulation, which is still 27 
intrinsically nonlinear and noncovex, a global optimization algorithm is developed to solve the 28 

model to its exact global optimal solution. Specifically, the original model formulation is firstly 29 
relaxed into a mixed integer linear programing problem, whose solution provides the lower 30 
bound of the original problem. Then, the lower bound is updated and improved until the global 31 

optimization solution is obtained. In constructing the linear programming relaxation, 32 
reformulation and linearization technique and mixed-integer outer-approximation approach are 33 

adopted.  In summary, this paper contributes to the literature in the following aspects: firstly, it 34 
provides a novel yet general network design problem formulation to address both the discrete 35 
link addition design and continuous road capacity design, which is not studied in previous 36 

researches (to our best knowledge). Secondly, a global optimization solution algorithm 37 
employing various linearization techniques is developed. Different from the global optimization 38 
algorithm used in previous studies (Wang and Lo, 2010 and Luathep et al. 2011), the solution 39 
method developed in this study is proved to be able to solve the real global optimum of the 40 
original problem, rather than that for only the linearized approximation of the original problem. 41 

In addition, the proposed model and solution algorithm could be tailored and adapted to address 42 

DNDP with special considerations. For example, the model is shown to be able to solve the 43 

network design problem with traffic assignment considering explicit capacity constraints, as well 44 

as the DNDP with assumption of discrete capacity levels in design process. 45 
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The remainder of this paper is organized as follows. Section 2 presents the original model 1 
formulation and the relaxed mixed-integer linear model reformulation. Section 3 proposes the 2 
global optimal algorithm. Section 4 discusses several practical considerations. Section 5 reports 3 

numerical examples. The final section summarizes the paper.  4 

2. Model Formulation 5 

The following notation is used for the formulation.  6 

Sets and parameters 

1A  Set of existing links in the network 

2A  Set of candidate links in the network 

A  Set of all links in the network, 1 2A A A  

W  Set of origin-destination (OD) pairs 
wd   Fixed demand between a specified OD pair w W , [ ]w wdd is the vector form 

demand between the specified OD pair w  with a length of  (number of node), 

wherein the element equals to 
wd  at the origin node, 

wd  at the destination node and 0 

otherwise.  

  Node-link incidence matrix with a size of N A , [ ]n

a  , where 1n

a   if node n  

lies at the entrance of link a A , 1n

a    if node n  lies at the exit of link a , and 

0n

a   otherwise.  

ay  Lower bound of link capacity for candidate link 2a A  

ay  Upper bound of link capacity for candidate link 2a A  

B  Total available budget 

M  

aY  

A large enough positive number 

Link capacity for existing link 1a A  

 

Decision variables 

ax  Continuous link flow variable, [ ]axx , a A  

ay  Continuous link capacity variable for candidate link, [ ]ayy , 2a A  

au  Binary decision variable, [ ]auu , 2a A . It indicates whether a candidate link is 

added or not for 2a A : link a  is added to the network if 1au   and otherwise if 

0au  . For existing link 1a A , au  (as is defined to represent a  in subsection 

2.2.1) indicates whether traffic flows on this link is zero or not: no traffic if 0au   

and 1au   otherwise.  

w

av  Continuous disaggregate link flow between OD pair w W , [ ]w w

avv , a A  

at  Link travel time function, a A  

ag  Investment function for candidate link 2a A  

 7 

N
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The proposed DNDP model aims to provide the transportation network planner simultaneously 1 
optimal decisions on both new link additions (binary variables) and new link capacities 2 
(continuous variables). It is assumed that the route choice behavior of network users follows the 3 
Wardrop's first principle (Wardrop, 1952). In order to minimize the total network travel time 4 

costs subject to a given budget, this problem can be represented as following:  5 

[OP: Original Problem] 6 

   
1 2

, ,
min , ,a a a a a a a a
x y u

a A a A

Z x t x x t x y u
 

  OP             (1) 7 

Subject to: 8 

2,     a a ay y y a A            (2) 9 

 
2 2

,a a a a a a

a A a A

g y u u y u B 
 

         (3) 10 

2,     a ax u M a A     (4) 11 

  20,1 ,     au a A            (5) 12 

 * ,x x y u        (6) 13 

 
4

11 ,  a
a a a a

a

x
t x T R a A

Y

  
     
   

 (7) 14 

 
4

2, , 1 (1 ) ,  a
a a a a a a a

a

x
t x y u T R u M a A

y

  
       
   

  (8) 15 

The objective function of this formulation in Eq. (1) is the total travel time cost from both 16 

existing links and candidate links. Constraint (2) expresses the restriction of candidate road 17 
capacity. Budgetary constraint (3) entails that the total construction cost is less than the 18 
maximum allowable expenditure for network improvement. In constraint (3), the second term 19 

au  indicates the fixed cost of new road, that is, the fixed cost   is needed once the link is 20 

planned to be constructed ( 1au  ); a bilinear term i.e., a au y  is used to describe the 21 

construction cost: if a candidate link is to be added, i.e., , the construction cost is assumed 22 

to be a linear function with respect to the link capacity; otherwise, if it is not to be added, i.e., 23 

0au  , the construction cost will be zero. Constraints (4) and (5)ensure that there is no flow on a 24 

link if the link is not constructed, i.e., if 0au  , then 0ax  . Constraint (6) enforces the flow 25 

pattern with Deterministic User Equilibrium (DUE), where  * ,x y u  is the vector of DUE flows 26 

for given vector of link capacities y  and vector of binary decision variables u . Constraints (7) 27 

and (8) use the typical BPR function to define the link travel time. In (7), the travel times for 28 

1au 
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existing links only depend on the travel flows ax  as the link capacities aY  are given. In constraint 1 

(8), for candidate link additions, when a candidate link is planned to be constructed, i.e. 1au  , 2 

the additional term (1 )au M  equals to zero and thus link travel time is described by traditional 3 

BPR travel time function; meanwhile, when a link is not to be constructed, i.e., 0au  , the link 4 

travel time will be subject to a big enough constant M. The positive and big enough value of 5 

travel time for unconstructed link (when 0au  ) as imposed in constraint (8) is to ascertain that 6 

no traveler will use this link if it is not even constructed when deterministic user equilibrium 7 
principle is applied to capture travelers’ routing choice behavior; however, it will not affect the 8 

objective function, as constraints (3) and (4) ensure zero traffic flow on unconstructed link and 9 

therefore the term  , ,a a a a ax t x y u  is still equal to zero.   10 

It should be noted that, in this model formulation, each candidate link is associated with two 11 

decision variables, au  and ay , which combine to describe the link addition plan, whether the link 12 

will be constructed or not, and what should be the new link capacity if constructed. If the link 13 

capacity ay  is predetermined, this model will reduce to a conventional DNDP; on the other hand, 14 

if the link additions au  are given, this model is indeed a classical CNDP. The obvious 15 

nonlinearity property of the model formulation comes from two parts: the bilinear term a au y  in 16 

constraint (3) and BPR travel time function in constraints (7) and (8). In designing global 17 

optimization solution method for this model, different techniques are applied to deal with the two 18 

types of nonlinear terms. 19 

2.1. Variational inequality function of traffic assignment problem 20 

As is mentioned in the last section, in this paper, the traffic flow is assumed to be in a pattern of 21 

deterministic user equilibrium, i.e., Eq (6), which follows the Wardrop's first principle. Here, the 22 
DUE condition is represented by a Variational Inequality (VI) problem (Dafermos, 1980; Smith, 23 

1979). The advantages of VI formulation have been widely recognized: this formulation is only 24 
related to link flows, thus avoiding the complicated path enumeration process; more importantly, 25 
it can be conveniently used to represent network equilibrium with asymmetric and non-separable 26 

travel cost function, i.e., considering interaction between traffic on different roads (Dafermos, 27 

1980). For a given fixed network investment plan  ,y u , the VI problem is to find the optimal 28 

solution 
*x  which satisfies the following constraints 29 

   
1 2

* * * *( ) , , ( ) 0,     ,a a a a a a a a a a a

a A a A

t x x x t x y u x x x
 

                (9) 30 

| ,  ,  0,  ,  ,w w w w

a a a

w W

x v v a A w W


 
          

 
x v d   (10) 31 

where   is a feasible set of traffic flow on the network.  32 
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Since all the constraints in   are linear,   is actually a bounded polytope. Let C  be the 1 
indexes set of corner-points of the polytope and thus it is induced that any point x  can be 2 

represented by a convex combination of some corner-points that belong to C , that is,  3 

,c

c

c C




x x        (11) 4 

1,   0 1,   ,c c

c C

c C 


                (12) 5 

where c  is the weighted factor of the thc  corner-point 
cx  of the polytope  . According to this 6 

characteristic of the feasible region, the following proposition can be easily derived.  7 

Proposition 1 For a given network investment plan  ,y u , 
*x  is the optimal solution of the 8 

VI problem (9)-(10) if and only if 
*x  satisfies the following problem 9 

   
1 2

* * * *( ) , , ( ) 0,     c c

a a a a a a a a a a

a A a A

t x x x t x y u x x c C
 

               (13) 10 

Proof. Refer to Luathep et al. (2011). 11 

In conclusion, Eq. (14) can be formulated to stand for the VI problem of the DUE condition. 12 

   
1 2

* * * *( ) [ , (1 ) ] ( ) 0,     c c

a a a a a a a a a a

a A a A

t x x x t x y u M x x c C
 

                 (14) 13 

where 
*

ax  . □ 14 

2.2. Reformulation of multivariate polynomial function  15 

In this section, we deal with two types of nonlinear terms, i.e., the multivariate link travel time 16 
functions and the bilinear functions. The link travel time functions will be reformulated into 17 

logrithmic functions, which are univariate and globally concave. Thus, less effort is needed in 18 

the process of linearization and relaxation as compared to the multivariate travel time functions 19 
as shown in (8). For bilinear functions, the Reformulation-Linearization Technique (RLT) will 20 

be applied to transform bilinear functions into equivalent linear constraints.  21 

In the original problem (OP) model, there are two polynomial functions on the list of 22 

reformulation, that is, the link travel cost function and the total travel cost function.  23 

2.2.1. Link travel time function 24 

In this paper, the link travel cost function follows the typical Bureau of Public Roads (BPR) 25 

equation, which is 26 

 
4

, 1 ,     a
a a a a a

a

x
t x y T R a A

y

  
        

      (15) 27 
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where aT  is free flow travel cost; both aT  and aR are given BPR parameters. It should be noted 1 

that for existing link 1a A , ax  is the only variable in the function, whereas for candidate link 2 

2a A , both ax  and ay  are decision variables.  3 

Let a new variable 
ah  to represent the monomial 

4 4( ) / ( )a ax y  as in (15) we have: 4 

4

,   a
a

a

x
h a A

y

 
   
 

     (16) 5 

Since 0,ax a A    , we cannot take logarithm on both sides of Eq. (16). To solve this issue, 6 

two additional nonzero continuous variables  (0 , )a ax x M a A     and 7 

 (0 , )a ah h M a A    , and a binary variable  ( {0,1},  )a a a A      are introduced for each 8 

link a A . Let 9 

,     a a ax x a A       (17) 10 

4

,   a
a

a

x
h a A

y

 
   
 

    (18) 11 

Thus, by substituting Eq. (17) into Eq. (16), the following Eq. (19) can be induced:  12 

,     a a ah h a A      (19) 13 

The binary variable ,a a A   is introduced to describe whether link a  will be used or not. One 14 

can prove that, in the solutions of the OP, 2,a au a A   . 15 

Proposition 2. Adding constraints 2,a au a A    into OP will not change the optimal solution 16 

of the OP.  17 

Proof. If 0au  , which means link a  is not constructed, 0a ax     is immediately true due to 18 

the constraint (4). 19 

If 1a
   and 1a

  , which means, in the optimal solution of OP, if a candidate link is 20 

constructed, it must be used or 1a
  . 21 

If in the optimal solution of OP  , , , ,a a a a ax y u h     , 1, 0a au    for some links, one can always 22 

find another optimal solution with the same objective value by only letting 0au  , which will 23 

not change the resultant traffic flow pattern ax
 and the budget constraint will not be violated. In 24 

other words, if 1, 0a au     are true in your optimal investment plan, which means a new link 25 

addition is completely not used in the network, we can just decide not to construct this new link. 26 
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This new investment plan will remain optimal, which will not change the resultant equilibrium 1 
traffic pattern and thus the objective value of total network travel time; however, reduce the 2 
construction cost, making the budget constraint still fulfilled. That is to say, even in optimal 3 

solutions, 1, 0a au    , we can obtain an equivalent optimal solution (i.e., with the same 4 

objective value) by just letting 0, 0a au    .  5 

Therefore, 2,a a A   is actually the binary investment decision variable 2,au a A  for candidate 6 

new links. For an existing road 1a A , a only indicates whether traffic flow on this link is zero 7 

or not. To simplify the denotation, we also use the binary variable au  ( 1a A  ) to represent a  8 

of existing links, which results in: 9 

,     a a ax u x a A       (20) 10 

,     a a ah u h a A      (21) 11 

Taking logarithm on both sides of Eq. (18), we have: 12 

ln 4ln 4ln ,   a a ah x y a A          (22) 13 

So far, the monomial in the BPR function is transformed into Eq. (22), wherein the nonlinearity 14 

is only contained in the logarithmic functions. That is, other than these logarithmic functions, Eq. 15 

(22) is in fact in linear form. Let  lnha aL h ,  lnxa aL x  and  lnya aL y , we have 16 

4 4 ,   ha xa yaL L L a A      (23) 17 

The link travel cost function can be replaced by: 18 

( , ) ,   a a a a a a at x y T T R h a A                      (24) 19 

The benefits of doing this transformation are apparent: a general nonlinear nonconvex travel time 20 

function is now rewritten into several globally concave single-variable logarithmic functions, 21 

which will greatly facilitate the model relaxation in the next section.  22 

2.2.2. Total system travel cost function 23 

The total system travel cost also makes use of the BPR equation, the formation of which is quite 24 

similar to the link travel time function.  25 

 
5

4

( )
,

( )

a
a a a a a a a a

a A a A a A a

x
x t x y T x T R

y  

           (25) 26 

Following the same technique introduced in the last subsection, the new variable 
ap  is used to 27 

replace the monomial part in Eq. (25): 28 
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5

4

( )
,     

( )

a
a

a

x
p a A

y
        (26) 1 

As is done above, substituting Eq. (20) into Eq. (26) and introducing a new continuous variable 2 

 (0 , )a ap p M a A     leads to: 3 

5

4

( )
,     

( )

a
a

a

x
p a A

y
      (27) 4 

,     a a ap u p a A      (28) 5 

Taking logarithm on both sides of Eq. (27) leads to: 6 

     ln 5ln 4ln ,     a a ap x y a A       (29) 7 

Similarly, by letting paL  to stand for  ln ap , Eq. (29) is rewritten as 8 

5 4 ,   pa xa yaL L L a A        (30) 9 

Thus, the total system travel cost can be replaced by: 10 

 ,a a a a a a a a a

a A a A a A

x t x y T x T R p
  

         (31) 11 

In this case, the objective function can be represented by Eq. (31) because it is exactly the total 12 

system travel time.  13 

As for the VI constraints, by plugging Eq. (31) into Eq. (14), we have: 14 

2 2

* * *( ) (1 ) 0,     c c

a a a a a a a a a a a a

a A a A a A a A a A

T x T R p x u x M t x u M x c C
    

               (32) 15 

In Eq. (32), there is one nonlinear term, i.e., 
* *( )a a ax u x . From the proposition 2, we have that 16 

the link flow ax  must be positive if a candidate link is planned to be constructed, i.e. 1au  , 17 

whereas apparently there will be no traffic flows on a link if 0au  . In conclusion, for each 18 

candidate link 2a A , the nonlinear term 
* *( )a a ax u x  is always equal to zero. Then Eq. (32) can 19 

be simplified into a linear constraint: 20 

2

* (1 ) 0,     c c

a a a a a a a a a

a A a A a A a A

T x T R p t x u M x c C
   

                 (33) 21 

It should be noted that, this nonlinear term was relaxed into linear constraints in Luathep et al. 22 

(2011), which is indeed deviated from the original constraints. 23 

2.3. Linear transformation of bilinear function using RLT technique 24 
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In the model formulation, bilinear terms are also involved. In this subsection, we will apply a 1 
linearization technique to convert the bilinear terms into equivalent linear constraints, as 2 

suggested by Sherali and Adams (1994). 3 

For illustration purpose, this linearization technique is stated as below by taking Eq. (20) 4 

,  a a ax u x a A    as an example. It is supposed that aa ax x x  , where ax and ax  are 5 

respectively a sufficiently small positive number and a sufficiently large upper bound of flow ax . 6 

Then, the equivalent linear transformation for each link can be expressed as: 7 

[Linear transformation of bilinear terms] 8 

0

0
,     

0

0

aa a

aa a

a aa a a

a aa a a

x u x

x u x
a A

x x x u x

x x x u x

 


 
 

   
    

     (34) 9 

Eq. (20) can be directly rewritten as "if-and-only-if" conditions, which are represented as: 10 

0 0
,     

1

a a

a a a

x u
a A

x x u

  
 

  
      (35) 11 

Therefore, by separately substituting two possible values of au  into Eq. (34), we have: 12 

0

0 0
0

0

0

a

a a

a
a aa a a a

aa a

x

x x
u

x x x x x x

x x x

 


   
    

     
    

       (36) 13 

0

0
1

0

0

aa

a a aa

a
aaa a a

a a

x x

x xx x
u

x x x x x

x x

  


   
    

    
   

      (37) 14 

The above result shows that Eq. (34) is identical to the "if-and-only-if" condition in Eq. (35). 15 

Thus, equivalence between Eq. (34) and Eq. (20) is also verified. We can use this linear 16 
transformation to replace the bilinear functions in the DNDP model with equivalent linear 17 

constraints.  18 

Similarly, given domains of ah  and ap  as defined by aa ah h h   and 
a aa

p p p  , it is 19 

convenient to implement the RLT technique to obtain the equivalent linearization of Eq. (21) and 20 

Eq. (28). 21 
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It should be noted that the construction cost function  ,a a ag u y  also involves a bilinear term in 1 

constraint (3). 2 

Considering that the upper bound and lower bound of ay  are already given in the road capacity 3 

restriction in Eq. (2), the RLT method can be directly applied to linearize a au y . Let 
ak  to 4 

represent the bilinear term a au y , we have: 5 

  2, ,   a a a a ag u y k u a A           (38) 6 

For simplicity of illustration, let D  be a set of variables 2{ , , , ; , }a a a aD x h p a A y a A     ; for 7 

any variable d D , d  and d  are the lower and upper bounds respectively, and d̂  stands for a 8 

bilinear term au d . In summary, the reformulated DNDP problem can be expressed as follows: 9 

[MINLP: Mixed-integer Non-Linear Problem] 10 

min MNLP a a a a a

a A a A

Z T x T R p
 

  
x,y,u

                                      (39) 11 

 12 

Subject to: 13 

2,     a a ay y y a A             (40) 14 

2

a a

a A

k u B 


       (41) 15 

,     a ax u M a A     (42) 16 

2

(1 ) 0,     c c

a a a a a a a a a

a A a A a A a A

T x T R p t x u M x c C
   

                 (43) 17 

,   a a a a at T T R h a A         (44) 18 

4 4 ,   ha xa yaL L L a A         (45) 19 

 ln ,   ha aL h a A    (46) 20 

 ln ,   xa aL x a A     (47) 21 

 ln ,   ya aL y a A    (48) 22 

5 4 ,   pa xa yaL L L a A        (49) 23 
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 ln ,   pa aL p a A    (50) 1 

2

ˆ 0

ˆ 0

ˆ 0

ˆ 0

{ , , , ; , }

a

a

a

a

a a a a

d u d

d u d

d d d u d

d d d u d

d D x h p a A y a A

 


  


    


    
     


     (51) 2 

 0,1 ,     au a A            (52) 3 

| ,  ,  0,  ,  w w w w

a a a

w W

x v v a A w W


 
          

 
x v d       (53) 4 

Where x, y  and u   are vectors of decision variables ax , ay  and au  respectively.  5 

3. Solution algorithm 6 

3.1. Model relaxation 7 

3.1.1. Relaxation of general logarithmic function 8 

One can find that the nonlinearity of the above shown MINLP only lies in the four logarithmic 9 

functions:  ln ax ,  ln ay ,  ln ah  and  ln ap .In this subsection, a linear relaxation (LR) model 10 

for a general logarithmic function is introduced. This model is constructed by using a sequence 11 

of outer tangent lines and piecewise linear interpolations. Without loss of generality and for 12 

convenience of explanation, the nonlinear function  lnxa aL x  is taken as an instance to 13 

illustrate the linear relaxation process of a logarithmic function.  14 

Suppose the feasible region of ax  is a bounded interval [ , ]aax x . The interval is divided into 15 

1N   small segments by selecting 2N   breakpoints between the two endpoints ax  and ax . 16 

The series of breakpoints and two endpoints are denoted by ,  1,2...,n

ax n N  . It should be 17 

noted that there is no need to partition the interval into equal segments. As shown in Fig. 1, the 18 

linear relaxation of the concave logarithmic function  ln ax  is set to be the region below all 19 

tangent lines on each breakpoint and endpoint, and above all chord lines between each pair of 20 

consecutive points. In Fig. 1, only two breakpoints are used for demonstration.  21 
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ax 1n

ax 

ax

Tangential supports

Curve chords

ax

xaL

n

ax

 1 

Fig. 1 A linear relaxation for logarithmic function with two breakpoints 2 

The linear relaxation of  ln ax  with breakpoints 1 ... ...n N
aa a a ax x x x x       including two 3 

endpoints can be specified as follows: 4 

[LR: Linear Relaxation] 5 

 ln 1 ,   ( 1),     1,2 ,
1

a an n a
axa a an

a

x x x
L x x x n n N

x N


        


     (54) 6 

1

N
n n

axa a

n

x x


       (55) 7 

 
1

ln
N

n n

xa a xa

n

x L


      (56) 8 

1

1
N

n

xa

n




        (57) 9 

0,   1,2...,n

xa n N         (58) 10 

1 1 1 1,   2,3..., 1,   ,   n n n N N

xa xa xa xa xa xa xan N                    (59) 11 
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1

1

1
N

n

xa

n






       (60) 1 

 0,1 ,   1,2..., 1n

xa n N          (61) 2 

The upper bound of  ln ax  is given in Eq. (54), the right-hand side of which denotes all the 3 

tangent lines on each point, whereas the lower bound is provided by Eqs. (55)-(61), which 4 

represents all the piecewise linear interpolations between each pair of consecutive points.  5 

To formulate the piecewise linear function, N  continuous variables ,  1,2 ,n

xa n N   and 1N   6 

binary variables ,  1,2..., 1n

xa n N    are introduced. As shown in Fig. 1, the binary variable 
n

xa  7 

indicates whether an interval is active or not, that is: ax  falls in this interval 
1[ , ]n n

a ax x 
 if 1n

xa   8 

and 1[ , ]n n
a a ax x x   if 0n

xa  . The continuous variables ,  1,2 ,n

xa n N   are the coefficients 9 

associated with each breakpoint and measure the location of ax  between the two endpoints of the 10 

active interval: specifically,    1/n n n n
axa a a ax x x x     and    1 1 1/n n n n

axa a a ax x x x       if 11 

1[ , ]n n

a ax x 
 is an active interval, whereas the other coefficients of breakpoints are all equal to 0.  12 

Generally, for the case where ax  falls within the active interval 
1[ , ]n n

a ax x 
, Eq. (60) guarantees 13 

that only 
n

xa  is equal to 1 and all the other ,  1..., 1, 1..., 1m

xa m n n N      are equal to 0. 14 

According to Eqs. (57)-(59), it implies that 
1 1,  n n

xa xa    10,  0n n

xa xa     and 0m

xa  , 15 

1..., 1, 2...,m n n N    . Hence, ax  can be represented by a convex combination from Eq. (55), 16 

i.e. 1 1n n n n
a xa a xa ax x x     , and the lower bound of  ln ax can be evaluated from Eq. (56), i.e. 17 

   1 1ln lnn n n n

xa a xa a xax x L     . Combined with Eq. (54), the feasible region 18 

     1 1ln ln ln 1 /n n n n n n
axa a xa a xa a ax x L x x x         is obtained to serve as relaxation of  ln ax .  19 

In the above linear relaxation model, the nonlinear function  ln ax  is replaced by a set of mixed-20 

integer linear constraints, which serves as its outer approximation. Following the same method, 21 

each logarithmic function in the MINLP model can be substituted by a LR programming. 22 

3.1.2. Relaxation of the DUE condition 23 

The DUE condition in the MINLP model is formulated as a VI problem related with a set of all 24 

corner-points of the traffic flow feasible region  . However, the number of VI constraints is 25 
extremely large due to the huge number of corner-points, which will notably influence the 26 
computation efficiency in solving the MINLP model. Fortunately, because some of the VI 27 
constraints are not binding at the optimal solution, a subset of corner-points can be used to define 28 
relaxed VI constraints. It is proved that in some conditions a solution to a relaxed VI problem is 29 

also the solution to the original VI problem, i.e. the equilibrium traffic flow (Luathep et al., 30 

2011).  31 
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Let sC  be a subset of the traffic flow feasible region, i.e. sC C , the relaxed VI constraints can 1 

be expressed as follows: 2 

2

(1 ) 0,     ,     c c

a a a a a a a a a s s

a A a A a A a A

T x T R p t x u M x c C C C
   

                 (62) 3 

wherein ax  . Thus, given a reduced set of corner-points sC , the relaxed MINLP problem can 4 

be formulated as: 5 

[R-MINLP: Relaxed MINLP] 6 

, ,
min R MNLP a a a a a
x y u

a A a A

Z T x T R p

 

                                         (63) 7 

Subject to the same constraints (40)-(42), (44)-(53), and the relaxed VI constraints (62).  8 

The set sC  can be updated iteratively by searching for new corner-points via a linear 9 

programming (LP-min). A stopping criteria needs to be satisfied in the iterative process, in which 10 

situation it infers that the solution of the relaxed problem R-MINLP also meets the original VI 11 

constraints, i.e. it is also the solution of MINLP (see Appendix). 12 

Finally, by further relaxing general logarithmic function in the R-MINLP problem, a relaxed 13 

MILP model (denoted as R-MILP) is formulated, which is a linear relaxation of the original 14 

problem. Without loss of generality, we let Q  stand for the set of variables, whose logarithmic 15 

functions need linear relaxation. Thus, for arbitrary variable q Q , q  and q  are the lower and 16 

upper bounds respectively; qL  denotes the logarithmic function  ln q , for example, qL  actually 17 

represents yaL  if aq y . In conclusion, the R-MILP can be expressed as follows: 18 

[R-MILP: Relaxed MILP] 19 

, , ,
min R MILP a a a a a
x y u t

a A a A

Z T x T R p

 

                                         (64) 20 

Subject to: 21 

2,     a a ay y y a A             (65) 22 

2

a a

a A

k u B 


       (66) 23 

,     a ax u M a A     (67) 24 

2

(1 ) 0,     ,     c c

a a a a a a a a a s s

a A a A a A a A

T x T R p t x u M x c C C C
   

                  (68) 25 

,   a a a a at T T R h a A         (69) 26 
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4 4 ,   ha xa yaL L L a A     (70) 1 

5 4 ,   pa xa yaL L L a A        (71) 2 

2

ˆ 0

ˆ 0

ˆ 0

ˆ 0

{ , , , ; , }

a

a

a

a

a a a a

d u d

d u d

d d d u d

d d d u d

d D x h p a A y a A

 


  


    


    
     


     (72) 3 

 0,1 ,     au a A            (73) 4 

| ,  ,  0,  ,  w w w w

a a a

w W

x v v a A w W


 
          

 
x v d       (74) 5 

 

 

 

1

1

1

1 1 1 1

1

1

ln 1 ,   ( 1),     1,2 ,
1

ln

1

0,   1,2...,

,   2,3..., 1,   ,   

1

0,1 ,   1,2..., 1

n n

q n

N
n n

q

n

N
n n

q q

n

N
n

q

n

n

q

n n n N N

q q q q q q q

N
n

q

n

n

q

q qq
L q q q n n N

q N

q q

q L

n N

n N

n N









      











 






         

 


 



 






 

     



   

















     (75) 6 

2{ , , , ; , }a a a aq Q x h p a A y a A            (76) 7 

3.2. Global optimization algorithm 8 

In this section, a global optimization algorithm is proposed to solve the problem based on the 9 

linear relaxation model R-MILP and a range reduction technique.  10 

3.2.1. Range reduction technique 11 
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In the R-MILP model, a number of breakpoints are introduced to relax the logarithmic function 1 
into a mixed-integer linear programming. In principle, the relaxation model R-MILP will be 2 
much tighter if a larger number of breakpoints are adopted. However, introducing large amount 3 
of binary variables with these breakpoints will increase the computational load significantly. 4 

Therefore, a range reduction technique is applied, which cuts and reduces the feasible region 5 
while ensuring the global optimum not excluded. In this way, with only a few breakpoints to 6 
relax the feasible region, the obtained R-MILP model is tighter, and thus by solving which a 7 
better lower bound can also be achieved. The range reduction technique is indeed implemented 8 
through a series of optimization problems (denoted by RRT problems). Specifically, for an 9 

arbitrary variable varx , where varX  is the set of variables in the R-MILP model, the RRT 10 

problem contains two parts: updating the lower bound of x  by solving the RRT-L problem and 11 

calculating the new upper bound of x  through the RRT-U problem. The RRT problems can be 12 

stated as follows: 13 

[RRT-L: Range Reduction Technique for updating Lower bound] 14 

Min  
new

x x      (77) 15 

subject to: 16 

var,    
oldold

x x x x         (78) 17 

MINLPR MILPZ Z      (79) 18 

All the other constraints in the R-MILP model except bound constraints.   (80) 19 

[RRT-U: Range Reduction Technique for updating Upper bound] 20 

Max  
new

x x  (81) 21 

subject to: 22 

var,    
oldold

x x x x         (82) 23 

MINLPR MILPZ Z   (83) 24 

All the other constraints in the R-MILP model except bound constraints.   (84) 25 

where 
old

x  and 
old

x  are respectively the current lower and upper bounds for variable varx26 

before update, MINLPZ  is a known upper bound of the global optimal objective function value of 27 

the original MINLP model. MINLPZ  can be obtained from  the objective value of the MINLP 28 
problem by feeding a feasible road construction plan into the VI problem and then solving it. 29 

Otherwise, one can also utilize a traditional local optimal algorithm to calculate a better upper 30 

bound value for MINLPZ . It is worth noted that the set of variables that need bounds update should 31 
be carefully selected, because calculating new bounds also influents the algorithm efficiency. 32 
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Considering this, for large size network, reducing range for only a part of variables in var  is 1 

recommended. What's more, in order to save computational time, it is recommended to always 2 

use the latest feasible range to calculate new bounds. 3 

3.2.2. Global optimization solution algorithm 4 

Based on the above analysis, we develop a global optimization solution algorithm for the model 5 
formulation. Basically, the R-MILP is solved to obtain the lower bound of the problem, which is 6 
updated and improved by applying range reduction technique, until the gap between lower bound 7 

and upper bound fulfils certain requirement. 8 

To explain the solution algorithm more clearly, we show the framework of this solution approach 9 
in Fig. 2. Roughly, there are three modules contained in the algorithm. Firstly, an initialization 10 
module prepares a group of input parameters for the initial formulation of R-MILP problem. 11 
Secondly, R-MILP problem is recurrently updated and solved in each iteration to obtain a lower 12 

bound of the problem and then, an upper bound of the problem is calculated by making use of 13 

the road construction plan in current solution. A range reduction technique is introduced in the 14 
iterative process to reduce the feasible region while guarantee the global optimal solution 15 

remaining in the new range. Thirdly, the subset of corner-points is updated, which can make sure 16 
that the solution meets the DUE condition. Finally, the algorithm will terminate at the global 17 

optimal solution.  18 
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Fig. 2 Framework of algorithm 20 
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In summary, the steps of the presented global optimization algorithm can be stated below: 1 

Step 1. Initialization. Use a small integer n  as the initial number of break points for each 2 

logarithmic curve. Here, n  is set to 4. Let the initial bound of ay  be its original domain. For ax , 3 

ah , and 
ap , set a small enough positive numbers as their original lower bounds, and a big 4 

enough positive number as their initial upper bounds. Find some corner-points to initialize the set 5 

{ | }c

sc Cx  to facilitate the formulation of the R-MILP model. Let the iteration number 1i  . 6 

Step 2. Solve the relaxed model. Formulate the R-MILP problem with the incumbent range of 7 
variables and the current subset of corner-points. Solve the R-MILP problem to its global 8 

optimum { }i  ζ ζ ζ ζ ζ ζx , y ,u ,h ,p , t  by any commercial solver or traditional MILP algorithms. 9 

The corresponding objective function value is denoted by 
*

,R MILP iZ  .  10 

Step3. Update the subset of corner-points. Using i  as the beginning point, solve the R-MINLP 11 

problem with fixed construction plan ζu  to obtain a local optimal solution 12 

{ }i  σ σ σ σ σ σ
x , y ,u ,h ,p , t  ( σ ζ

u u ) nearby through conventional MNLP methods. Note that the 13 

R-MINLP problem only has one group of integer variable u . Once u  is fixed, the R-MINLP 14 

problem is reduced to an NLP problem. Formulate the LP-min problem (refer to Appendix) with 15 
i  and solve it to obtain 

*x . Check whether the condition 16 

2

* *(1 )a a a a a a a a a

a A a A a A a A

T x T R p t x u M x    
   

           is true or not. Do nothing if this condition 17 

is true or add 
*x  to the subset of corner points for the next iteration otherwise.  18 

Step 4. Update the objective function bounds and check convergence. Substitute 
σ

y  and 
σ

u into 19 

the VI problem and solve it to obtain a feasible objective function value 
*

,R MILP iZ   of the MINLP 20 

problem. The upper bound of the objective function value is then updated via 21 

 *
1 ,min ,i i MINLP iZ Z Z , whereas the lower bound is updated via  *

1 ,max ,i i R MILP iZ Z Z  . The 22 

approximated global optimal road construction plan is improved to  
*

iy  and 
*

iu , which is the 23 

local solution of the R-MINLP problem corresponding to incumbent iZ . Calculate the relative 24 

difference between the upper bound and lower bound /i i iZ Z Z .  25 

Step 5. Reduce feasible range of variables. Calculate new bounds for each variable varx  by 26 

employing the range reduction technique. Renew bounds of variable if its new bounds are tighter 27 

than old ones.  28 

Step 6. Renew set of breakpoints for each logarithmic curve. Calculate reserved range rate over 29 

the previous variable range via 
var( ) / ( ),  

new oldnew old

xr x x x x x    . If all 
* * (0 1)xr r r   , 30 

where 
*r  is a given rate, increase the number of break points ˆn n n   ( n̂  is a given positive 31 

integer) for the selected   variables with the largest interval. For better problem approximation, 32 
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local solutions from the last i  iterations can also be included in the set of breakpoints if the 1 
distance between a local solution point and the nearest existing breakpoint is larger than a given 2 

gap. Update the iteration number 1i i  , go to step 2. 3 

Step 7. Iteration terminates. Stop the iteration if /i i iZ Z Z    and the condition 4 

2

* *(1 )a a a a a a a a a

a A a A a A a A

T x T R p t x u M x    
   

           is true. List the global optimal solution 
*

iy  5 

and 
*

iu .  6 

In Step 1, the initial corner-point can be found by solving the VI problem in Eq. (14) with the 7 

original network. To improve the computational efficiency, more corner-points that may be 8 

binding at the optimal solution can be calculated by repeating the iteration in Step 2 and 3: first 9 

solve the R-MILP problem and obtain an optimal construction plan ζu , then solve the R-MINLP 10 

problem with this construction plan ζu  as input, search for new corner-point via LP-min and add 11 

it to { | }c

sc Cx . 12 

In the following proposition, we prove the convergence of the proposed global optimal algorithm.  13 

Proposition 3 The proposed algorithm converge to the global optimal solution of the MINLP 14 

problem and also the OP problem when the iteration number i  .  15 

Proof. Denote the exact global optimal solution of the MINLP problem by ŷ  and û  and let Ẑ  16 

be the corresponding objective function value. Because the linear relaxation problem R-MILP 17 

always underestimates the MINLP problem, it holds that the objective function value 
*

,R MILP iZ   18 

from R-MILP is no larger than Ẑ . On the other side, feasible value of the MINLP problem 19 

*

,MINLP iZ  always overestimates Ẑ . Considering  *

1 ,max ,i i R MILP iZ Z Z  ,  *
1 ,min ,i i MINLP iZ Z Z  20 

and the current best solution 
* * * * * *{ }i i i i i ix , y ,u ,h ,p , t , we have * * *ˆ ( , ) ii MINLP i iZ Z Z Z  y u . When 21 

the iteration number i  , the implementation of Proposition 2 and Proposition 3 in Step 3 22 

guarantees that the final solution satisfies the inequality 23 

2

* * * * * *

, , , ,(1 )a a i a a a i a i a a i a

a A a A a A a A

T x T R p t x u M x 
   

          , i.e. the DUE condition, where   is a 24 

given gap tolerance and 
*

ax  is from the solution of the LP-min problem. What's more, the 25 

combination of range reduction technique in Step 5 and renewing set of breakpoints in Step 6 can 26 

always updates the bounds iZ  and iZ  for Ẑ . Therefore, we will have ˆlim i
m

Z Z


  and 27 

* * * ˆlim lim ( , )i MINLP i i
m m

Z Z Z
 

 y u . This proves that the proposed global optimal method converge 28 

to the exact global optimal solution of the MINLP model. Since the MINLP model is equivalent 29 

to the OP, the algorithmic convergence to the real global optimum of the OP is also proved.□ 30 

Remark: It should be noted that the gap cannot be guaranteed to completely vanish in finite 31 
number of iterations. However, in practice, usually an accuracy requirement will be given. Thus, 32 

the global optimal solution can be efficiently obtained, up to the specific accuracy requirement.  33 
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4. Practical considerations 1 

The proposed model formulation and solution algorithm can also be tailored and extended to 2 
address other practical considerations in discrete transportation network design problems. 3 

Hereby, two specific scenarios are illustrated.  4 

4.1. Link capacitated traffic assignment problem (CTAP) 5 

Though the traditional DUE model is realistic in distributing traffic in a non-saturated network, 6 
the model results in a congested network are far from real observation. Due to the application of 7 
link cost function, specifically BPR function, the model may leads to a solution containing over-8 

saturated links, where the traffic flows even exceed their capacities. Considering this, the link 9 
capacitated traffic assignment is formulated by including the capacity constraints on link flows in 10 
the traditional DUE model to improve the performance of traffic assignment in an over-saturated 11 

network. The constraints are shown as follows:  12 

1

2

,      

,   

a a

a a a

x y a A

x u y a A

  

  
    (85) 13 

With these capacity constraints, some solution methods are specially proposed for CTAP (Nie et 14 
al., 2004). However, the global optimization solution algorithm developed in this study can be 15 
immediately applied to solve the DNDP problem even if the capacity constraints are added to the 16 

original model. Because we already have 2,  a a ak u y a A   , constraints (85) can be rewritten as 17 

linear constraints (86) and added to the MINLP and R-MILP model: 18 

1

2

,      

,      

a a

a a

x y a A

x k a A

  

  
    (86) 19 

Since adding these new linear inequality constraints bring no change to the mathematical 20 
property of this problem, the proposed algorithm can still be used and it guarantees the global 21 

optimal solution.  22 

4.2. Discrete levels of link capacity  23 

In practice, capacity of candidate new road is usually evaluated in discrete number of lanes, 24 

which means feasible regions of link capacity variables ay  are discrete, rather than continuous 25 

variables. In the above problem formulation, we assume continuous link capacity variables. 26 

However, one can find that both the model and the proposed global optimal algorithm can be 27 

easily extended to solve the problem with assumption of discrete link capacity.  28 

Suppose link capacity ay  is a discrete variable now and the set {1,2,..., }m  represents the feasible 29 

number of lanes that contained in a candidate link. Thus domain of ay  can be depicted by  30 

1 2

2{ , ,..., },     m

a a a ay y y y a A         (87) 31 
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Based on this assumption, for MINLP and R-MINLP, we introduce a series of binary variables 1 

  2, 1,2,..., ,r

a r m a A    to indicate whether link capacity ay  is equal to 
r

ay  or not, i.e. 
r

a ay y  2 

if 1r

a   and 
r

a ay y  vice versa. In summary, the bounds constraints of ay  in Eq. (40) can be 3 

substituted by the following Eq. (88): 4 

   

1

1

2

1

0,1 ,   1,2,...,

m
r r

a a a

r

m
r

a

r

r

a

y y

r m

a A












 




 

  


  



      (88) 5 

Like analysis before, the second and the third constraints in Eq. (88) guarantee there is only one 6 

one 
r

a  can equal to 1 and all the other 
r

a  are forced equal to 0. Thus, from the first constraint, 7 

we have 
r

a ay y , only when the associated 
r

a  equals to 1. 8 

For the R-MILP model, the LR model cannot be applied immediately in this case because ay  is 9 

no longer a continuous variable. Hereby, we remove Eq. (65) and discard ay  from the set Q  in 10 

Eq. (76). The linear relaxation method for the discrete function   2ln ,ay a A  is amended as 11 

below: 12 

1 2

1

,   { , ,..., }
m

r r r m

ya a a a a a a

r

y y y y y y


        (89) 13 

 
1

ln
m

r r

ya a ya

n

y L


      (90) 14 

1

1
m

r

xa

r




       (91) 15 

 0,1 ,   1,2...,r

ya r m         (92) 16 

where only a series of binary variables 
r

ya  are introduced and all the equations are linear. As 17 

compared with LR, this model has mainly two differences. First, the weighted factor variables 18 

are not needed to approximate the function value between two adjacent feasible points. Second, 19 
this model is not a relaxation approximation but provides an exact value of the logarithmic 20 

function  ln ay . 21 

It is worth noted that, despite the model modification catering for the case with discrete link 22 
capacity variables, the essential model properties are not changed, that is, the reformulated R-23 
MILP model remains a mixed-integer linear relaxation of the amended MINLP problem. 24 
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Therefore, the proposed global optimal algorithm can still be utilized to solve the problem with 1 

discrete levels of link capacity.  2 

5. Numerical examples 3 

3 4
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1

 4 

Fig. 3. The 12-node test network. 5 

In this section, to evaluate the model validity and to illustrate the performance of the solution 6 

algorithm, a 12-node network, as was used in Gao et al. (2005), is employed as numerical 7 
examples. The test network is shown in Fig. 3. It consists of twelve nodes, six candidate links 8 

and one O-D pair. Existing links are represented by solid lines and six candidate links by dashed 9 

lines. The numbers labeled on these links indicate their free flow travel time aT . The total traffic 10 

demand from node 1 to node 12 is supposed to be 20 units. For existing links, 11 
4( ) 0.008a a a at x T x   is adopted as the travel time function; while for candidate links, the travel 12 

time function is assumed to be     4
, 1 /a a a a a a at x y T R x y  , where 0.15aR 

 
and 13 

[4,6]ay  . The construction cost function  ,a a a a a ag y u u y u    is used in the tests. The 14 

value of parameter   and   are appropriately set to make the construction cost function value 15 

consistent with that in previous studies and given in Table 1. Set   in the VI constraints equals 16 

to 55 10 . The iteration process terminates if gap between the obtained lower and upper bounds 17 

of objective function value is less than 55 10 . The gap tolerance rate is set according to the 18 
specific requirement of practical problems. By applying the solution algorithm presented in this 19 

study, the global optimization solution of the original problem could be obtained, up to specific 20 

accuracy requirement.   21 

All of our tests are run on a personal computer with Intel(R) Xeon(R) CPU E5-2609 0 @ 22 
2.40GHz 2.40GHz (two processors), 32GB RAM and Windows 7 Professional operating system 23 

(64-bit). The YALMIP-R20130405 (Löfberg, 2004) together with MATLAB R2012a is used to 24 
model all the numerical tests. The commercial optimization solver CPLEX optimization studio 25 
12.3 (IBM ILOG, 2009) is adopted to globally solve all MILP problems, whereas the free solver 26 
IPOPT is applied to solve all the nonlinear problems.  27 
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 1 

Table 1  2 

Value of parameters in construction cost function.  3 

Candidate link 1 2 3 4 5 6 

   1.4200 1.0000 1.9600 2.1200 2.7500 3.0800 

   0.8308 2.1300 2.2691 2.1356 1.3896 3.2568 

 4 

5.1. Example 1: comparison between DCNDP and a two-step method. 5 

In this example, results of the proposed model solution are compared with those of a two-step 6 

sequential DNDP and CNDP modeling approach. In this two-step sequential method, the 7 
traditional DNDP problem with given predetermined road capacities for candidate links is solved 8 
first, as was done in Gao et al. (2005) and Luathep et al. (2011). The solution of this DNDP, i.e., 9 
the road construction plan, is then applied as the input of the transportation network structure and 10 

topology, and a CNDP problem is solved to obtain the optimal road capacity expansion, as was 11 
done in Wang and Lo (2010). Table 3 lists the optimal link construction plans with different 12 
budgets, wherein results labeled as 'Integrated method (this study)' are solved by the presented 13 

global optimization algorithm in this study. Solutions labeled as 'Two-step method' are solved 14 
from the two-step sequential method. Since the DNDP model needs fixed link capacity and thus 15 

fixed link construction cost, in order to have a fair comparison with the integrated method, the 16 
parameters shown in Table 2 are adopted in the two-step method. All the other parameters are 17 

the same with those used in the integrated method. In columns of 'Capacity' in Table 3, 1 18 
indicates the corresponding candidate link should be built and 0 otherwise. We calculate 19 

objective function value twice in the two-step method: the first time after link addition in step 1 20 
and the second after link expansion in step 2. Both of them are reported in Table 3 and the latter 21 
is the final objective function value of the two-step method. In principle, our model can 22 

simultaneously provide solution of both candidate links to be constructed and optimal capacities 23 
of new links and the solution is global optimal, whereas the sequential two-step method can only 24 

optimize one type of variable in each step while assuming the other one is fixed thus the solution 25 
is local optimal. Table 3 shows the computational results: the proposed model generally provides 26 

better network design plans. The network performance of construction plan from the proposed 27 

model is enhanced by up to 9.99% (=[2460.0762-2214.4123]/2460.0762) than that of the two-28 
step method. We also notice that the results from the two methods may be the same, for example, 29 
in the cases with given budget of 10, 20 and 60. In summary, the computational results are 30 

consistent with the theoretical analysis, that is, the solution of the proposed model in this study 31 
may provide a network design plan that is better than simply applying the sequential two-step 32 
method, if not the same. One interesting finding that can be observed from Table 3 is that the 33 
result with budget 50 is even worse than the result with budget 40 when using the two-step 34 
method, which is still because this method can only solve local optimal, and its solution is highly 35 

affected by the selection of predetermined road capacities for link additions and cannot guarantee 36 

the best network construction plan. This result, from another point of view, justifies the necessity 37 

of our integrated model.  38 



26 
 

On the other side, the proposed solution algorithm for the DCNDP model is globally optimal. 1 
The updating process of each iteration with different budgets is shown in Table 4. For each 2 
iteration, it presents the evolving upper and lower bounds of objective function value, gap 3 
between the two bounds (Gap=[Upper bound-Lower bound]/Upper bound) and solution of 4 

relaxed MILP. From this table, one can find that the solution algorithm converges very fast and 5 
the global optimal solution can be obtained in a small number of iteration. The computational 6 
time for the three cases is 21.7 min, 8.1 min and 34.3 min respectively. In practice, the 7 
computational time and the number of iteration may be improved by using different initial set of 8 

corner-points, choosing different range reduction variable in set varX , rescaling the feasible 9 

region of variable and other techniques that can improve the efficiency of MILP. Here, we only 10 

set var 2X { , , ; , }a a ax h a A y a A      and rescale the feasible region of ,ax a A   and 11 

2,ay a A  . It should be noted that the number of iteration needed seems not to be related to the 12 

value of budget with our method. However, in Gao et al. (2005), the budget value affects the 13 

required number of iteration significantly, and larger number of iterations is needed with their 14 

solution method.  15 

 16 

Table 2 17 

Parameters adopted in two-step method. 18 

DNDP parameters 

 

CNDP parameters 

Candidate link 1 2 3 4 5 6 

 

Construction cost 

Link capacity 4 4 4 4 4 4 

 
( ) ( 4)

a a a
g y y    

Construction cost 6.5108 6.1300 10.1091 10.6156 12.3896 15.5768 

  19 

Table 3 20 

Optimal link construction results for the 12-node network. 21 

Budget 

Two-step method       Integrated method (this study)   
Network 

performance 
enhancement 

Step1: DNDP 
 

Step2: CNDP 
 

New links Capacity 
Objective 
value New links 

Objective 

value 
  Capacity Objective value   

10 1 0 0 0 0 0 4117.6890 
 

(6) 3959.2197 
 

1 0 0 0 0 0 (6) 3959.2197 0.00% 

20 1 0 0 0 1 0 3875.4668 
 

(4.7744, 4) 3795.5799 
 

1 0 0 0 1 0 (4.7744, 4) 3795.5799 0.00% 

30 1 1 0 0 0 1 2678.0491 
 

(4.8844, 4, 4.1710) 2584.8569 
 

1 0 0 0 0 1 (6, 5.6469) 2488.8950 3.71% 

40 1 1 1 0 0 1 2549.8698 
 

(4.7736, 4, 4, 4.1866) 2459.8584 
 

1 1 0 0 0 1 (6, 6, 6) 2315.5778 5.87% 

50 1 1 1 1 0 1 2523.1283 
 

(4.6963, 4, 4, 4, 4.0224) 2460.0762 
 

1 1 0 0 1 1 (6, 4, 4.1428, 6) 2214.4123 9.99% 

60 1 1 1 0 1 1 2406.3574 
 

(6, 4.2837, 4, 4, 6) 2123.1311 
 

1 1 1 0 1 1 (6, 4.2837, 4, 4, 6) 2123.1311 0.00% 

70 1 1 1 1 1 1 2383.1818   (6, 4, 4, 4, 4, 5.8922) 2108.9950   1 1 1 0 1 1 (6, 6, 5.4203, 6, 6) 2104.3019 0.22% 

 22 

 23 

 24 
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Table 4 1 

Progression of iteration results with different budgets. 2 

Budget Lower bound Upper bound Gap New links Capacity 

20 
 

5500.9609 
   

 
1563.4780 3932.9888 60.2471% 1 0 0 1 0 0 (6.0000, 4.0159) 

 
3029.1426 3850.0410 21.3218% 1 0 1 0 0 0 (5.8428, 4.3895) 

 
3437.4043 3799.5409 9.5311% 1 0 0 0 1 0 (4.7171, 4.0296) 

 
3609.2963 3795.5799 4.9079% 1 0 0 0 1 0 (4.7744, 4.0000) 

 
3795.5444 3795.5799 0.0009% 1 0 0 0 1 0 (4.7744, 4.0000) 

      

      

 
Result:  3795.5799 Iteration number: 5 Computational time: 21.7 min 

      
40 

 
5500.9609 

   

 
1561.2002 2315.5778 32.5784% 1 1 0 0 0 1 (6.0000, 6.0000, 6.0000) 

 
1644.3193 2315.5778 28.9888% 1 1 0 0 0 1 (6.0000, 6.0000, 6.0000) 

 
2122.6644 2315.5778 8.3311% 1 1 0 0 0 1 (6.0000, 6.0000, 6.0000) 

 
2245.6877 2315.5778 3.0183% 1 1 0 0 0 1 (6.0000, 6.0000, 6.0000) 

 
2315.5159 2315.5778 0.0027% 1 1 0 0 0 1 (6.0000, 6.0000, 6.0000) 

      

 
Result:  2315.5778 Iteration number: 5 Computational time: 8.1 min 

      
60 

 
5500.9609 

   

 
1561.1886 2182.7586 28.4764% 1 1 0 0 1 1 (6.0000, 6.0000, 4.0776, 6.0000) 

 
1643.1247 2182.7586 24.7226% 1 1 0 0 1 1 (6.0000, 6.0000, 4.0776, 6.0000) 

 
2027.3339 2170.4235 6.5927% 1 1 0 0 1 1 (6.0000, 6.0000, 6.0000, 6.0000) 

 
2075.4905 2170.4235 4.3739% 1 1 0 0 1 1 (6.0000, 6.0000, 6.0000, 6.0000) 

 
2121.4478 2123.1311 0.0793% 1 1 1 0 1 1 (6.0000, 4.2837, 4.0000, 4.0000, 6.0000) 

 
2123.1269 2123.1311 0.0002% 1 1 1 0 1 1 (6.0000, 4.2837, 4.0000, 4.0000, 6.0000) 

      
  Result:  2123.1311 Iteration number: 6 Computational time: 34.3 min 

 3 

5.2. Example 2: DCNDP with discrete levels of capacity improvements 4 

We also test the DCNDP model with discrete levels of capacity improvements. The test network 5 

is identical, i.e., the 12-node network shown in Fig. 3. It is assumed that {4,5,6},ay a A    6 

and all the other value of parameters are the same as those used in example 1. The results of this 7 
test with different budgets are exhibited in Table 5. One can find the optimal objective value is 8 
no better than the results of DCNDP as shown in Table 3 with continuous capacity enhancement 9 

for new link additions, which can be easily interpreted by the more stringent constraint of 10 

discrete link capacity. 11 

 12 
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Table 5 1 

Optimal solutions of DCNDP model with discrete levels of capacity improvements. 2 

Budget New links Capacities Objective value from MILP Exact objective value Gap Iteration 

10 1 0 0 0 0 0 (6) 3959.1757 3959.2197 0.00111% 5 

20 1 0 1 0 0 0 (6, 4) 3865.9238 3866.0809 0.00406% 7 

30 1 0 0 0 0 1 (5, 6) 2526.6700 2526.6708 0.00003% 5 

40 1 1 0 0 0 1 (6, 6, 6) 2315.5769 2315.5778 0.00004% 5 

50 1 1 0 0 1 1 (6, 4, 4, 6) 2216.0031 2216.0344 0.00141% 5 

60 1 1 1 0 1 1 (6, 4, 4, 4, 6) 2125.1241 2125.1245 0.00002% 5 

70 1 1 1 0 1 1 (6, 6, 5, 6, 6) 2104.5681 2104.5692 0.00005% 6 

 3 

6. Conclusion 4 

In this study, we develop a novel and general discrete network design model formulation and its 5 

global optimal solution algorithm to determine the optimal link addition and link capacity 6 
construction plan in transportation networks. The model relaxes the assumption that the link 7 

capacity for candidate link addition is predetermined and given and treats it as a simultaneous 8 
decision variable, which provides a more general transport network design model. Besides, the 9 
global optimization solution algorithm is developed based on RLT technique, outer-10 

approximation approach and range reduction technique. Numerical tests are implemented to 11 

demonstrate the performance of the proposed model and the solution quality of the algorithm. 12 
However, we have to admit that, at current stage, most global optimal solution algorithms are not 13 
as efficient as local optimal solution methods, and therefore unattractive especially for practical 14 

use. However, it also should be noted that only this type of solution algorithm can guarantee true 15 

global optimal solution of the developed model, thus deserves more attention in the future study.  16 
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 Appendix 1 

Suppose ( , , , )a a a aF x t u p  is the solution to the relaxed VI problem Eq. (62), thus F  also 2 

meets the original VI constraints Eq. (43), i.e., for arbitrary link flows ax  , the following 3 

inequation (A.1) is satisfied.  4 

2

(1 ) 0a a a a a a a a a

a A a A a A a A

T x T R p t x u M x
   

          .     (A.1) 5 

In order to judge whether F  is the solution to the original VI problem and find new corner-6 

points, Luathep et al. (2011) proposed a optimization-based method, which is briefly stated here.  7 

Significantly, constraint (A.1) equals to following inequation: 8 

2

max (1 ) 0
a

a a a a a a a a a
x

a A a A a A a A

T x T R p t x u M x


   

 
       

 
    .  (A.2) 9 

Since F  is known, the first two terms of the left-hand side equation can be treated as constants. 10 

Thus, we have, 11 

2

min (1 ) 0
a

a a a a
x

a A a A

t x u M x


 

 
     

 
  .  (A.3) 12 

That is, if the minimum value of the multinomial is larger than 0, F  is the solution to the 13 

original VI. Hence, an unconstrained linear programming is proposed to find the minimum value 14 

of the multinomial, which is expressed as: 15 

[LP-min] 16 

2

minmin (1 ) .
a

LP a a a a
x

a A a A

Z t x u M x


 

           (A.4) 17 

One can easily solve this LP-min problem to its optimum 
*

ax  by any traditional algorithm, which 18 

is also its global optimal solution considering the global optimality characteristic of linear 19 

programming. Therefore, the condition (A.1) is satisfied for all feasible link flows ax  , that 20 

is, F  is also the solution to the original VI, if 21 

2

* *(1 ) 0a a a a a a a a a

a A a A a A a A

T x T R p t x u M x
   

          . Obviously, otherwise if 22 

2

* *(1 ) 0a a a a a a a a a

a A a A a A a A

T x T R p t x u M x
   

          , F  is infeasible for the original VI 23 

constraints. In this case, 
*

ax  can be added to the set of corner-points because the solution of the 24 

linear programming is always a corner-point of the feasible region  . 25 

 26 

 27 
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