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Introduction
Observations of the spatial and temporal setting of magmatic 

nickel sulfide deposits (or camps comprised of multiple deposits) 
indicate an empirical relationship with major lithospheric boundaries, 
and more specifically, to craton margins [1]. This relationship remains 
poorly documented in the scientific literature. The North China Craton 
(NCC) is the largest nickel producing area in China (Figure 1). Until 
now, two mines have been in production, and numerous other deposits 
have been found along the margin of the NCC. Since the discovery 
of the Jinchuan deposit in 1979, extensive geological exploration has 
been carried out in the NCC region, which led to the recognition of 
the NCC as one of the largest nickel-copper provinces in China. Over 
the last few years, numerous attempts have been made to directly or 
indirectly determine the ages of the nickel-copper provinces [2-5]. 
However, the timing of the magmatic and mineralization events and 
their correlations within the complexes remain unclear

In this study, we present new U-Pb zircon and Re-Os isotopic 
data for the mineralized ultramafic body from the eastern copper-
nickel belt in the Jiao-Liao-Ji Belt of the NCC in order to constrain 
the timing and origin of the mineralization. These new data provide 
important insights into understanding the mineralization processes 
and geodynamic environment of the Chibaisong Ni-Cu ore deposit. 
In addition, an attempt was also made to understand the provenance 
and geodynamic environment of the NCC copper-nickel province. An 
understanding of the mineralizing processes and the geodynamics is 
beneficial for Ni-Cu exploration on other mafic-ultramafic bodies in 
the region and throughout the NCC.

Regional Geology
The NCC is bound to the north by the Central Asian Orogenic Belt 

(CAOB) [6,7] and to the south by the Paleozoic to Triassic Qinling-
Dabie-Sulu orogenic belt [8,9]. The CAOB underwent north- south 
directed subduction, and several episodes of collisions at the Solonker 
suture during the Palaeozoic and accretionary orogenesis from the late 
Proterozoic to the Mesozoic [6,7,10]. To the south, the Qinling-Dabie-
Sulu orogenic belt formed through the continental collision between 
the NCC and the Yangtze Craton in the Triassic [8] (Figure 1). 

The Archean to Paleoproterozoic basement of the NCC has been 
divided into four microcontinental blocks, named the Yinshan, Ordos, 
Longgang and Nangrim Blocks (Figure 1), of which the Yinshan and 
Ordos Blocks are considered to have amalgamated along the EW-
trending Khondalite Belt to form the Western Block at 1.95-1.92 Ga 
[11-14], the Longgang and Nangrim Blocks amalgamated along the 
Jiao-Liao-Ji Belt to form the Eastern Block at ~1.90 Ga [15-21], and 
finally, the Western and Eastern Blocks collided along the Trans-North 
China Orogen to form the coherent basement of the North China 
Craton at ~1.85 Ga [22-26].

The Chibaisong ultramafic-mafic intrusion and associated Ni-
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Abstract
The Chibaisong magmatic Ni–Cu sulfide deposit (Jilin Province, NE China) is located in the Jiao-Liao-Ji Belt of 

the North China Craton. The ore-bearing mafic-ultramafic intrusions intrude the metamorphic rocks of the lowermost 
Sidaolazi Formation of the Anshan Group. SHRIMP zircon U-Pb dating gives a maximum depositional age of 2188 ± 
8 Ma (95% confidence level, MSWD=3.2, n=8) for the host sedimentary rocks of the Chibaisong deposits. Rhenium 
and osmium isotopic analyses of Ni-and Cu-bearing sulfide minerals from the deposit have been used to determine 
the timing of mineralization, the source of osmium, and, by inference, the source of ore metals. Sulfide ore samples 
have Os and Re concentrations ranging from 19 to 490 ppb and from 0.47 to 13.97ppb, respectively. Analyses of 
these data yield a six-point isochron age of 1885 ± 94 Ma. An initial 187Os/188Os ratio of 0.80 ± 0.16 (mean square of 
weighted deviates=0.17) and δ34S values of -1.1 to +0.7‰ for the ores, as well as initial 87Sr/86Sr ratios of 0.703-0.708 
for metalliferous intrusions, suggest a magmatic source for the ores, with the melts dominated by mantle contributions. 
The Chibaisong intrusion was previously considered to have formed under a post-orogenic extensional setting in the 
Early Cretaceous. However, our new Re-Os geochronological result indicates that the Chibaisong mafic-ultramafic 
intrusion, along with the Cu-Ni deposit, was related to a Paleoproterozoic extensional event, not resulting from an Early 
Cretaceous post-orogenic extension as previously considered.

The Paleoproterozoic Chibaisong Mafic-Ultramafic Intrusion and 
Cu-Ni Deposit, North China Craton: SHRIMP Zircon U-Pband Re-Os 
Geochronology and Geodynamic Implications
Han Chun-Ming1*, Wu Fu-Yuan1, Xiao Wen-Jiao1, Zhao Guo-Chun2, Ao Song-Jian1, Zhang Ji-Een1, Wan Bo1, Qu Wen-Jun3 and Du An-Dao3

1Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
3National Research Center of Geoanalysis, Beijing, 100037, China

http://dx.doi.rg/10.4172/2169-0049.1000116
http://dx.doi.rg/10.4172/2169-0049.1000116


Citation: Chun-Ming H, Fu-Yuan W, Wen-JiaoX, Guo-Chun Z, Song-Jian A, et al. (2014) The Paleoproterozoic Chibaisong Mafic-Ultramafic Intrusion 
and Cu-Ni Deposit, North China Craton: SHRIMP Zircon U-Pband Re-Os Geochronology and Geodynamic Implications. J Geophys Remote 
Sensing 3: 116. doi:10.4172/2169-0049.1000116

Page 2 of 8

Volume 3 • Issue 1 • 1000116
J Geophys  Remote Sensing
ISSN: 2169-0049 JGRS, an open access journal 

 
Cu-Ni deposits: 1=Jinchuan; 2=Ebutu; 3=Kebu; 4=Huanghuatan; 5=Xiaonanshan; 6=Tunaobao; 7=Hongshiwan; 8=Hongshila; 9=Tongdongzi; 10=Chaluzi; 
11=Jianchaling; 12=Sandaogang; 13=Hongqiling; 14=Piaohechuan; 15=Changren; 16=Chibaisong; 17=Yulonggou; 18=Lashuixia; 19=Jinpen; 20=Zhouan; 
21=Hongdonggou. 

Figure 1: Tectonic subdivision and major Cu-Ni deposit of the North China Craton [22].

Cu ore deposit are located in the Paleoproterozoic Jiao-Liao-Ji Belt 
in the Eastern Block of the NCC, which consists predominantly of 
Paleoproterozoic metamorphic basement rocks, overlain by Paleozoic 
and Mesozoic sedimentary cover (Figure 2). The Archean basement 
rocks are mainly composed of supracrutals (Anshan Group) and 
tonalitic-granodioritic gneisses metamorphosed in granulite- and 
amphibolite-facies, with minor two mica granite and hypersthene 
granite [27]. The Paleoproterozoic rocks are dominated by supracrustal 
rocks, named the Ji’ an and Laoling Groups, and minor ultramafic, 
mafic and granitic intrusions and dykes [27]. 

Local geology
The host rocks of the Chibaisong Cu-Ni deposit are metamorphic 

rocks of the Sidaolazi Formation of the Archean Anshan Group, 
which consists predominantly of biotite-amphibole-plagioclase 
gneiss, migmatite and amphibolite, all of which show strong ductile 
deformation (Figure3). The Chibaisong intrusions, extending 4800 m 
long along strike, with a width between 40 and 140 m (Figure 3), and 
a depth of 1000 m (Figure 4), are composed mainly of diabase gabbro, 
livinenorite-gabbro, plagioclase lherzolite, norite-gabbro and gabbro-
porphyrite [28]. The Cu-Ni sulfide ores are hosted in the plagioclase 
lherzolite and norite-gabbro units. The orientation of the orebody is 
almost consistent with that of the intrusion, with its northern part 
striking 5-10° and dips to the SEE at 55 to 86°, and its southern part 
dipping to the NWW at 63 to 85° [28]. The orebody occurs as a tabular 
or bedlike unit, with a maximum length up to 200 m and a thickness of 
up to 40 m at the surface. The exploratory profile section reveals that 
the ore body extends as much as 1000m down-dip.

Ore minerals are dominantly pyrrhotite, chalcopyrite, pentlandite, 
violarite, pyrite and magnetite. Associated noble metal-bearing 
minerals are melonite, michenerite, bitepalladite, sperrylite, hessite and 
electrum. Gangue minerals are mainly olivine, pyroxene, plagioclase, 
hornblende, biotite, chlorite and serpentinite.

Ore minerals are characterized by euhedral, subhedral, anhedral, 
subhedral-anhedral, porphyritic, corrosion, relict-replacement, 
reaction rim, pseudomorphic and skeletal crystal textures. Ore 
structures are mainly massive, vein, veinlet-disseminated, veinlet-
mesh, or sparsely disseminated. The mineralization shows a circular 
zoning pattern, from high-grade massive ore in the center outwards 
to disseminated ores, gradually changing into sub-econonomic ores.

Wall-rock alteration related to mineralization in the Chibaisong 
Cu-Ni deposit includes chloritization, sericitization, carbonatization, 
serpentinization. Characteristic minerals in the alteration zones are 
chlorite, serpentine, sericite and carbonate.

Sampling andAnalytical Techniques
Sampling

Sample collection: A fresh 40 kg olivine-norite-gabbro specimen 
used to obtain SHRIMP zircon U-Pb ages was collected in the eastern 
part of No.1 ore body, with coordinates of 125°42′38′′E, 41°40′07′′N.

For Re-Os dating, we collected 6 samples from fresh open-pit 
mining faces of the Chibaisong deposit. Samples were collected at a 
depth of 300 m in the eastern part of ore body (Figure 3).
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Sample selection: Zircon grains from sample Y041 were separated 
at the Laboratory of the Institute of Regional Geology and Mineral 
Resources Survey in Hebei Province. The gneiss sample was jaw-
crushed, split, and ground to 100 μm using conventional methods, 
then primarily separated using electromagnetic and heavy liquid 
techniques. Finally, grains were handpicked according to their euhedral 
shapes and transparency, using a binocular microscope. Zircons were 
separated from the crushed samples using heavy liquids and a Frantz 
magnetic separator. Approximately 80 zircons from sample Y041 
were handpicked, mounted in epoxy resin and polished until the grain 
centers were exposed.

Single sulfide grains were also selected at the above-mentioned 
laboratory. Crude ore samples were jaw-crushed, elutriated by water, 
separated by Frantz magnetic techniques, panned by alcohol, and finally 
hand sorted under the microscope. The weight of six pure pyrrhotite 
samples was about 5g each. To avoid Re contamination from steel and 
tungsten carbide crushing equipment, the pure pyrrhotite powders 
from the Fujia deposit were pulverized to b200-mesh grain size using 
a ceramic jaw crusher and agate mill. The purity of the samples was 
greater than 99% prior to Re–Os isotopic analyses.

Analytical procedures
Cathodoluminescence (CL) images: The CL images were obtained 

using a CAMECA SX50 microprobe at the Institute of Geology and 
Geophysics, Chinese Academy of Sciences in Beijing, in order to 
identify internal textures and choose potential target sites for later U–
Pb analyses. The working conditions during CL imaging were at 15 kV.

SHRIMP U–Pb isotope analytical techniques: Zircon-U-Th-
Pb analyses were performed using the Sensitive High-Resolution Ion 
Microprobe (SHRIMP II) at the Beijing SHRIMP Laboratory, Chinese 
Academy of Geological Sciences. Details of the analytical methods and 
procedures for zircon dating using SHRIMP have been described by 
[29-32].  Analytical target sites within zircons were chosen for SHRIMP 
U-Pb zircon dating. Due to small amounts of 207Pb formed in young 
(i.e., ~1000 Ma) zircons, which results in low count rates and high 
analytical uncertainties, the determination of the ages for young zircons 
has to be based primarily on their 206Pb/238U ratios; older zircon ages are 
derived from 207Pb/206Pb ratios [33]. During the SHRIMP analyses, the 
intensity of the preliminary ion current was 2.5-4.5 nA and spot size 
averaged 25-30 μm, using peakjumpingscanningmode. The measured 
206Pb/238U ratios were used for inter-element fractionation corrections 
with TEMORA zircon standards (417 Ma; 206Pb/238U=0.06683). The SL 
13 zircon standard was used for calibration of U, Th and Pb contents. 
Common lead corrections were based on measured 204Pb assuming that 
the 206Pb/238U-206Pb/232Th age was accordant. The standard sample was 
measured after every three points, in order to insure the reliability 
of the measured results and then to monitor the stability of the 
instrument. The isotopic ratio and element content data were handled 
using ISOPLOT programs [34]. The age uncertainties are cited as 1σ, 
and the weighted average ages of 206Pb/238U used have a confidence level 
(2σ) of 95%. 

Re–Osisotope analytical technique
Re-Os isotopic analyses were performed at the National Research 

 Figure 2: Geological map of the eastern part of Jilin province [27].

Figure 3: Geological and showing sampling locations map No. 1 ore body 
of the Chibaisong Cu-Ni deposit [28].
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Center of Geoanalysis. The details of the chemical procedure are 
described by [35-37], and are briefly summarized as follows.

Enriched 190Os and enriched 185Re were obtained from the Oak 
Ridge National Laboratory, USA. A Carius tube (a thick-walled 
borosilicate glass ampoule) digestion was used. The weighed sample 
was loaded in the Carius tube through a thin necked long funnel. The 
mixed 190Os and 185Re spike solutions and 2 ml of 12M HCl and 6 ml of 
15 M HNO3 were loaded while the bottom part of the tube was frozen 
at -80°C to -50°C in an ethanol-liquid nitrogen slush; the top was then 
sealed using an oxygen-propane torch. The tube was then placed in a 
stainless-steel jacket and heated for 24 hours at 230°C. Upon cooling, 
the bottom part of the tube was refrozen, the neck of the tube was 
broken, and the contents of the tube were poured into a distillation 
flask and the residue was washed out with 40 ml of water.

Osmium was distilled at 105-110°C for 50 minutes and trapped in 
10 ml of water. The residual Re-bearing solution was saved in a 150 ml 
Teflon beaker for late Re separation. The water trap solution was used 
for ICP-MS (TJA X-series) determination of the Os isotope ratio.

The Re-bearing solution was evaporated to dryness, and 1 ml of 
water was added twice, followed by heating to near-dryness, the 10 ml 
of 20% NaOH was added to the residue followed by Re extraction with 
10 ml of acetone in a 120 ml Teflon separation funnel. The water phase 
was then discarded and the acetone phase washed with 2 ml of 20% 
NaOH. The acetone phase was transferred to a 120 ml Teflon beaker 

that contained 2 ml of water. After evaporation to dryness, the Re was 
picked up in 1 ml of water that was used for the ICP-MS determination 
of the Re isotope ratio. Cation-exchange resin was used to remove Na 
when the salinity of the Re-bearing solution was more than 1 mg/ml 
[38].

The ICP-MS analysis was conducted on a TJA PQ ExCELL ICP 
mass spectrometer. The instrument was optimized to: >5×104 cps for 
1 ng ml-1115 In and >5×104 cps for 1 ng ml-1238U. Data acquisition was 
performed in peak-jumping mode, 3 points/u; dwell time=15 ms/point 
and number of scan=200 for 5 ppb of Re in solution. The reproducibility 
by ICP-MS is 0.3% (RSD, 2S, n=5); by using water as an absorbent for 
OsO4, the sensitivity of Os by ICP-MS increases significantly. For 0.2 
ppb of Os solution, the reproducibility is 0.3% (RSD, 2S, n=5).

If a minor 190Os signal was observed when measuring Re, the 187Re 
signal was appropriately corrected for 187Os using the 187Os/190Os ratio of 
the spiked Os solution. Conversely, if a minor 185Re signal was observed 
while analyzing the Os-bearing solution, 187Os was appropriately 
corrected for 187Re using the measured 185Re/187Re of the spiked sample. 
The corrections were generally minor and constituted no more than 
0.1% of the isotope signal. The maximum correction percentage that we 
used was always less than 1%.

The mass fractionation can be corrected using an interlaboratory 
isotope reference standard. Using the λ238U value of [39] and λ235value 
of [40], a value for λ187Re of 1.6689 ± 0.0031×10-11a-1 was determined. 
This value is nominally higher (ca. 0.1% and ca. 0.2%) than the value 
determined by [40], but is within the calculated uncertainty. So, we 
used the λ187Re1.666 ± 0.005×10-11a-1 determined by [40].

 

Figure 4: Geologic section of No. 1 intrusion at Chibaisong Cu-Ni deposit 
[28].

Figure 5: CL images, localities of SHRIMP measurement spots and 
206Pb/238U apparent ages of zircons from olivine-norite-gabbro of the 
Chibaisong intrusion in eastern Jilin, NE China.
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Average blanks for the total Carius tube procedure as described 
above were ca. 10 pg Re and ca. 0.1 pgOs. 187Os was not detected. Three 
reference materials were used to check the analytical results. 

The uncertainty in each individual age determination was about 
1.02% including the uncertainty of the decay constant of 187Re, 
uncertainty in isotope ratio measurement, and spike calibrations. 
The decay constant used for 187Re of 1.666×10-11a-1 has an absolute 
uncertainty of ± 0.017 (1.0%) [40].

Results
SHRIMP U–Pb dating results

Twelve analyses of 12 grains from Chibaisong olivine-norite-
gabbro were analyzed on the CZ3 standard (Figure 5). Of these analyses 
(Table 1), two age populations are identified (Figure 6), of which one 
population consists of eight grains gave a Th/U ratio larger than 4.0, 
indicating an igneous origin, and yield a 207Pb/206Pb weighted average 
age of 2188 ± 8 Ma, which is considered as the best estimate of the 
eruption age of this rock. Another age group consists of four grains 
with Th/U ratios of less than 1.0, these zircons have Th and U contents 
and Th/U ratios ranging respectively from 84 to 393 ppm, 175 to 823 
ppm and 0.33 to 0.48, which are different from typical metamorphic 
zircons and are thus regarded to be detrital zircons that suffered 
variable Pb loss in metamorphism. Thus, the concordant age of 2188 

± 8 Ma may be the best constraint for estimating the maximum age of 
the Chibaisong deposit.

Re–Os dating results
The abundance of Re and Os and the osmium isotopic compositions 

of the Cu-Ni sulfide ores from the Chibaisong mine are shown in Table 
2. Re and Os concentrations for the massive sulfide of the Chibaisong 
deposit are high, ranging from 0.47 to 13.97 ppb Os and 19 to 490 ppb 
Re (Table 2). The analyses on six samples define a Re-Os isochron with 
an age of 1885 ± 94 Ma, with initial 187Re/188Os ratio of 0.80 ± 0.16 and 
a mean square of weighted deviation (MSWD) of 0.17 (Figure7). The 
isochron age was calculated by means of the 187Re decay constant of 
1.666×10-11/year [40] using the ISOPLOT software (Model 3; [34]). 
This isochron age can reflect the ore-forming age of the Chibaisong 
Cu-Ni deposit. The combination of high Os concentrations coupled 
with low Re/Os ratios is not typical of most low-tenor, basalt hosted 
magmatic sulfides (e.g. Duluth Complex), which exhibit much lower 
Os concentrations, coupled with higher Re/Os ratios [41]. This suggests 
a parental magma for the Chibaisong sulfides that had both a higher Os 
concentration and a lower Re/Os ratio than a typical basaltic magma.

Discussion
Initial 187Os/188Os and source of ore-forming metals

The Re-Os isotope system has been recognized as a geochemical 
tool not only for directly dating mineralization but also for defining the 
ore forming process of Cu-Ni sulfide deposits, and thus is a powerful 
tracer of sulfide ore formation and can be a highly sensitive monitor 
of the extent of crustal involvement during ore genesis [42,43]. Since 
the initial 187Os/188Os ratios of the crust (0.2-10) are higher than those 
of the mantle (0.11-0.15, [44]), 187Os/188Os ratios can be used to readily 
discern different sources [45]. 

The Chibaisong Cu-Ni sulfides ores possess an initial 187Os/188Os 
ratio of 0.80 ± 0.16 (Figure 7), which is considerably greater than 
chondritic or value those of the mantle 187Os/188Os ratio at 1885 Ma 
[35,46,47], indicating that crustal components were involved in the Os 
source of the Chibaisong ores.

In order to describe the Os isotopic composition at a given time, a 
parameter of γOs was introduced by [46-48].

γOs (T)=100[187Os/186Os]sample(T)/187Os/186Os]chondrite(T)-1].

Owing to high Re/Os ratios in the crust, γOs will have a large 
positive value with increasing crustal material entering the magmatic or 
ore-forming systems, and, by contrast, Re-loss in the systems can cause 

 

Figure 6: Zircon SHRIMP U-Pbconcordia diagram of olivine-norite-gabbro 
from the Chibaisong intrusion.

Spot U (μg/g) Th (μg/g) Pb (μg/g) Th/U Isotopic ratios Age (Ma)
  207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U 207Pb/235U

Y041-1 411.80 2797.9 142.53 6.79 0.1361 ± 05 7.554 ± 173 0.4025 ± 91 2181 ± 42 2178 ± 07
Y041-2 864.48 4227.2 300.92 4.89 0.1371 ± 04 7.655 ± 174 0.4050 ± 91 2192 ± 42 2191 ± 05
Y041-3 823.65 393.17 194.20 0.48 0.1404 ± 30 5.306 ± 165 0.2741 ± 62 1561 ± 31 2232 ± 37
Y041-4 397.54 132.28 116.95 0.33 0.1269 ± 06 5.990 ± 140 0.3423 ± 78 1898 ± 37 2056 ± 09
Y041-5 562.49 230.91 145.42 0.41 0.1231 ± 06 5.101 ± 117 0.3005 ± 68 1694 ± 34 2002 ± 08
Y041-6 692.64 4968.8 229.77 7.17 0.1366 ± 05 7.270 ± 167 0.3861 ± 88 2105 ± 41 2184 ± 06
Y041-7 410.28 2135.6 148.54 5.21 0.1375 ± 05 7.985 ± 183 0.4213 ± 95 2267 ± 43 2195 ± 06
Y041-8 175.92 84.52 58.84 0.48 0.1357 ± 09 7.280 ± 174 0.3891 ± 90 2119 ± 42 2173 ± 11
Y041-9 1025.2 8095.2 353.31 7.90 0.1378 ± 03 7.623 ± 172 0.4011 ± 90 2174 ± 41 2200 ± 04
Y041-10 348.38 2169.1 123.73 6.23 0.1367 ± 06 7.789 ± 180 0.4133 ± 94 2230 ± 43 2186 ± 07
Y041-11 746.13 7474.5 249.67 10.0 0.1369 ± 05 7.351 ± 167 0.3894 ± 88 2120 ± 41 2189 ± 06
Y041-12 1126.3 14884 395.32 13.2 0.1359 ± 03 7.652 ± 173 0.4085 ± 92 2208 ± 42 2175 ± 04

Table 1: SHRIMP zircon U–Pb analytical data of olivine-norite-gabbro from the Chibaisong intrusions.
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This implies that ores and melts at the Chibaisong deposit were all 
dominated by mantle sources, although some minor amount of crustal 
material may have been assimilated into the melts.

Age of mineralization and its geodynamic significance
The Chibaisong intrusion was previously considered to have been 

linked to a post-orogenic extensional setting in the Early Cretaceous 
[5]. However, our new SHRIMP and Re-Os geochronological results 
indicate that the Chibaisong mafic-ultramafic intrusion, along with the 
Cu-Ni deposit, was probably related to the Paleoproterozoic mantle 
plumes or superplume, rather than in the Early Cretaceous post-
orogenic extension setting.

This new SHRIMP and Re-Os age (1885 ± 94Ma) for sulfide 
mineralisation at the base of the Chibaisong intrusion is marginally 
younger than the previously determined ages of the nearby Chibaisong 
intrusion (2188 ± 8Ma). Working on the geochronology of dyke swarms 
in the NCC, Peng et al. [53] identified four dyke suites with SHRIMP 

 

Figure 7: Re-Osisochron of the Cu-Ni sulfide ores of the Chibaisong 
deposit, northeastern China.

 Figure 8: Common Os concentration (Os concentration at the time of ore 
formation) vs. Re/Os, showing data for a PGE-rich sulfide concentrate from 
the J-M reef, Lower Banded series and basalt associated Cu-Ni sulfide ores 
from the basal and lower ultramafic series, Stillwater Complex [56]; Duluth 
Complex [57], Sudbury [58], and Noril’sk-Talnakh [46]; Komatiite-associated 
Ni sulfide ores from Kambalda [42]; Archean lithospheric mantle xenoliths 
from the Kaapvaal and Siberian Cratons [48]; mantle melts, which include 
komatiites [42,49] and basalts [60-62]; Lewisian lower crustal gneisses; 
metalliferous S-rich sediments; and chondritic mantle abundances [48].

Sample Sample
weight (g)

Re(ppb) 
(2σ)a

Common Os
(ppb)(2σ)a

187Os (ppb) 
(2σ)

Re/Os 187Re/188Os (2σ) 187Os/188Os 
(2σ)b

187Os/188Os 
(i)

γOs

CBX-1 0.300 19.2 7(0.15) 0.81 (0.01) 0.47(0.01) 23.70 114.5 (1.4) 4.458 (0.041) 0.21 87.34
CBX-3 0.300 302.1 (2.3) 48.84 (7.40) 11.24 (1.67) 6.19 29.87 (4.53) 1.768 (0.375) 0.66 488.78 
CBX-5 0.300 490.2 (5.5) 44.31 (5.87) 13.97 (1.81) 11.06 53.43 (7.10) 2.422 (0.448) 0.44 292.52  
CBX-6 0.300 234.7 (2.1) 14.75 (1.06) 6.191 (0.416) 15.91 76.86 (5.54) 3.226 (0.315) 0.37 230.07
CBX-7 0.300 156.6 (1.2) 19.30 (1.57) 4.977 (0.386) 8.11 39.18 (3.2) 1.982 (0.222) 0.53 372.81 
CBX-9 0.300 147.5 (2.1) 19.7 2 (0.91) 5.102 (0.228) 7.48 36.20 (1.70) 1.989 (0.126) 0.65 479.86 

(1) Os in Re/Os is common Os. Common Os and common 187Os are calculated according to the Nier value.
(2) The calculation formula is γOs=100[(187Os/188Os) sample (T)/(187Os/188Os) chondrite (T)-1], where (187Os/188Os) chondrite=0.09531+0.40186 (eλRe*4.558E9-eλRe*t)=0. 1120953 
at 2188 Ma, using the 187Re decay constant λ=1.666×10-11/year;
aRe and Os uncertainty <1% at 2 standard errors of the mean, including error samples and spike weighting, spike calibration, mass spectrometric analysis, fractionation 
correction and measured isotope ratios in the samples.
b187Os/188Os uncertainty <1% at 2 standard errors of the mean, including error in mass spectrographic analysis, fractionation correction and measured isotope ratios in the 
samples.

Table 2: Re-Os isotope data for the Cu-Ni sulfide ores from the Chibaisong deposit.

negative γOs [49]. According to the formula of [48], and with a decay 
constant of 1.666×10-11/year [40], the γOs values for the Chibaisong Cu-
Ni sulfide ores were calculated based on the isochron age of 1885 ± 94Ma 
and their corresponding initial 187Os/188Os ratios. Table 2 shows that the 
γOs values for the Chibaisong Cu-Ni sulfide ores range from 87 to 488. 
The initial 187Os/188Os ratio of 0.80 ± 0.16 for the Chibaisong sulfides is 
higher than that of 0.1089 ± 0.00035 reported for the uncontaminated 
Archeankomatite-related Cu-Ni sulfide ores [50]. These data reflect 
that mafic-ultramafic magmas were mixed with crustal components 
during the uprised of the magma or within magma chambers in the 
crust. This process is analogous to the crustal contamination of the 
Voisey’s Bay magma by the Tasiuyakparagneiss where siderophile and 
chalcophile elements were selectively incorporated and the case of the 
Jinbulake intrusion in Xinjiang where crustal sulfides were selectively 
incorporated to magmas [51]. Such features can also be seen in the 
common Os vs. Re/Os diagram (Figure 8).

Fu [52] reported the δ34S values of sulfides from the Chibaisong 
ore body range from -1.1 to +0.7‰, with a mean of -0.03‰, and δ18O 
values of plagioclase from the Chibaisong intrusion range from +6.1 
to +7.7‰, with a mean of +7.15‰ [52]. The initial 87Sr/86Sr ratios of 
the intrusions vary from 0.703 to 0.708 [52]. These data support the 
hypothesis that the ore-forming metals were derived mainly from a 
mantle source and the crust was not a major contributor of volatiles. 
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U-Pb ages of 2147 ± 5, 1929 ± 8, 1834 ± 5 and 1778 ± 3 Ma. On the basis 
of this geochronology [52], Peng et al. [53] suggested that the older 
group of dyke suites could have been related to the amalgamation of 
the NCC to the Columbia supercontinent, whereas the younger suites 
were related to the breakup of Columbia and a mantle plume event 
at 2147-1778 Ma [52]. Mafic dykes in the Chibaisong region, have 
SHRIMP U-Pb and LA-ICP-MS ages of 2188 ± 8 and 2145 ± 19 Ma, 
respectively, confirming the Paleoproterozoic rifting processes within 
the NCC. The Chibaisong ultramafic-mafic intrusion was located 
within the Paleoproterozoic Jiao-Liao-Ji Belt which is considered as an 
intercontinental rift zone that developed about 2.2 Ga and the rifting 
basin was closed at about 1.93-1.90 Ga, followed by a post-orogenic 
extensional event at 1.88-1.85 Ga [15-17,53,54]. The Chibaisong 
ultramafic-mafic intrusion was likely the earliest product of this post-
orogenic extensional event.

Conclusions
i. Zircon SHRIMP U–Pb ages of the Chibaisongmagmatic Ni–Cu 

sulfide deposits indicate a maximum depositional age of 2188 ± 8 Ma. 
This result is consistent with the geological fact that ore-bearing mafic-
ultramafic intrusions intruded into the Sidaolazi Formation of the 
Anshan Group. 

ii. Six massive Ni–Cu sulfide ores of the Chibaisong deposit yielded 
a Re-Os isotopic isochron age of 1885 ± 94Ma, indicating that the ore-
forming age was Paleoproterozoic.

iii. Massive Ni–Cu sulfide ores of initial 187Re/188Os ratio of 0.80 ± 
0.16, and their γOs values ranged from +24 to +622, indicating that 
ore-forming materials came mainly from the mantle with crustal Os 
contamination, suggesting a mixture of mantle and crustal sources.

iv. The Chibaisong Cu-Ni deposit was located within the 
Paleoproterozoic Jiao-Liao-Ji Belt which was the earliest product of the 
post-orogenic extensional event.
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