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Abstract

Phosphorylation is a fundamental biochemical reaction that modulates protein activity in cells. While a single
phosphorylation event is relatively easy to understand, multisite phosphorylation requires systems approaches for deeper
elucidation of the underlying molecular mechanisms. In this paper we develop a mechanistic model for single- and multi-
site phosphorylation. The proposed model is compared with previously reported studies. We compare the predictions of
our model with experiments published in the literature in the context of inflammatory signaling events in order to provide a
mechanistic description of the multisite phosphorylation-mediated regulation of Signal Transducer and Activator of
Transcription 3 (STAT3) and Interferon Regulatory Factor 5 (IRF-5) proteins. The presented model makes crucial predictions
for transcription factor phosphorylation events in the immune system. The model proposes potential mechanisms for T cell
phenotype switching and production of cytokines. This study also provides a generic framework for the better
understanding of a large number of multisite phosphorylation-regulated biochemical circuits.
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Introduction

Phosphorylation is the process by which a phosphate group is

added to a protein. It leads to either activation or deactivation of a

great number of proteins and represents a major building block for

network regulation [1]. The addition of a phosphate group can

occur either on a single site or on several sites, the latter is known

as the multisite phosphorylation [2]. Multisite phosphorylation

plays a key role in T and B cells activation. Aberrations in the

phosphorylation mechanism are reported to give rise to autoim-

mune diseases [3–5].

Numerous studies designed to understand phosphorylation-

mediated regulatory mechanisms have been reported recently.

Early models employed Michaelis-Menten kinetics of the simplest

phosphorylation reaction [6]. This model was expanded to include

multiple phosphorylation reactions and demonstrated how these

could enhance the sensitivity of biochemical systems [7]. It was

also reported that such a system represents a switch when the total

concentration of the substrate protein significantly exceeds the

concentration of the enzyme [8].

The classical models assume that it is possible to ignore the

concentrations of the Michaelis complexes in those cases where the

total concentration of protein substrate significantly exceeds the

concentrations of the kinase and the phosphatase. This approach

was used as a basis in many biochemical networks with

phosphorylation-dephosphorylation reactions [9–11] and was later

extended to multisite phosphorylation [12,13].

The proportion of maximally phosphorylated substrate as a

function of the kinase and phosphatase activities was recently

determined to show that steeper switch-like regulation is due to

increasing of number of phosphorylation sites [14]. Moreover, the

presence of multiple phosphorylation sites enhances the probabil-

ity of bistable behavior of the system when tethered with scaffold

proteins [15]. The properties of a bistable switch have recently

been investigated to conclude that the mechanism must be

distributive to generate multiple steady states and that bistability is

more likely with a large number of phosphorylation sites. The

phenomenon of ultrasensitivity has also been reported to increase

linearly with the number of phosphorylated sites [16].

Phosphorylation plays a critical role in the regulation of the

immune system. However, there is a clear gap in the mechanistic

understanding of the role of multisite phosphorylation in this

process. Phosphorylation governs protein signaling via Signal

Transducers and Activators of Transcription (STAT) proteins

[17–19].

The STAT proteins are critical for many fundamental cellular

processes such as proliferation, differentiation, cell growth and

survival [20]. They operate in the ubiquitous JAK/STAT
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pathway. There are seven mammalian STAT proteins each with a

specific role in the immune system. A considerable amount of

experimental evidence shows that dysfunction in the JAK/STAT

signalling mechanisms leads to inflammatory diseases [21–26].

The STAT proteins are activated by phosphorylation of their

C-terminal transactivation domain (CTD) by Januse Kinases

(JAKs) at Tyr701 for STAT1 in response to type II interferons [27]

and Tyr705 for STAT3 in response to Interleukin 6 or 10 [28,29].

Phosphorylation at Tyr705 leads to the dimerization [30] and

regulates the activation of STAT3 [31–33]. There are three classes

of STAT negative regulators: Suppressors of Cytokine Signaling

(SOCS), Protein Inhibitors of Activated STATs (PIAS) and the

simplest class Protein Tyrosine Phosphatases (PTPs), for instance

SHP-1, which reverses the activity of the JAKs [18,34].

Interferon Regulatory Factor 5 (IRF-5) is a latent transcription

factor involved in autoimmunity [35]. IRF-5 is known to contain

six phosphorylation sites: Thr10, Ser158, Ser309, Ser317, Ser451

and Ser462, but only the last two have so far been shown to be

functional [36,37].

Several models for STAT3 and IRF-5 phosphorylation as part

of larger models have been published recently. A classical

approach for the phosphorylation of STAT3 by JAK has been

employed in [38]. Another report proposed sigmoidal Hill

functions for phosphorylation of STAT3 [39]. An explicit

mathematical model for IRF-5 phosphorylation is not currently

available, but the phosphorylation of IRF-3 as part of the TLR4

pathway has been considered [40].

The cells that differentiate in the thymus and are involved in cell

mediated immunity are known as T cells. They circulate in the

lymphoid organs and the blood in the form of naive T cells, which

have not been in contact with antigens yet. After the interaction

with the antigen the naive CD4+ T cells are activated and can

differentiate into the specific T cell phenotypes, namely T helper 1

(Th1), Th17 and regulatory T cells (Tregs). Each of these

phenotypes has its own function in the regulation of the immune

response and a specific cytokine signature. Th1 and Th17 cells

play a critical role in the regulation of the activity of the immune

response and inflammation. Tregs are known for their anti-

inflammatory properties and for maintaining the immune

tolerance. Th1 cells are defined by expressing IFN-c, Th17 cells

by IL-17 and Tregs by IL-10 [41,42]. The specific phenotype is

induced by the production of the specific cytokines. For example

Th1 is induced by IL-12, Th17 by IL-6 and Tregs by TGF-b.

These cytokines activate specific transcription factors, involved in

the differentiation of the T cell subsets [43]. Thus, the

differentiation of T cells is a complicated process involving a

complex scheme of regulation by cytokines and transcription

factors. In this work we focus on two of them, IRF-5 and STAT3

assuming the underlying mechanism of the activation of other

IRFs and STATs is similar to the one we propose here.

In this study a new model for multisite phosphorylation has

been developed. The model has been compared with previously

reported models [12–16] in the context of experimental data for

intracellular signaling of the inflammatory circuits [44,45].

Specifically we applied the model to investigate the underlying

molecular mechanisms of STAT3 and IRF-5 signaling pathways.

We employed the developed model to investigate the parametric

sensitivity of the inflammatory circuits in response to various

inflammatory co-stimuli. This analysis was performed in compar-

ison with the previously proposed mathematical models for

multisite phosphorylation [12–16]. We show that the applicability

of earlier models [12–16] is limited with respect to understanding

signaling in the immune system.

Results

A new model for multisite phosphorylation
In this study, we developed a new mathematical model for

multisite phosphorylation signaling. The model predicts probabil-

ities for a protein to be phosphorylated at various phosphorylation

sites as a function of the kinase activity. The newly developed and

previously reported models were compared with the experimental

data for the transcriptional regulation of the STAT and IRF-5

proteins.

It has been shown that IRF-5 contributes to the polarization

and plasticity of macrophages [44]. Pathogens such as bacteria

and viruses cause the activation of the Toll-Like Receptors (TLRs).

This signaling leads to the activation of IRF-5 [46] and the

production of pro-inflammatory interleukins IL-6, IL-12 and IL-

23 [44,47]. These cytokines are able to activate STAT3 and result

in the Th17 differentiation [45,48]. Treg cells then can switch to

Th17 cells [49] which in turn then can switch to Th1

subpopulation [50]. In this study we propose a model based on

the reported experimental data according to which different types

of signals result in different types of immune response. Figure 1

schematically represents an experimental-data based model for the

role of IRF-5 and STAT3 in T cell fate determination. Due to the

highly competitive nature of the pathways of the scheme any

disturbances in the mechanism may lead to the enhancement of

the role of other cytokines and formation of different types of T

cells. Such perturbations are schematically shown by the patterns

on right for IRF-5 and on left for STAT3 and highlighted by the

red glow while the normal regulation is highlighted by green.

Since the classical approach [6] offers rather limited representa-

tion of the underlying mechanism, it potentially leads to somewhat

incorrect interpretation of the experimental data. The proposed

model offers more physiologically accurate description of the role

of multisite phosphorylation regulation of the T cell differentiation.

Figure 2 shows the model predictions for the normalized steady-

state activities of the phosphorylated STAT3 proteins denoted by

STAT3p (Figure 2A) and highlights the differences of the

predictions for the phosphorylated STATs between the biochem-

ically detailed model and previous simplified model [6]. The

model proposed in this paper is consistent with the experimental

observations of the phosphorylation events [44–48,50] summa-

rized in Figure 1 and predicts the mechanisms for the role of SHP-

1 in modulation of the signal transduction via STATs [44,45]. At

the same time, some of the predictions of the presented and earlier

models partially coincide for those cases when the JAKT kinase

and the SHP-1T phosphatase concentrations are significantly

smaller than the total concentrations of STAT proteins (STAT3T).

However the model predictions differ when the corresponding

concentrations are similar.

The figures show that the system may operate in a switch-like

manner with an increasing concentration of JAKT kinase, which

leads to the ultrasensitivity that is characterized by the concen-

trations of STAT3p being more sensitive to change in stimulus

than would be expected from a Michaelis-Menten response [6].

This all-or-none characteristic of the response is observable not

only in this particular system but in other cell systems such as

Xenopus Oocyte extracts [51,52], the glycogen cascade system

[53], and ligand-receptor complexes [54].

Figure 2B shows the normalized concentration of phosphory-

lated STAT3 as a function of the kinase to phosphatase ratio (total

amounts of JAK and SHP-1, respectively). The model predicts

that the degree of STAT3p activity depends on the ratio of the

total STAT3 and SHP-1 concentrations. This prediction differs

from the previous study [6], where the derived formula for
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phosphorylation could not reproduce this effect under certain

physiological conditions. At the same time, the model predictions

virtually coincide with the predictions from [6] if the concentration

of SHP-1T is significantly smaller than STAT3T. However, our

model offers significantly different predictions for comparable or

higher phosphatase concentrations than STATs, consistent with

the T cell phenotype dependence on intracellular phosphorylation

signaling summarized on Figure 1 [44–48,50]. The proposed

results are significant, as the relative ratio of STAT3 and SHP-1

has been shown to be critical in T cell breast lymphoma and

Hepatocellular Carcinoma pathologies [55,56].

Our calculations suggest that if the STAT3T and SHP-1T

concentrations are comparable, the phosphorylated STAT3

species (STAT3p) increase as a function of the ratio of the forward

phosphorylation reaction rate, kP, to the forward dephosphory-

lation rate, kD (Figure 2C). The introduction of the kinase-protein

and/or phosphatase-protein complexes enables additional regula-

tory capacity of the STAT signaling events. While the simplified

model predicts earlier or later STAT activation on the relative

kinase/phosphatase activity scale, the new model suggests

additional regulatory steps taking place via modulation of the

total amplitude. This result is critical from the immunological

point of view, as it explains some aspects of the functional plasticity

of T cell phenotypes. According to our model, T cell populations

may undergo different transcriptional activation events in response

to the same stimuli due to different kinase and phosphatase activity

levels. Furthermore, since the kinase and phosphatase activities are

subject to short and long term modulation, this gives rise to

possible phenotype switching. It is critical to highlight that these

effects can be described using the proposed detailed phosphory-

lation reaction model only. The range of the tested parameters

suggests that the differences between this and the other models are

due to the structure of the model rather than the parameters

(Figure 2C and Figure 2D).

Our analysis suggests that the STAT3 phosphorylation system

with switch-like characteristics depends on the parameters of the

model. The approach proposed by Goldbeter and Koshland [6] is

only applicable for limited physiological conditions when the

concentration of JAKT and SHP-1T are significantly smaller than

that of STAT3T. While these situations can occur in nature, most

living cells exhibit comparable concentrations of enzymes and

their substrates. Therefore, the physiological range of applications

considered in [6] is rather limited and all other phosphorylation

events require the extended analysis described in this study.

Application of the multisite phosphorylation model to
the IRF-5 regulation

We next investigated multisite phosphorylation reactions in

other inflammatory signalling pathways and studied the activation

of IRF-5 as an example. IRF-5 is phosphorylated by the TBK-1

kinase and dephosphorylated by Alkaline Phosphatase (AP)

(Figure 3A) [36,37,57]. Figure 3B shows the model predictions

for the distribution of the phosphorylated IRF-5 species. It can be

seen from the graph that the shape of the non- and fully-

phosphorylated protein species qualitatively coincides with the

case of the single-site phosphorylation reaction. However, the

steepness of the phosphorylation response is significantly higher in

Figure 1. A schematic diagram for the dependence of T cell differentiation on intracellular phosphorylation signaling. A vast amount
of experimental evidence suggests that T cell phenotypes strongly depend on the intracellular phosphorylation signaling mechanisms [44–50].
Environmental factors, genetic mutations, cellular and intracellular factors influence the underlying phosphorylation mechanics. The cartoon
summarizes possible differential responses of TLR downstream phosphorylation signaling events to pathogens leading to the distinct polarization of
naive T cells into three distinct phenotypes Th17, Th1 and Treg. According to this model activation or interplay of phosphorylation pathways is
responsible for selective differentiation as well as for T cell phenotype switching. The model suggests that the cell plasticity observed under
pathological conditions can be due to altered intracellular phosphorylation patterns, which are, in turn, dependent on the extracellular cytokine
environment.
doi:10.1371/journal.pone.0110913.g001
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the multisite phosphorylation reaction. The model predicts the

bell-shaped dependence for the intermediate species and provides

a clear explanation as to how receptor-mediated activatory events

can be followed by inhibition in response to the same signal. The

model predictions for the multisite phosphorylation reactions

obtained in this study are consistent with previously reported

results [58]. The model predictions in the form of bell-shaped

curves for the intermediate phosphorylated protein species are

consistent with the experimental data which suggests that IRF-5

requires phosphorylation of at least two sites for activation [36,37].

We compared our model predictions with the previously

reported method of Goldbeter and Koshland [6]. There are two

key biochemical factors that may significantly vary in living cells

and thereby affect the signaling properties: the ratio of total

protein to kinase and phosphatase concentrations and the rates of

phosphorylation, kP, and dephosphorylation, kD, reactions. For

simplicity, we did not vary the phosphatase concentration and

changed the kinase activity only.

Our analysis shows that alterations of phosphorylation rates and

total IRF-5 to AP ratios do not have any impact on the model in

[6]. Figure 4 shows the range of the model prediction for the

described variation of parameters. It can be seen from the Figure 4

that for comparable phosphorylation to dephosphorylation rates,

the non-phosphorylated form of IRF-5 appears to be dominant

(Figure 4A). At the same time, the predictions from this model

coincide with the predictions from [6], both when the phosphor-

ylation and dephosphorylation rates are of the same order

(Figure 4B) or different (Figure 4F), but only when the total

amount of the IRF-5 concentration exceeds AP. We next

decreased the phosphorylation rate (Figure 4C and Figure 4D)

and investigated the case of comparable IRF-5 and AP concen-

trations (Figure 4C) compared with the case where the total

concentration of IRF-5 is much larger (Figure 4D). The model

predicts that most of the potential multisite protein species would

remain unphosphorylated in the former case (Figure 4C), and

would have a distribution very similar to the case of comparable

phosphorylation rates and concentration shown in Figure 4A

(Figure 4D). Our model predicts that the overall amount of all the

phosphorylated protein species decreases significantly when the

total TBK-1 concentration is comparable with the total IRF-5

concentration (Figure 4E).

Our results suggest that the selective activity of the multisite

phosphoprotein-mediated response is regulated by the ratio of the

total amounts of the protein to phosphatase and by the relative

rates of the phosphorylation-dephosphorylation reactions. These

effects have not been observed in previously reported mathemat-

ical models of phosphorylation [2,6,8,11,59]. The comparison of

our analysis with experimental data [44–48,50] summarized on

Figure 2. Model predictions for the concentration of STAT3p phosphorylated by JAK and dephosphorylated by SHP-1. Investigation
of the dependence of STAT3 phosphorylation on the relative activities of JAK and SHP. (A) Cartoon diagram of STAT3 phosphorylation and
dephosphorylation by JAK and SHP-1, respectively. (B) A comparative analysis of the proposed and applications of the previously published models
for STAT3 phosphorylation. Ratios of JAK and SHP-1 are found to be critical for STAT3 phosphorylation response and the differences between the
model predictions. The red line shows the predictions by [6] whereas the black line offers predictions from the presented model. The STAT3
phosphorylation predictions coincide when STAT3 significantly exceeds SHP-1 concentration. (C) The effects of phosphorylation and
dephosphorylation rates are studied on the proposed (black line) and previously reported (red line) models [6]. We found that our model predicts
the modulation of phosphorylated STAT as opposed to the prediction of STAT3 phosphorylation rate offered by [6]. (D) The comparison between the
proposed and the previously model [6] is shown as a function of phosphorylation/dephosphorylation rates for various ratios of JAK and SHP-1. This
analysis clearly demonstrates the differences in STAT3 phosphorylation predictions due to the underlying assumptions employed in the models.
doi:10.1371/journal.pone.0110913.g002
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the Figure 1 allows us to conclude that the multisite phosphory-

lation reactions enable diverse cellular activatory profiles in

response to slight variations in the extracellular signal.

Discussion

In this study we propose a new model for multisite phosphor-

ylation with applications to intracellular signaling in the immune

system. The model extends previous models for activation of

proteins by single- [6–11] and multi-site phosphorylation

[12,14,15,58,60]. The model offers more accurate predictions

for phosphorylation-mediated regulation. This finding is obtained

by the comparison with previously published models and

experimental information for intracellular inflammatory circuits.

The proposed model has been applied to the STAT3 signaling

circuit and compared with one of the previously published models

[6]. Our analysis suggests that the Goldbeter and Koshland model

[6] can be used only in the case when the total concentrations of

JAK and SHP-1 are much lower in comparison with the total

concentration of STAT3. However, in real systems the concen-

trations of kinases and their substrates are comparable [8].

Therefore, the concentrations of intermediate phosphorylation

complexes cannot be ignored. Our model offers more accurate

predictions for STAT3 phosphorylation. Since similar stimuli may

Figure 3. Multisite phosphorylation enables switching between multiple T cell phenotypes. (A) Schematic diagram of IRF-5
phosphorylation and dephosphorylation by TBK-1 and AP, respectively, represents one of many intracellular multiphosphorylation examples
observed in the immune system. Experimental evidence suggests that proteins phosphorylated at different phosphorylation sites may have selective
activity [37,61] and give rise to distinct T cell populations [62]. (B) Computational model predictions for distribution of IRF-5 phosphorylated species.
Extracellular environment is hypothesized ratio causing the distribution of IRF-5 phosphorylated species: one site phosphorylated (black), two
(magenta), three (yellow), four (cyan), five (grey) and six (blue). According to the proposed model extracellular environment can actively change the
ratio of IRF-5 phosphorylated species and thereby contribute to the mechanism of T cell plasticity by modulating the numbers of T cell phenotypes.
doi:10.1371/journal.pone.0110913.g003
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Figure 4. Theoretical investigation of the regulation of IRF-5 multisite phosphorylation. The distribution of IRF-5 species was investigated
as a function of kinase to phosphatase (TBK to AP) ratio for comparable IRF-5 and AP concentrations (A), IRF-5 significantly exceeds AP (B). Similar
analysis was also performed when the phosphorylation rate was significantly lower than dephosphorylation rate and comparable IRF-5 and AP
concentrations (C), IRF-5 significantly exceeds AP (D). The effects of changes in the phosphorylation to dephosphorylation ratio on the IRF-5 species
were also investigated with comparable IRF-5 and AP concentrations (E), IRF-5 significantly exceeds AP (F). The presented analyses clearly show that
the phosphorylation/dephosphorylation parameters, modulated via extracellular cytokines have prominent impact on the distribution of
phosphorylated species. Therefore, physiological or pathological alterations of these parameters represent the multisite phosphorylation-mediated
mechanism of T cell plasticity.
doi:10.1371/journal.pone.0110913.g004
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lead to different transcriptional activation events and T cell

phenotype switching, the results obtained in this study allow us to

demonstrate that the lack of an accurate phosphorylation

magnitude predictions may lead to misleading interpretation of

the STAT-mediated T cell fate determination.

We show here that IRF-5 is activated in a switch-like manner

(Figure 3 and Figure 4), which leads to the production of

inflammatory cytokines such as IL-12 and IL-23 [44]. Our model

suggests that this switch is highly dependent on the parameters of

the system, particularly the ratio of the total AP to IRF-5

concentrations and phosphorylation/dephosphorylation reaction

rates. Several autoimmune inflammatory diseases including

Systemic Lupus Erythematosus (SLE) are due to the aberrations

in the mechanism of IRF-5 activation. A more accurate

description of the regulatory role of IRF-5 gives a clearer insight

into a number of inflammatory diseases.

Conclusions

This work introduces universal mechanisms for single and

multisite phosphorylation and proposes an accurate model for

phosphorylation-mediated regulation. The analysis reveals the

physiological conditions under which the model coincides and

differs from the classical models. This approach can have

applications in a variety of molecular systems where the

information is transmitted through a phosphorylation mechanism.

The predictions of the model applied to the STAT3 and IRF-5

regulatory circuits has a broad impact to Systems Immunology

and may increase our understanding of the mechanisms of

inflammatory diseases.

Materials and Methods

Single site phosphorylation
Here we consider a general mechanism of phosphorylation of

protein A by the kinase P and dephosphorylation by phosphatase

N .

The reactions can be represented as follows:

PzA /?
k

1

k{
1

PA ?
k2

PzAP

NzAP /?
k3

k{
3

NAP ?
k4

NzA

We introduce the following notation: A½ �, AP½ � – the concen-

trations of the non-phosphorylated and phosphorylated protein

respectively, PT , NT , AT – the total concentrations of the proteins

in an active form, P½ �, N½ �– the concentrations of free proteins,

PA½ �, NAP½ � – the concentrations of kinase-protein and phospha-

tase-protein complexes, respectively. The kinetic equations of this

molecular system are given by:

d AP½ �
dt

~{k3 N½ � AP½ �zk{
3 NAP½ �zk2 PA½ �,

d PA½ �
dt

~k1 P½ � A½ �{ k{
1 zk2

� �
PA½ �,

d NAP½ �
dt

~k3 N½ � AP½ �{ k{
3 zk4

� �
NAP½ �:

ð1Þ

The conservation equations for the elements involved in the

above reactions are as follows:

AT~ A½ �z AP½ �z PA½ �z NAP½ �,

PT~ P½ �z PA½ �,

NT~ N½ �z NAP½ �:

ð2Þ

The steady-state solutions of PA½ � and NAP½ � can be written as

follows:

PA½ �~ PT A½ �
KPz A½ � ,

NAP½ �~ NT AP½ �
KF z AP½ � ,

ð3Þ

where KP~
k2zk{

1

k1
and KF ~

k4zk{
3

k3
are the Michaelis

constants for the phosphorylation-dephosphorylation reactions.

The rate of change of AP½ � can be written as a function of PA½ �
and NAP½ �:

d AP½ �
dt

~k2 PA½ �{k4 NAP½ �: ð4Þ

From Equations (2), (3) and (4) it can be written:

d AP½ �
dt

~k2
PT AT{ AP½ �{ PA½ �{ NAP½ �ð Þ
KPzAT{ AP½ �{ PA½ �{ NAP½ �{k4

NT AP½ �
KFz AP½ � ,

d
AP½ �
AT

� �

d t:k4ð Þ ~
NT

AT

k2

k4

PT
NT

1{
AP½ �
AT

{
PA½ �
AT

{
NAP½ �
AT

� �

KP
AT

z1{
AP½ �
AT

{
PA½ �
AT

{
NAP½ �
AT

{

AP½ �
AT

KF
AT

z
AP½ �
AT

0
BB@

1
CCA:
ð5Þ

The non-dimensional form of the Equations (4) and (5) can be

written as follows:

dap

dt
~h3x{y, ð6Þ

dap

dt
~h5

h3h4 1{ap{x{y
� �

h1z1{ap{x{y
{

ap

h2zap

� �
, ð7Þ

where

a~
A½ �

AT

,ap~
AP½ �
AT

,x~
PA½ �
AT

,y~
NAP½ �
AT

,t~t:k4,

h1~
KP

AT

,h2~
KF

AT

,h3~
k2

k4
,h4~

PT

NT

,h5~
NT

AT

:

According to the above notation, Equations (3) in a non-

dimension form are given by:
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x~
h4h5a

h1za
,

y~
h5ap

h2zap

:

ð8Þ

We can therefore rewrite the law of mass conservation for A½ � as

follows:

1~azapzxzy: ð9Þ

In [6], the steady state solution of ap was found for

xvv1, yvv1. The sufficient condition to satisfy

xvv1, yvv1 is PTvvAT , NTvvAT , which means

h4, h5vv1. This implies that the concentrations of these

complexes are negligible comparing to ap and the solution can

be written as follows:

ap~
1

2 1{h3h4ð Þ

h1zh3h4 h2{1ð Þz1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1zh3h4 h2{1ð Þz1ð Þ2{4h2h3h4 1{h3h4ð Þ

q� �
:

ð10Þ

In general, conditions xvv1, yvv1 are not satisfied. We find

an accurate solution of Equation (7). From Equations (8) we

obtain:

a~
h1x

h4h5{x
,

ap~
h2y

h5{y
,

ð11Þ

where y~h3x according to the steady state of Equation (6) when
dap

dt
~0.

Substituting Equations (11) into Equation (7) for steady state, we

obtain:

h1x

h4h5{x
z

h2h3x

h5{h3x
zx 1zh3ð Þ~1: ð12Þ

The range of x is limited and determined from the conservation

equations:

0vxvmin h4h5,
h5

h3

� �
:

It can be shown that Equation (12) has one real root and two

complex conjugate roots. Equation (12) can be written as follows:

h1x

h4h5{x
z

h2h3x

h5{h3x
zx 1zh3ð Þ{1~f xð Þ: ð13Þ

For any real positive values of the parameter hi i~1 . . . 5ð Þ, f (x)
is a monotonically increasing function (it is continuous on the

domain 0vxvmin h4h5,
h5

h3

� �
and its derivative is positive for

any value of hi), it has one intersection point with the horizontal

axis, wheref (x)~0, which means that there is only one real root of

Equation (13).

We find the real root of Equation (13). Equation (12) can be

transformed to the following equation:

x3{bx2zcx{d

(h4h5{x):
h5

h3
{x

� �~0, ð14Þ

where

b~
1zh1zh2

1zh3

zh4h5z
h5

h3

,

c~
1zh2ð Þh4h5z 1zh1ð Þ h5

h3

1zh3
zh4h5

h5

h3
,

d~

h4h5
h5

h3

1zh3
:

ð15Þ

Since the domain is 0vxvmin h4h5,
h5

h3

� �
, the roots of the

numerator in Equation (14) are equal to the roots of Equation (14),

thus the latter can be simplified as:

x3{bx2zcx{d: ð16Þ

To find the roots of Equation (16) we used Vieta’s formulas.

Based on the fact that this equation has one real root x1 and two

complex conjugate roots r{ip and rzip, it can be written as

follows:

x3{bx2zcx{d~ x{x1ð Þ x{ r{ipð Þ½ � x{ rzipð Þ½ �: ð17Þ

Thus there is a system of equations for x1, r and p:

x1z2r~b,

2x1rzr2zp2~c,

x1 r2zp2
� �

~d:

ð18Þ
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To simplify the above system of equations, we use the following

parameters:

D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 4c{b2ð Þc2{d 18cb{27d{4b3ð Þ½ �

q
,

DD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 3D{27d{b 2b2{9cð Þ½ �3

q
:

ð19Þ

Solving the system described by Equation (18), the real solution

of Equation (13) can be obtained:

x1~2
c{

1

3
b2

DD
z

1

3
b{

1

2
DD

� �
: ð20Þ

Thus, a steady-state solution for ap in a general form is:

ap~
1

2q1

q2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2{4q1q3

q� �
, ð21Þ

where

q1~1{h3h4,

q2~h1{x1 h3z1ð Þz1zh3h4 h2zx1 h3z1ð Þ{1ð Þ,

q3~h2h3h4 1{x1 h3z1ð Þ½ �:

From Equations (11), parameters h1 and h2 can be obtained:

h1~a
h4h5

x
{1

� �
,

h2~ap
h5

y
{1

� �
:

ð22Þ

Since PT , NT , AT are known and A½ �, AP½ �, PA½ �, NAP½ � can be

measured experimentally, we can find the Michaelis constants KP,

KF :

KP~A
PT

PA½ �{1

� �
,

KF ~AP
NT

NAP½ �{1

� �
:

ð23Þ

Multisite phosphorylation
In this section we consider a system with m independent

phosphorylation sites. The ODEs and the equations describing the

final formula for the concentration of the protein phosphorylated

at one single site are the same as in the last section, but the

conservation equation for the total amount of protein differs from

Equations (2). Instead of AT , the total amount of protein is mAT as

the molecule has m phosphorylation sites:

mAT~ A½ �z AP½ �z PA½ �z NAP½ �: ð24Þ

In this case, the normalized parameters are written as follows:

a~
A½ �

mAT

,ap~
AP½ �

mAT

,x~
PA½ �

mAT

,y~
NAP½ �
mAT

,t~t:k4,

h1~
KP

mAT

,h2~
KF

mAT

,h3~
k2

k4
,h4~

PT

NT

,h5~
NT

mAT

:

When q out of m sites are phosphorylated it can be assumed that

these events are independent and the sites are identical. Thus, the

multisite phosphorylation is a combinatorial problem and can be

considered in terms of the probabilities of the protein to be

phosphorylated at distinct sites. Hence, the concentration of the

protein phosphorylated at q out of m phosphorylation sites is

proportional to the sum of all molecule combinations:

sq
m~

m

q

� �
aq

pam{q, ð25Þ

where ap is the probability of the protein to be phosphorylated at a

single site, a is the probability of the protein to be non-

phosphorylated at a single site and
m

q

� �
is a binomial coefficient.

Equation (25) can be written in detail as follows:

sq
m~

m!

q! m{qð Þ! aq
pam{q: ð26Þ

STAT3 phosphorylation
STAT3 can form a dimer and be activated when it is

phosphorylated at one site by JAK and dephosphorylated by

SHP-1. Thus, Equations (10) and (21) can be used to denote the

STAT3 concentration. The following notation is used in our

model:

h3~
kP

kD

,h4~
JAKT

SHP1T

,h5~
SHP1T

STAT3T

:

IRF-5 phosphorylation
Here we consider phosphorylation of Interferon regulatory

factor 5 (IRF5). Our model assumes that the molecule contains 6

independent phosphorylation sites. IRF-5 can be phosphorylated

by TBK-1 kinase and dephosphorylated by Alkaline Phosphatase.

In this case we use Equation (26), assuming

h3~
kP

kD

,h4~
TBK1T

APT

,h5~
APT

IRF5T

:
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