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Abstract: Let (εj)j≥0 be a sequence of independent p−dimensional random vectors and

τ ≥ 1 a given integer. From a sample ε1, · · · , εT+τ of the sequence, the so-called lag-τ

auto-covariance matrix is Cτ = T−1
∑T

j=1 ετ+jεtj . When the dimension p is large compared

to the sample size T , this paper establishes the limit of the singular value distribution of

Cτ assuming that p and T grow to infinity proportionally and the sequence has uniformly

bounded fourth order moments. Compared to existing asymptotic results on sample covari-

ance matrices developed in random matrix theory, the case of an auto-covariance matrix

is much more involved due to the fact that the summands are dependent and the matrix

Cτ is not symmetric. Several new techniques are introduced for the derivation of the main

theorem.
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1. Introduction

Let ε1, . . . , εT+τ be a sample from a stationary process with values in Rp. The p× p matrix

Cτ := 1
T

T∑
j=1

ετ+jε
t
j , (1.1)

is the so-called lag−τ sample auto-covariance matrix of the process (here ut denotes the transpose

of a vector or matrix u). In a classical low-dimensional situation where the dimension p is assumed

much smaller than the sample size T , Cτ is very close to ECτ = E ε1+τε
t
1 so that its asymptotic

behavior when T → ∞ (so p is considered as fixed) is well known. In the high-dimensional con-

text where typically the dimension p is of same order as T , Cτ will not converge to ECτ and
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its asymptotic properties have not been well investigated. In this paper, we study the empirical

spectral distribution (ESD) of Cτ , namely, the distribution generated by its p singular values.

The main result of the paper is the establishment of the limit of this ESD when (εj) is an inde-

pendent sequence with elements having a finite fourth moments while p and T grow to infinity

proportionally.

In order to understand the importance of the limiting spectral distribution (LSD) of singular

values of the auto-covariance matrix Cτ , we describe a statistical problem where these distributions

are of central interest. A recent paper Lam and Yao [8] considers the following factor model

xi = Λfi + εi + µ, (1.2)

where {xi; 0 ≤ i ≤ T} is an observed p-dimensional sequence, {fi} a sequence of m-dimensional

“latent factors” (m� p) uncorrelated with the error process {εi} and µ ∈ Rp is the general mean.

A particularly important question here is the determination of the number m of factors. For any

stationary process {wi}, let Σw = cov(wi, wi−1) be its (population) lag-1 auto-covariance matrix.

We have

Σx = ΛΣfΛt.

It turns out that Σx has exactly m non-null singular values so that based on a sample x0, x1, . . . , xT

it seems natural to infer m from the singular values of the sample lag-1 auto-covariance matrix

Γx = 1
T

T∑
j=1

(Λfj + εj)(Λfj−1 + εj−1)t

= Λ

 1
T

T∑
j=1

fjf
t
j−1

Λt + Λ

 1
T

T∑
j=1

fjε
t
j−1

+

 1
T

T∑
j=1

εjf
t
j−1

Λt + C1 .

Because Λ has rank m, the first three terms all have rank bounded by m and Γx appears as a

finite-rank perturbation of the lag-1 auto-covariance matrix C1 which in general has rank p� m.

Therefore, understanding the properties of the singular values of C1 will be of primary importance

for the understanding of the m largest singular values of the matrix of Γx which are, as said above,

fundamental for the determination of the number of factors m. Actually in a following paper in

Li, Wang and Yao [9], we established a phase transition phenomenon: a factor singular value li
of Γx will tend to a limit outside the support of the LSD of C1 if and only if the corresponding

population factor strength exceeds some critical value. Based on this transition phenomenon, we

proposed a consistent estimator of the number of factors by counting the number of eigenvalues

lying outside that support. Notice however that this statistical problem is given here to describe

a potential application of the theory established in this paper, but this theory on singular value

distribution is general and can be applied to fields other than statistics.

If we take τ = 0 in (1.1), the matrix S = 1
T

∑T
j=1 εjε

t
j is the sample covariance matrix from

the observations. The theory for eigenvalue distributions of S has been extensively studied in



Z. Li, G. Pan and J. Yao/Singular values of autocovariance matrices 3

the random matrix literature dating back to the seminal paper [11] where the famous Marčenko-

Pastur law as limit of eigenvalue distributions has been found for a wide class of sample covariance

matrices. Further development includes the almost sure convergence of these distributions ([13])

and conditions for convergence of the largest and the smallest eigenvalues. Meanwhile, book-length

analysis of sample covariance matrices can be found in [3], [1], [12] and [5]. The situation of an auto-

covariance matrix Cτ is however completely different. We know only four references treating auto-

covariance matrices, [6], [4],[14] and [10]. All the references considered the LSD of the symmetrized

auto-covariance matrix B = 1
2 (Cτ +Ctτ ). The former three assumed that the vectors ε1, · · · , εT+τ

are independent, while the latter allowed them to be temporally dependent. It is noticed that

the singular value of Cτ are not directly comparable to the eigenvalues of the symmetric part B.

Indeed, let A = 1
2 (Cτ − Ctτ ) be the anti-symmetric part of Cτ . Then CτC

t
τ = B2 − A2 and we

see that the square of the singular value of Cτ and the square of the eigenvalue of B are different

precisely because Cτ is not symmetric, that is A 6= 0.

Technically, there are basically two major differences between Cτ and S. First, while S is a non-

negative symmetric random matrix, Cτ is even not symmetric and we must rely on singular value

distributions which are in general much more involved than eigenvalue distributions. Secondly,

because of the positive lag τ , the summands in Cτ are no more independent as it is the case

for the sample covariance matrix S. This again makes the analysis of Cτ more difficult. As a

consequence of these major differences, several new techniques are introduced in the paper in order

to complete the proofs, although the general strategy is common in the random matrix theory (see

Bai and Silverstein [3], Pastur and Shcherbina [12]). For example, the characterization of the

Stieltjes transform of the limiting distribution is obtained via a system of equations due to the

time delay τ where for the case of sample covariance matrix, the characterization is given by a

single equation([11], [13]).

The rest of the paper is organized as follows. The main theorem of the paper is introduced

in Section 2. Section 3 details the proof of the main theorem when time lag τ = 1. Section 4

generalizes the proof from time lag τ = 1 to any given positive number. Meanwhile, in contrast to

other aspects discussed above, the preliminary steps of truncation, centralization and standard-

ization of the matrix entries are similar to the case of a sample covariance matrix. They are given

in Appendix A. To ease the reading of the proofs, technical lemmas are grouped in Section 5.

2. Main Results

In this paper, we intend to derive the limiting singular value distribution of the lag−τ auto-

covariance matrix defined in (1.1). It will be done in two steps. We derive the main result first

for the lag-1(τ = 1) sample auto-covariance matrix C1 = 1
T

∑T
t=1 εjε

t
j−1. It turns out that the
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general case τ ≥ 1 is essentially the same and the extension is easily obtained. The details of the

extension are given in Section 4.

Therefore, we consider the lag-1 sample auto-covariance matrix C1 = 1
T

∑T
j=1 εjε

t
j−1. By defi-

nition, it is equivalent to study the limiting spectral distribution (LSD) of the matrix

A = C1C
t
1 = 1

T 2 (
T∑
j=1

εjε
t
j−1)(

T∑
j=1

εj−1ε
t
j).

Alternatively,

A = 1
T 2XY

tY Xt,

where X = (ε1, · · · , εT )p×T , Y = (ε0, · · · , εT−1)p×T . Here we define a modified version of the A

matrix,

B = 1
T 2Y

tY XtX =
p∑
j=1

sjs
t
j

p∑
j=1

rjr
t
j ,

where sj = 1√
T

(εj0, εj1, · · · , εj,T−1)t is the j-th row of Y , and rj = 1√
T

(εj1, εj2, · · · , εj,T )t the

j-th row of X. As A and B have same nonzero eigenvalues, the LSD of A can be derived from the

LSD of B.

The main result of the paper is

Theorem 2.1. Let the following assumptions hold:

(a) εi = (ε1i, · · · εpi)t , i = 0, 1, 2, · · · , T are independent p-dimensional real-valued random vec-

tors with independent entries satisfying condition:

E(εit) = 0, E(ε2
it) = 1, sup

1≤i≤p,0≤t≤T
E
(
|εit|4+δ) < M,

for some constant M and arbitrarily small positive δ;

(b) As p→∞, the sample size T = T (p)→∞ and p/T → c > 0.

Then,

(1) as p, T →∞, almost surely, the empirical spectral distribution FB of B, converges to a non-

random probability distribution F
¯

whose Stieltjes transform x = x(α), α ∈ C \ R, satisfies

the equation

α2x3 − 2α (c− 1)x2 + (c− 1)2
x− αx− 1 = 0. (2.1)

(2) Moreover, for α ∈ C+ = {z : Imz > 0}, equation (2.1) admits a unique solution α 7→ x(α)

with positive imaginary part and the density function of the LSD F
¯

is:
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f(u) = 1
πu

{
−u− 5(c− 1)2

3 + 24/3(3u+ (c− 1)2)(c− 1)
3d(u)1/3 + 22/3(c− 1)d(u)1/3

3

+ 1
48

[
−8(c− 1) + 2× 21/3(3u+ (c− 1)2)

d(u)1/3 + 22/3d(u)1/3
]2}1/2

,

where d(u) = −2(c− 1)3 + 9(1 + 2c)u+ 3
√

3
√
u(−4u2 + (−1 + 4c(5 + 2c))u− 4c(c− 1)3).

Moreover, the support of f(u) is (0, b] for 0 < c ≤ 1, and [a, b] for c > 1, where

a = 1
8(−1 + 20c+ 8c2 − (1 + 8c)3/2), b = 1

8(−1 + 20c+ 8c2 + (1 + 8c)3/2).

It’s easy to check that when c < 1, the LSD of B has a point mass 1 − c at the origin since

rank(B) = p < T for large p and T , and at the same time we have
∫ b

0
f(u)du = c, 0 < c < 1,∫ b

a

f(u)du = 1, c ≥ 1.

Since the matrix A we are interested in has the same non-zero eigenvalues as B, the following

proposition holds.

Proposition 2.1. Under the conditions of Theorem 2.1, the ESD of A converges a.s. to a non-

random limit distribution

F = 1
c

F
¯

+ (1− 1
c

)δ0,

whose Stieltjes transform y = y(α), α ∈ C \ R, satisfies the equation

α2c2y3 + αc(c− 1)y2 − αy − 1 = 0.

In particular, F has the density function
1
c
f(u), u ∈ (0, b], for 0 < c < 1,

1
c
f(u), u ∈ [a, b], for c ≥ 1.

where in the later case c ≥ 1, F has an additional mass (1− 1
c ) at the origin.

The following details the density function of LSD of A for different values of c.

• When c = 1, the support is 0 ≤ u ≤ 27
4 and the density function is

1
c
f(u) = 1

πu

[
−u+ 3

(
u

22/3d(u)1/3 + d(u)1/3

6× 21/3

)2]1/2

,

where d(u) = 27u+ 3
√

3×
√
u(−4u2 + 27u). It’s easy to see that as u→ 0+, f(u)→∞.

• If c < 1, it can be seen from the explicit form of f(u) that when u → 0+, 1
cf(u) → ∞

because the u in the denominator of the density function cannot be completely canceled out.
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• If c > 1, the shape of the density function turns out to be a little different from the case

c ≤ 1. Nevertheless it’s quite intuitive because the lower bound of the support is positive

and the density function is bounded.

The density functions of LSD of A for c = 0.5, 1, 2, 3 are displayed on Figure 1.

Fig 1. Density plots of the LSD of B.Top to bottom and left to right: c=0.5,1,2 and 3, respectively

3. Proofs

3.1. Proof of Theorem 2.1

The proof of the theorem follows the general strategy based on the Stieltjes transform as presented

in Silverstein [13], Bai and Silverstein [3] and Pastur and Shcherbina [12]. However, the random

matrix B here is no longer a covariance matrix as considered in these references. Almost all the

steps of the proof need new arguments and ideas compared to the case of sample covariance

matrices considered so far in the literature. Following this method, the first step is to truncate the

entries {εjt} at a convenient rate using Assumption (a). After truncation and the follow-up steps

of centralization and standardization, we may assume that, for some constant M , η and arbitrarily
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small δ,

|εij | ≤ ηT 1/4, E (εij) = 0, V ar (εij) = 1, sup
1≤i≤p,0≤j≤T

E
(
|εij |4+δ) < M.

The details of these technical steps are given in Appendix A.

By the rank inequality (Theorem A.44 of [3]), it is enough to consider

B =
p∑
j=1

sjs
t
j

p∑
j=1

rjr
t
j = P1C̃P

t
1C̃,

where

sj = P1rj = 1√
T

(0, εj1, · · · , εj,T−1)t, C =
p∑
j=1

sjs
t
j , C̃ =

p∑
j=1

rjr
t
j , P1 =

 0 0

IT−1 0

 .

At this stage, the important observation is that here we have replaced sj = 1√
T

(εj0, εj1, · · · , εj,T−1)t

by s̃j = 1√
T

(0, εj1, · · · , εj,T−1)t without altering the LSD of B since when T → ∞, the effect of

this substitution will vanish. For the sake of convenience, we still use sj to denote s̃j .

For α ∈ C \ R, define

B (α) =
p∑
j=1

sjs
t
j

p∑
j=1

rjr
t
j − αIT .

Let

x0 = 1
T
tr(B−1(α)), y0 = 1

T
tr(C̃B−1(α)), z0 = 1

T
tr(B−1(α)C).

The method consists in finding a system of two asymptotic equations satisfied by x0 and y0.

Solving the system yields an asymptotic equivalent for x0 and finally leads to the equation (2.1)

satisfied by the limit of x0. Meanwhile, x0 is the Stieltjes transform of the matrix B which can be

recovered from the inversion formula.

Let

Bj (α) =
∑
k 6=j

sks
t
k

∑
i6=j

rir
t
i − αIT , Cj = C − sjstj , C̃j = C̃ − rjrtj , 1 ≤ j ≤ p,

then

B (α) = Bj (α) +
∑
i6=j

sjs
t
jrir

t
i +

∑
k 6=j

sks
t
krjr

t
j + sjs

t
jrjr

t
j

= Bj (α) + sjs
t
jC̃j + Cjrjr

t
j + sjs

t
jrjr

t
j .

We have

IT = B(α)B−1(α) =

 p∑
j=1

sjs
t
j

 p∑
j=1

rjr
t
j

B−1 (α)− αB−1 (α) .

Taking the trace and dividing both sides by T , we get
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1 = 1
T

p∑
j=1

stjC̃B
−1 (α) sj − α

1
T
tr
(
B−1 (α)

)
. (3.1)

Note that x0 = 1
T tr(B

−1(α)) is the Stieltjes transform of the ESD of the matrix B, and its limit

will be found by letting p, T →∞ on both sides of the equation.

Consider stjC̃B−1 (α) sj , using the identitiesB +
m∑
j=1

abtj

−1

a = B−1a

1 +
∑m
j=1 b

t
jB
−1a

,

we have

stjC̃B
−1 (α) sj =

stjC̃
(
Bj (α) + Cjrjr

t
j

)−1
sj

1 + stjC̃
(
Bj (α) + Cjrjrtj

)−1
sj

= 1− 1
1 + stjC̃j

(
Bj (α) + Cjrjrtj

)−1
sj + stjrjr

t
j

(
Bj (α) + Cjrjrtj

)−1
sj

:= 1− 1
1 + L1 + L2

,

where L1 and L2 are implicitly defined.

For L1, by the following equation

B−1 −D−1 = B−1 (D −B)D−1,

and Lemma 5.1, or equivalently by Lemma 2.7 of [2], we have

L1 = stjC̃j
(
Bj (α) + Cjrjr

t
j

)−1
sj

= stjC̃jB
−1
j (α) sj − stjC̃jBj (α)−1

Cjrjr
t
j

(
Bj (α) + Cjrjr

t
j

)−1
sj

= stjC̃jB
−1
j (α) sj −

stjC̃jB
−1
j (α)CjrjrtjBj (α)−1

sj

1 + rtjB
−1
j (α)Cjrj

= 1
T
tr
(
C̃jB

−1
j (α)

)
−

1
T tr

(
C̃jB

−1
j (α)CjP t1

)
· 1
T tr

(
B−1
j (α)P1

)
1 + 1

T tr
(
Bj (α)−1

Cj

) + oa.s.(1).

For L2, we have

L2 = stjrjr
t
j

(
Bj (α) + Cjrjr

t
j

)−1
sj = stjrjr

t
jB
−1
j (α) sj −

stjrjr
t
jB
−1
j (α)CjrjrtjB−1

j (α)sj
1 + rtjB

−1
j (α)Cjrj

=
(
rtjP

t
1rj
)
· 1
T
tr
(
B−1
j (α)P1

)
−
(
rtjP

t
1rj
)
· 1
T tr

(
B−1
j (α)Cj

)
· 1
T tr

(
B−1
j (α)P1

)
1 + 1

T tr
(
B−1
j (α)Cj

) + oa.s.(1) = oa.s.(1).

Therefore, by equation (3.1), we have

1 + α
1
T
tr(B−1(α)) = oa.s.(1)+ (3.2)

p

T

1−
1 + 1

T
tr(B−1(α)C)(

1 + 1
T
tr (B−1(α)C)

)(
1 + 1

T
tr(C̃B−1(α))

)
− 1
T
tr
(
C̃B−1 (α)CP t1

)
· 1
T
tr (B−1 (α)P1)
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Here, we have used the following equivalences, uniformly in j, as p, T →∞,

1
T
tr
(
B−1
j (α)Cj

)
= z0 + oa.s.(1),

1
T
tr
(
B−1
j (α)

)
= x0 + oa.s.(1),

1
T
tr
(
C̃jB

−1
j (α)

)
= y0 + oa.s.(1).

Similar to equation (3.1), we have

1 = 1
T

p∑
j=1

rtjB
−1 (α)Crj − α

1
T
tr
(
B−1 (α)

)
. (3.3)

Considering rtjB−1 (α)Crj , we have

rtjB
−1 (α)Crj =

rtj
(
Bj (α) + sjs

t
jC̃j
)−1

Crj

1 + rtj
(
Bj (α) + sjstjC̃j

)−1
Crj

= 1− 1
1 + rtj

(
Bj (α) + sjstjC̃j

)−1
Cjrj + rtj

(
Bj (α) + sjstjC̃j

)−1
sjstjrj

:= 1− 1
1 +W1 +W2

,

where W1 and W2 are implicitly defined.

For W1, we have

W1 = rtj
(
Bj (α) + sjs

t
jC̃j
)−1

Cjrj

= rtjB
−1
j (α)Cjrj − rtjB−1

j (α) sjstjC̃j
(
Bj (α) + sjs

t
jC̃j
)−1

Cjrj

= rtjB
−1
j (α)Cjrj −

rtjB
−1
j (α) sjstjC̃jB−1

j (α)Cjrj
1 + stjC̃jB

−1
j (α) sj

= 1
T
tr
(
B−1
j (α)Cj

)
−

1
T tr

(
C̃jB

−1
j (α)CjP t1

)
· 1
T tr

(
B−1
j (α)P1

)
1 + 1

T tr
(
C̃jBj (α)−1

) + oa.s.(1).

For W2, we have

W2 = rtj
(
Bj (α) + sjs

t
jC̃j
)−1

sjs
t
jrj = rtjB

−1
j (α) sjstjrj −

rtjB
−1
j (α) sjstjC̃jB−1

j (α)sjstjrj
1 + stjC̃jB

−1
j (α)sj

=
(
stjP

t
1sj
)
· 1
T
tr
(
B−1
j (α)P1

)
−
(
stjP

t
1sj
)
· 1
T tr

(
C̃jB

−1
j (α)

)
· 1
T tr

(
B−1
j (α)P1

)
1 + 1

T tr
(
C̃jB

−1
j (α)

) + oa.s.(1) = oa.s.(1).

Therefore, by equation (3.3), we have

1 + α
1
T
tr(B−1(α)) = oa.s.(1)+ (3.4)

p

T

1−
1 + 1

T
tr(B−1(α)C̃)(

1 + 1
T
tr (B−1(α)C)

)(
1 + 1

T
tr(C̃B−1(α))

)
− 1
T
tr
(
C̃B−1 (α)CP t1

)
· 1
T
tr (B−1 (α)P1)
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Thus, according to equations (3.2) and (3.4), we have

1
T
tr(B−1(α)C̃) = 1

T
tr(B−1(α)C) + oa.s.(1).

By Lemma 5.2, the second term of L1,
1
T tr(C̃jB−1

j
(α)CjP t1)· 1

T tr(B−1
j

(α)P1)
1+ 1

T tr(Bj(α)−1Cj) is oa.s.(1) since both
1
T tr

(
P t1C̃jBj (α)−1

Cj

)
and 1

T tr
(
Bj (α)−1

Cj

)
are non-negative and bounded as p, T →∞, there-

fore,

L1 = 1
T
tr
(
C̃jB

−1
j (α)

)
+ oa.s.(1) = y0 + oa.s.(1).

Finally, by equation (3.2), we find

1 + αx0 = p

T

(
1− 1

1 + y0

)
+ oa.s.(1). (3.5)

To find a second equation satisfied by x0 and y0, using Lemma 5.1 and Lemma 5.2,

1
T
tr(C̃B−1(α)) = 1

T
tr(

p∑
j=1

rjr
t
jB
−1(α)) = 1

T

p∑
j=1

rtjB
−1(α)rj

= 1
T

p∑
j=1

rtj
(
Bj(α) + sjs

t
jC̃j
)−1

rj

1 + rtj
(
Bj(α) + sjstjC̃j

)−1
Cjrj + rtj

(
Bj(α) + sjstjC̃j

)−1
sjstjrj

= 1
T

p∑
j=1

rtjB
−1
j (α)rj −

rtjB
−1
j (α)sjstjC̃jB−1

j (α)rj
1 + stjC̃jB

−1
j (α)sj

1 + rtjB
−1
j (α)Cjrj −

rtjB
−1
j (α)sjstjC̃jB−1

j (α)Cjrj
1 + stjC̃jB

−1
j (α)sj

+ oa.s.(1)

= p

T
·

1
T
tr(B−1(α))

1 + 1
T
tr(B−1(α)C)

+ oa.s.(1).

This leads to

y0 = p

T
· x0

1 + y0
+ oa.s.(1). (3.6)

In conclusion, (x0, y0) satisfy the system


1 + αx0 = cy0

1 + y0
+ oa.s.(1),

y0 = cx0

1 + y0
+ oa.s.(1).

Notice that for any T, |x0| ≤ 1
|Im(α)| is bounded, and by equation (3.6), |y0| is also bounded as

T →∞, otherwise (3.6) cannot hold. Therefore, both {x0} and {y0} are bounded sequences. Let

be two subsequences {xtn}, {ytn} so that xtn → x and ytn → y as n → ∞. It can be concluded

that the limiting functions (x, y) satisfy the system of equations:


1 + αx = cy

1 + y
(1)

y = cx

1 + y
(2)
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By eliminating y, we finally find the equation (2.1) satisfied by the limiting function x. Denote

by F all the analytic functions {f : C+ 7→ C+}. Because according to the following proof we have

one unique solution on F that satisfies equation (2.1), the whole bounded sequence {x0} has one

unique limit x in F .

As for the second statement of Theorem 2.1, in order to find the density function of the LSD F
¯

of B, we use the inversion formula:

f (u) = lim
ε→0+

1
π
Imx (u+ iε)

where x (·) is the Stieltjes transform of F
¯

. Write

lim
ε→0+

x(u+ iε) = ψ(u) + iφ(u),

both ψ and φ are real-valued functions of u. By substituting α = u+ iε, x = ψ+ iφ into equation

(2.1) and letting ε→ 0+, both the real part and the imaginary part of the LHS of equation (2.1)

should equal to 0, i.e.
u2ψ3 − 3u2ψ · φ2 − 2u (c− 1)

(
ψ2 − φ2)− (u− (c− 1)2

)
ψ − 1 = 0 (3)

−u2φ2 + 3u2ψ2 − 4u (c− 1)ψ −
(
u− (c− 1)2

)
= 0 (4)

By plugging (4) into (3), we get

−8u2ψ3 + 16u(c− 1)ψ2 + (2u− 10(c− 1)2)ψ + 2(c− 1)3

u
− 2c+ 1 = 0.

Solving this equation and substituting for ψ in (4), we get

φ2
1(u) = 1

u2

{
−u− 5(c− 1)2

3 + 24/3(3u+ (c− 1)2)(c− 1)
3d(u)1/3 + 22/3(c− 1)d(u)1/3

3

+ 1
48

[
−8(c− 1) + 2× 21/3(3u+ (c− 1)2)

d(u)1/3 + 22/3d(u)1/3
]2}

,

φ2
2(u) = 1

u2

{
−u− 5(c− 1)2

3 + 1 + i
√

3
2 · 24/3(3u+ (c− 1)2)(c− 1)

3d(u)1/3 + 1− i
√

3
2 · 22/3(c− 1)d(u)1/3

3

+ 1
48

[
−8(c− 1) + 1 + i

√
3

2 · 2× 21/3(3u+ (c− 1)2)
d(u)1/3 + 1− i

√
3

2 · 22/3d(u)1/3
]2}

,

φ2
3(u) = 1

u2

{
−u− 5(c− 1)2

3 + 1− i
√

3
2 · 24/3(3u+ (c− 1)2)(c− 1)

3d(u)1/3 + 1 + i
√

3
2 · 22/3(c− 1)d(u)1/3

3

+ 1
48

[
−8(c− 1) + 1− i

√
3

2 · 2× 21/3(3u+ (c− 1)2)
d(u)1/3 + 1 + i

√
3

2 · 22/3d(u)1/3
]2}

,

where

d(u) = −2(c− 1)3 + 9(1 + 2c)u+ 3
√

3
√
u(−4u2 + (−1 + 4c(5 + 2c))u− 4c(c− 1)3). (3.7)
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It can be checked that only the first solution is compatible with the fact that both ψ and φ are

real-valued functions of u, i.e.

φ2(u) = 1
u2

{
−u− 5(c− 1)2

3 + 24/3(3u+ (c− 1)2)(c− 1)
3d(u)1/3 + 22/3(c− 1)d(u)1/3

3

+ 1
48

[
−8(c− 1) + 2× 21/3(3u+ (c− 1)2)

d(u)1/3 + 22/3d(u)1/3
]2}

.

From the explicit form of φ2(u) we see that, necessarily,

u(−4u2 + (−1 + 4c(5 + 2c))u− 4c(c− 1)3) ≥ 0,

since u ≥ 0. Solving this quadratic inequality, we get two roots,

a = 1
8(−1 + 20c+ 8c2 − (1 + 8c)3/2), b = 1

8(−1 + 20c+ 8c2 + (1 + 8c)3/2). (3.8)

It’s very easy to see that a is an increasing function of c and a = 0 when c = 1.

In other words, if 0 < c < 1, − 1
4 < a < 0, then the support of the density function should be

(0, b). If c ≥ 1, a ≥ 0, then the support of the density function is (a, b).

Then the density function of the limiting spectral distribution of the T × T dimensional multi-

plied lag-1 sample auto-covariance matrix B is

f(u) = 1
πu

{
−u− 5(c− 1)2

3 + 24/3(3u+ (c− 1)2)(c− 1)
3d(u)1/3 + 22/3(c− 1)d(u)1/3

3

+ 1
48

[
−8(c− 1) + 2× 21/3(3u+ (c− 1)2)

d(u)1/3 + 22/3d(u)1/3
]2}1/2

,

where 0 < u ≤ b, for 0 < c ≤ 1 and a ≤ u ≤ b, for c > 1, with (a, b) given in equation (3.7)

and d(u) given in equation (3.8). Therefore, equation (2.1) admits at least one solution α 7→ x(α)

that corresponds to this density function of the LSD F
¯

. As for the uniqueness, suppose there

exists another solution x1(α) that satisfies equation (2.1), then there should be another density

f1(u) that corresponds to x1(α) while f1(u) 6= f(u). However, it can be seen from the previous

deductions that the density function is unique. Therefore, f1(u) = f(u), x1(α) = x(α). Equation

(2.1) admits one unique solution.

3.2. Proof of Proposition 2.1

Under the same conditions in Theorem 2.1, the ESD of A converges to a non-random limit

distribution F with Stieltjes transform y = y(α). On the other hand, the ESD of B converges to

F
¯

with Stieltjes transform x = x(α) satisfying

α2x3 − 2α(c− 1)x2 + (c− 1)2x− αx− 1 = 0.
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Since it’s known that

F = 1
c

F
¯

+ (1− 1
c

)δ0,

conclusively we have

(1− c)(− 1
α

) + cy(α) = x(α).

Substituting into the equation of x we can get the equation of y, which is

α2c2y3 + αc(c− 1)y2 − αy − 1 = 0.

4. Extension to lag-τ sample auto-covariance matrix

So far in previous sections, we have focused on the singular value distribution of the lag-1 sample

auto-covariance matrix C1 = T−1∑T
j=1 εjε

t
j−1, while in this section, for any given positive integer

τ , we discuss the singular value distribution of the lag-τ sample auto-covariance matrix Cτ =

T−1∑T
j=1 εjε

t
j−τ .

Here we follow exactly the same strategy used in the derivation of the LSD of the lag-1 sample

auto-covariance matrix. It’s easy to see that the difference between C1 and Cτ lies in that we have

now for Cτ ,

sj = P τ1 rj = 1√
T

(0, · · · , 0,︸ ︷︷ ︸
τ 0′s

εj1, · · · , εj,T−τ ), B =
p∑
j=1

sjs
t
j

p∑
j=1

rjr
t
j = P τ1 C̃(P τ1 )tC̃.

Meanwhile, the other matrices and notations remain the same using however the new definition

of the sj ′s above. Consequently, equation (3.2) becomes

1 + α
1
T
tr(B−1(α)) = oa.s.(1)+ (4.1)

p

T

1−
1 + 1

T
tr(B−1(α)C)(

1 + 1
T
tr (B−1(α)C)

)(
1 + 1

T
tr(C̃B−1(α))

)
− 1
T
tr
(
C̃B−1 (α)C (P τ1 )t

)
· 1
T
tr (B−1 (α)P τ1 )


Equation (3.4) becomes

1 + α
1
T
tr(B−1(α)) = oa.s.(1)+ (4.2)

p

T

1−
1 + 1

T
tr(B−1(α)C̃)(

1 + 1
T
tr (B−1(α)C)

)(
1 + 1

T
tr(C̃B−1(α))

)
− 1
T
tr
(
C̃B−1 (α)C (P τ1 )t

)
· 1
T
tr (B−1 (α)P τ1 )


Thus, according to equation (4.1) and (4.2), we still have

1
T
tr(B−1(α)C̃) = 1

T
tr(B−1(α)C) + oa.s.(1).
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Meanwhile, by Lemma 5.3, we still have

1
T
tr
(
B−1(α)P τ1

)
= oa.s.(1), (4.3)

then by equation (4.1), we have

1 + αx0 = p

T

(
1− 1

1 + y0

)
+ oa.s.(1). (4.4)

Similarly, as for the second equation satisfied by x0 and y0, equation (3.6) persists.

y0 = p

T
· x0

1 + y0
+ oa.s.(1). (4.5)

Therefore, the system of equations satisfied by x0 and y0 remains the same when the time lag

changes from 1 to τ . In other words, for a given positive time lag τ , the singular value distribution

of Cτ is the same with that of C1 established in Theorem 2.1.

5. TECHNICAL LEMMAS

Lemma 5.1. Under the same assumptions in Theorem 2.1, we have, for any fixed k, 1 ≤ k < T ,

∀1 ≤ j ≤ p, almost surely,

stjB
−1
j (α)sj = 1

T
tr(B−1

j (α)) + oa.s.(1), (5.1)

rtjB
−1
j (α)P k1 rj = 1

T
tr(B−1

j (α)P k1 ) + oa.s.(1), (5.2)

rtjC̃jB
−1
j (α)P k1 rj = 1

T
tr(C̃jB−1

j (α)P k1 ) + oa.s.(1), (5.3)

stjB
−1
j (α)Cjsj = 1

T
tr(B−1

j (α)Cj) + oa.s.(1), (5.4)

where the oa.s.(1) terms are uniform in 1 ≤ j ≤ p.

Proof. We detail the proof of (5.1) and the proofs of (5.2), (5.3) and (5.4) are very similar, thus

omitted.

Denote B−1
j (α) by (ykl) = Y , sj = 1√

T
(εj0, · · · , εj,T−1)t, then we have

|ykl| <
1
ν
, |εit| < ηT

1
4 , sup

1≤i≤p,0≤t≤T
E|εit|4+δ < M,

where ν is the imaginary part of α.

Following the scheme of Lemma 9.1 of [3] it’s easy to see that

E
∣∣∣∣stjY sj − 1

T
tr(Y )

∣∣∣∣2r = E

∣∣∣∣∣∣ 1
T

T∑
k,l=1

εj,k−1yklεj,l−1 −
1
T

T∑
k=1

ykk

∣∣∣∣∣∣
2r

= E

∣∣∣∣∣∣ 1
T

T∑
k=1

(ε2
j,k−1 − 1)ykk + 1

T

∑
k 6=l

εj,k−1yklεj,l−1

∣∣∣∣∣∣
2r

= E |S1 + S2|2r ≤ 2rE|S1|2r + E|S2|2r

2 ,
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where

S1 = 1
T

T∑
k=1

(ε2
j,k−1 − 1)ykk, S2 = 1

T

∑
1≤k 6=l≤T

yklεj,k−1εj,l−1,

What’s more,

E|S1|2r = E

∣∣∣∣∣ 1
T

T∑
k=1

(ε2
j,k−1 − 1)ykk

∣∣∣∣∣
2r

≤ 1
T 2r

r∑
t=1

∑
1≤k1<···<kt≤T

∑
i1+···+it=2r
i1≥2,··· ,it≥2

(2r)!
t∏
l=1

E(ε2
j,kl−1 − 1)ilyilklkl

il!

≤ 1
T 2r ·

1
v2r

r∑
t=1

T t
∑

i1+···+it=2r
i1≥2,··· ,it≥2

(2r)!∏t
l=1 il!

·M t (ηT
1
4 )4r

(ηT 1
4 )4t

≤ 1
T 2r ·

1
v2r

r∑
t=1

T tt2rM t (ηT
1
4 )4r

(ηT 1
4 )4t

= O( 1
T r

),

E|S2|2r = 1
T 2r

∑
yi1j1yt1l1 · · · yirjrytrlrE(εj,i1εj,j1εj,t1εj,l1 · · · εj,irεj,jrεj,trεj,lr ).

Consider a graph G with 2r edges that link it to jt and lt to kt, t = 1, · · · , r. It’s easy to see that

for any nonzero term, the vertex degrees of the graph are not less than 2. Write the non-coincident

vertices as v1, · · · , vm with degrees p1, · · · , pm greater than 1, then, similarly in Lemma 9.1 of Bai

and Silverstein [3], we have,

|E(εj,i1εj,j1εj,t1εj,l1 · · · εj,irεj,jrεj,trεj,lr )| ≤ (ηT 1
4 )2(2r−m),

E|S2|2r ≤
1

T 2rν2r

r∑
m=2

Tm/2(ηT 1
4 )2(2r−m)m4r = O( 1

T r
).

Therefore, by the Borel-Cantelli lemma, we have, ∀1 ≤ j ≤ p,

stjBj(α)−1sj = 1
T
tr(Bj(α)−1) + oa.s.(1),

where the oa.s.(1) terms are uniform in 1 ≤ j ≤ p.

Lemma 5.2. Under the same assumptions in Theorem 2.1, we have, ∀1 ≤ j ≤ p, 1 ≤ k ≤ T−1,

almost surely,

rtjB
−1
j (α)P k1 rj = 1

T
tr
(
B−1 (α)P k1

)
+ oa.s.(1) = oa.s.(1),

rtjC̃jB
−1
j (α)P k1 rj = 1

T
tr
(
C̃B−1 (α)P k1

)
+ oa.s.(1) = oa.s.(1),

where the oa.s.(1) terms are uniform in 1 ≤ j ≤ p.

Proof. Notice that, for 1 ≤ k ≤ T − 1,

P1 =

 0 0

IT−1 0

 , P k1 =

 0 0

IT−k 0

 , PT1 = 0, sj = P1rj .
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Here PT1 represents the T th power of the T × T matrix P1, we use P t1 to denote the transpose of

matrix P1. Denote, for 1 ≤ k ≤ T ,

1
T
tr
(
B−1(α)

)
:= x0,

1
T
tr
(
B−1(α)C

)
= 1
T
tr
(
C̃B−1(α)

)
:= y0,

1
T
tr
(
B−1(α)P k1

)
:= xk,

1
T
tr
(
C̃B−1(α)P k1

)
:= yk.

It’s easy to see that

xT = yT = 0.

In addition, since

(BA− αI)
(

1
α
B (AB − αI)−1

A− 1
α

I
)

= 1
α
BAB (AB − αI)−1

A−B (AB − αI)−1
A− 1

α
BA+ I

= 1
α
B
(
I + α (AB− αI)−1

)
A−B (AB − αI)−1

A− 1
α
BA+ I = I,

the following equation holds

B(AB − αI)−1A = I + α(BA− αI)−1, (5.5)

then we have, for any 1 ≤ j ≤ p,

stjC̃jB
−1
j (α)Cjrj = stjC̃j

(
CjC̃j − αIT

)−1
Cjrj

= α · stj
(
C̃jCj − αIT

)−1
rj + stjrj + oa.s.(1)

= α · rtj
(
CjC̃j − αIT

)−1
sj + oa.s.(1)

= α
1
T
tr(B−1(α)P1) + oa.s.(1) = αx1 + oa.s.(1).

Now we can derive the recursion equations between xk and yk.

Firstly, for xk, 1 ≤ k ≤ T − 1, since

P k1 =

 p∑
j=1

sjs
t
j

p∑
j=1

rjr
t
j

B−1(α)P k1 − αB−1(α)P k1 ,
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taking the trace and dividing by T on both sides of the equation, we get

α · 1
T
tr
(
B−1(α)P k1

)
= 1
T

p∑
j=1

stjC̃B
−1(α)P k1 sj = 1

T

p∑
j=1

stjC̃
(
Bj(α) + Cjrjr

t
j + sjs

t
jC̃
)−1

P k1 sj

= 1
T

p∑
j=1

stjC̃
(
Bj(α) + Cjrjr

t
j

)−1
P k1 sj

1 + stjC̃
(
Bj(α) + Cjrjrtj

)−1
sj

= 1
T

p∑
j=1

stjC̃j
(
Bj(α) + Cjrjr

t
j

)−1
P k1 sj

1 + stjC̃j
(
Bj(α) + Cjrjrtj

)−1
sj

+ oa.s.(1)

= 1
T

p∑
j=1

1 + y0

(1 + y0)2 − αx2
1

[
stjC̃jB

−1
j (α)P k1 sj −

stjC̃jB
−1
j (α)CjrjrtjB−1

j (α)P k1 sj
1 + rtjB

−1
j (α)Cjrj

]
+ oa.s.(1)

= p

T

1 + y0

(1 + y0)2 − αx2
1

[
1
T
tr(C̃B−1(α)P k1 )− αx1

1 + y0
· 1
T
tr
(
B−1(α)P k+1

1
)]

+ oa.s.(1),

i.e.

αxk = p

T
· 1 + y0

(1 + y0)2 − αx2
1
· yk −

p

T
· αx1

(1 + y0)2 − αx2
1
· xk+1 + oa.s.(1), 1 ≤ k ≤ T − 1. (5.6)

In particular, for k = T − 1, we have

αxT−1 = p

T
· 1 + y0

(1 + y0)2 − αx2
1
· yT−1 + oa.s.(1). (5.7)

Similarly, for yk, 1 ≤ k ≤ T ,

yk = 1
T
tr
(
C̃B−1(α)P k1

)
= 1
T
tr

 p∑
j=1

rjr
t
jB
−1(α)P k1

 = 1
T

p∑
j=1

rtjB
−1(α)P k1 rj

= 1
T

p∑
j=1

rtj
(
Bj(α) + sjs

t
jC̃j
)−1

P k1 rj

1 + rtj
(
Bj(α) + sjstjC̃j

)−1
Cjrj

+ oa.s.(1)

= 1
T

p∑
j=1

1 + y0

(1 + y0)2 − αx2
1
·

[
rtjB

−1
j (α)P k1 rj −

rtjB
−1
j (α)sjstjC̃jB−1

j (α)P k1 rj
1 + stjC̃jB

−1
j (α)sj

]
+ oa.s.(1)

= p

T
· 1 + y0

(1 + y0)2 − αx2
1
·
[

1
T
tr(B−1(α)P k1 )− x1

1 + y0
· 1
T
tr
(
C̃B−1(α)P k−1

1
)]

+ oa.s.(1),

i.e.

yk = p

T
· 1 + y0

(1 + y0)2 − αx2
1
· xk −

p

T
· x1

(1 + y0)2 − αx2
1
· yk−1 + oa.s.(1), 1 ≤ k ≤ T − 1. (5.8)

Particularly, for k = T , we have

yT = p

T
· 1 + y0

(1 + y0)2 − αx2
1
· xT −

p

T
· x1

(1 + y0)2 − αx2
1
· yT−1 + oa.s.(1). (5.9)

Note that

xT = yT = 0,
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so we have either x1 = oa.s.(1) or yT−1 = oa.s.(1).

If x1 = oa.s.(1), let (k = 1) in equation (5.8), then we have y1 = oa.s.(1), we denote it by

x1 = oa.s.(1) (5.8)====⇒
(k=1)

y1 = oa.s.(1),

consecutively, we have

y1 = oa.s.(1) (5.6)====⇒
(k=1)

x2 = oa.s.(1) (5.8)====⇒
(k=2)

y2 = oa.s.(1) (5.6)====⇒
(k=2)

x3 = oa.s.(1) (5.8)====⇒
(k=3)

y3 = oa.s.(1),

Then, recursively, we have for all 1 ≤ k ≤ T − 1,

xk = yk = oa.s.(1).

On the other hand, if yT−1 = oa.s.(1), since xT = yT = 0, let (k = T ) in equation (5.8), then

yT−1 = oa.s.(1) (5.6)======⇒
(k=T−1)

xT−1 = oa.s.(1) (5.8)======⇒
(k=T−1)

yT−2 = oa.s.(1) (5.6)======⇒
(k=T−2)

xT−2 = oa.s.(1) (5.8)======⇒
(k=T−2)

yT−3 = oa.s.(1),

Therefore, recursively, we still have for all 1 ≤ k ≤ T − 1,

xk = yk = oa.s.(1).

Thus we have, ∀1 ≤ j ≤ p, 1 ≤ k ≤ T − 1, almost surely,

rtjB
−1
j (α)P k1 rj = 1

T
tr
(
B−1 (α)P k1

)
+ oa.s.(1) = oa.s.(1),

rtjC̃jB
−1
j (α)P k1 rj = 1

T
tr
(
C̃B−1 (α)P k1

)
+ oa.s.(1) = oa.s.(1),

where the oa.s.(1) terms are uniform in 1 ≤ j ≤ p.

Lemma 5.3. Extension of Lemma 5.2 to time lag τ :

we have, ∀1 ≤ j ≤ p, 1 ≤ k ≤ [Tτ ], almost surely,

rtjB
−1
j (α)(P τ1 )krj = 1

T
tr
(
B−1 (α) (P τ1 )k

)
+ oa.s.(1) = oa.s.(1),

rtjC̃jB
−1
j (α)(P τ1 )krj = 1

T
tr
(
C̃B−1 (α) (P τ1 )k

)
+ oa.s.(1) = oa.s.(1),

where the oa.s.(1) terms are uniform in 1 ≤ j ≤ p.

Proof.

Denote, for 1 ≤ k ≤
[
T
τ

]
,

1
T
tr
(
B−1(α)

)
:= x0,

1
T
tr
(
B−1(α)C

)
= 1
T
tr
(
C̃B−1(α)

)
:= y0,

1
T
tr
(
B−1(α)(P τ1 )k

)
:= xk,

1
T
tr
(
C̃B−1(α)(P τ1 )k

)
:= yk.

It’s easy to see that

x[ Tτ ]+1 = y[ Tτ ]+1 = 0.
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In addition, for any 1 ≤ j ≤ p,

stjC̃jB
−1
j (α)Cjrj = α

1
T
tr(B−1(α)P τ1 ) + oa.s.(1) = αx1 + oa.s.(1).

Now we can derive the recursion equations between xk and yk.

Firstly, for xk, 1 ≤ k ≤
[
T
τ

]
,

α · 1
T
tr
(
B−1(α)(P τ1 )k

)
= oa.s.(1)+

p

T

1 + y0

(1 + y0)2 − αx2
1

[
1
T
tr(C̃B−1(α)(P τ1 )k)− αx1

1 + y0
· 1
T
tr
(
B−1(α)(P τ1 )k+1)] ,

i.e.

αxk = p

T
· 1 + y0

(1 + y0)2 − αx2
1
· yk −

p

T
· αx1

(1 + y0)2 − αx2
1
· xk+1 + oa.s.(1), 1 ≤ k ≤

[
T

τ

]
. (5.10)

Similarly, for yk, 1 ≤ k ≤
[
T
τ

]
+ 1,

yk = 1
T
tr
(
C̃B−1(α)(P τ1 )k

)
= p

T
· 1 + y0

(1 + y0)2 − αx2
1
·
[

1
T
tr(B−1(α)(P τ1 )k)− x1

1 + y0
· 1
T
tr
(
C̃B−1(α)(P τ1 )k−1)]+ oa.s.(1),

i.e.

yk = p

T
· 1 + y0

(1 + y0)2 − αx2
1
· xk −

p

T
· x1

(1 + y0)2 − αx2
1
· yk−1 + oa.s.(1), 1 ≤ k ≤

[
T

τ

]
+ 1. (5.11)

Particularly, for k =
[
T
τ

]
+ 1, we have

y[ Tτ ]+1 = p

T
· 1 + y0

(1 + y0)2 − αx2
1
· x[ Tτ ]+1 −

p

T
· x1

(1 + y0)2 − αx2
1
· y[ Tτ ] + oa.s.(1). (5.12)

Note that

x[ Tτ ]+1 = y[ Tτ ]+1 = 0,

following the same arguments as in Lemma 5.2, we have, ∀1 ≤ j ≤ p, 1 ≤ k ≤
[
T
τ

]
, almost surely,

rtjB
−1
j (α)(P τ1 )krj = 1

T
tr
(
B−1 (α) (P τ1 )k

)
+ oa.s.(1) = oa.s.(1),

rtjC̃jB
−1
j (α)(P τ1 )krj = 1

T
tr
(
C̃B−1 (α) (P τ1 )k

)
+ oa.s.(1) = oa.s.(1),

where the oa.s.(1) terms are uniform in 1 ≤ j ≤ p.

Appendix A: Justification of truncation, centralization and standardization

Recall that εt = (ε1t, · · · , εpt)t, εit are independent real-valued random variables with E (εit) =

0,E
(
|εit|2

)
= 1, and we are interested in is the LSD of time-lagged covariance matrix



Z. Li, G. Pan and J. Yao/Singular values of autocovariance matrices 20

A = 1
T 2

(
T∑
i=1

εiε
t
i−1

) T∑
j=1

εj−1ε
t
j

 .

The assumed moment conditions are: for some constant M , η and arbitrarily small positive δ,

sup
1≤i≤p,0≤t≤T

E
(
|εit|4+δ) < M,

The aim of the truncation, centralization and standardization procedure is that after these

treatment, we may assume that

|εit| ≤ ηT 1/4, E (εit) = 0, V ar (εit) = 1, E
(
|εit|4+δ) < M.

Since the whole procedure is the same for any time lag τ , we focus on the case of lag-1 sample

auto-covariance matrix.

A.1. Truncation

Let ε̃jt = εjtI(|εjt|<ηT 1/4), ε̃t = (ε̃1t, · · · , ε̃pt)t, η can be seen as a constant.

Define

Ã = 1
T 2

(
T∑
i=1

ε̃iε̃
t
i−1

) T∑
j=1

ε̃j−1ε̃
t
j

 ,

then according to Theorem A.44 of [3] which states that

‖FAA
∗
− FBB

∗
‖ ≤ 1

p
rank (A−B) ,

we have

‖FA − F Ã‖ ≤ 1
p

rank
(

1
T

T∑
i=1

ε̃iε̃
t
i−1 −

1
T

T∑
i=1

εiε
t
i−1

)

≤ 1
p

rank
(

1
T

T∑
i=1

ε̃i(ε̃ti−1 − εti−1)
)

+ 1
p

rank
(

1
T

T∑
i=1

(ε̃i − εi)εti−1

)

≤ 1
p

T∑
i=1

rank
(

1
T
ε̃i(ε̃ti−1 − εti−1)

)
+ 1
p

T∑
i=1

rank
(

1
T

(ε̃i − εi)εti−1

)

≤ 2
p

T∑
t=0

p∑
i=1

I(|εit|≥ηT 1/4),

E

(
1
p

T∑
t=0

p∑
i=1

I(|εit|≥ηT 1/4)

)
≤ 1
p

T∑
t=0

p∑
i=1

E
(
|εit|4

η4 · T
I(|εit|≥ηT 1/4)

)

= 1
η4pT

p∑
i=1

T∑
t=0

E
(
|εit|4I(|εit|≥ηT 1/4)

)
= o (1) ,
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V ar

(
1
p

T∑
t=0

p∑
i=1

I(|εit|≥ηT 1/4)

)
= 1
p2

T∑
t=0

p∑
i=1

V ar
(
I(|εit|≥ηT 1/4)

)
≤ 1
p2

T∑
t=0

p∑
i=1

E
(
I(|εit|≥ηT 1/4)

)
= o

(
1
T

)
.

Applying Bernstein’s inequality

P (|Sn| ≥ ε) ≤ 2 exp
(
− ε2

2 (B2
n + bε)

)
,

where Sn =
∑n
i=1 Xi, B2

n = ES2
n, Xi are i.i.d. bounded by b, we can get that, for any small ε > 0,

P

(
1
p

T∑
t=0

p∑
i=1

I(|εit|≥ηT 1/4) ≥ ε

)
≤ 2 exp

− ε2

2
(
ε
p + o

( 1
T

))
 = 2 exp (−Kεp) ,

which is summable, then by Borel-Cantelli lemma,

a.s.‖FA − F Ã‖ → 0, as T →∞.

A.2. Centralization

Let ε̂it = ε̃it − E (ε̃it), ε̂t = (ε̂1t, · · · , ε̂pt), Â = 1
T 2

(∑T
i=1 ε̂iε̂

t
i−1

)(∑T
j=1 ε̂j−1ε̂

t
j

)
.

With Corollary A.42 of [3],

L4
(
FAA

∗
, FBB

∗
)
≤ 2
p2 tr (AA∗ +BB∗) tr

(
(A−B) (A−B)∗

)
,

we have

L4
(
F Â, F Ã

)
≤ 2
p2 tr

 1
T 2

(
T∑
i=1

ε̂iε̂
t
i−1

) T∑
j=1

ε̂j−1ε̂
t
j

+ 1
T 2

(
T∑
i=1

ε̃iε̃
t
i−1

) T∑
j=1

ε̃j−1ε̃
t
j


· tr

 1
T 2

(
T∑
i=1

ε̂iε̂
t
i−1 −

T∑
i=1

ε̃iε̃
t
i−1

) T∑
j=1

ε̂j−1ε̂
t
j −

T∑
j=1

ε̃j−1ε̃
t
j


:= N1 ·N2.
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For N2,

N2 = tr

 1
T 2

(
T∑
i=1

ε̂iε̂
t
i−1 −

T∑
i=1

ε̃iε̃
t
i−1

) T∑
j=1

ε̂j−1ε̂
t
j −

T∑
j=1

ε̃j−1ε̃
t
j


= tr

(
1
T 2

T∑
i=1

(
E (ε̃i)E

(
ε̃ti−1

)
− E (ε̃i) ε̃ti−1 − ε̃iE

(
ε̃ti−1

))
·
T∑
i=1

(
E (ε̃i)E

(
ε̃ti−1

)
− E (ε̃i) ε̃ti−1 − ε̃iE

(
ε̃ti−1

))t)

=

∥∥∥∥∥ 1
T

T∑
i=1

(
E (ε̃i)E

(
ε̃ti−1

)
− E (ε̃i) ε̃ti−1 − ε̃iE

(
ε̃ti−1

))∥∥∥∥∥
2

F

≤ 2

∥∥∥∥∥ 1
T

T∑
i=1

E (ε̃i)E
(
ε̃ti−1

)∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥ 1
T

T∑
i=1

E (ε̃i) ε̃ti−1

∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥ 1
T

T∑
i=1

ε̃iE
(
ε̃ti−1

)∥∥∥∥∥
2

F

, (A.1)

where ‖·‖F represents for the Frobenius norm of a matrix. Consider the second term, we have∥∥∥∥∥ 1
T

T∑
i=1

E (ε̃i) ε̃ti−1

∥∥∥∥∥
2

F

= 1
T 2

p∑
i,j=1

(
T∑
t=1

ε̃j,t−1E (ε̃it)
)2

= 1
T 2

p∑
i,j=1

T∑
t=1

ε̃2
j,t−1 (E (ε̃it))2 + 1

T 2

p∑
i,j=1

∑
t1 6=t2

ε̃j,t1−1ε̃j,t2−1E (ε̃it1)E (ε̃it2)

=:M1 +M2.

Notice that sup1≤i≤p,1≤t≤T E
(
ε4+δ
it

)
< M , we have 1

η4pT

∑p
i=1
∑T
t=0 E

(
|εit|4I(|εit|≥ηT 1/4)

)
=

o (1), then

E (M1) = 1
T 2

p∑
i,j=1

T∑
t=1

E
(
ε̃2
j,t−1

)
(E (ε̃it))2

≤ C1

T 2

p∑
i,j=1

T∑
t=1

(
E
(
|εit|I(|εit|≥ηT 1/4)

))2

≤ C1

T 2

p∑
i,j=1

T∑
t=1

1
η6 · T 3/2

(
E
(
|εit|4I(|εit|≥ηT 1/4)

))2

= O
(
T−

1
2

)
,

Moreover,

V ar (M1) = 1
T 4

p∑
j=1

T∑
t=1

E
(
ε̃2
j,t−1 − E

(
ε̃2
j,t−1

))2
(

p∑
i=1

(E (ε̃it))2

)2

≤ 1
T 4

p∑
j=1

T∑
t=1

E
(
ε̃2
j,t−1

)4
(

p∑
i=1

(
E
(
|εit|I(|εit|≥η·T 1/4)

))2
)2

≤ C2

T 4

p∑
j=1

T∑
t=1

1
T 3

(
p∑
i=1

(
E
(
|εit|4I(|εit|≥η·T 1/4)

))2
)2

= O
(
T−3) .
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Therefore, a.s. M1 → 0, as T →∞.

For the term M2, we have

E (M2) = 1
T 2

p∑
i,j=1

∑
t1 6=t2

E (ε̃j,t1−1ε̃j,t2−1)E (ε̃it1)E (ε̃it2)

= 1
T 2

p∑
i,j=1

∑
t1 6=t2

E (ε̃j,t1−1)E (ε̃j,t2−1)E (ε̃it1)E (ε̃it2)

≤ 1
T 2

p∑
i,j=1

∑
t1 6=t2

1
η12 · T 3

(
sup

1≤i≤p,0≤t≤T
E
(
|εit|4I(|εit|≥η·T 1/4)

))4
= O

(
T−1) ,

V ar (M2) = 1
T 4

p∑
j=1

∑
t1 6=t2

V ar (ε̃j,t1−1ε̃j,t2−1)
(

p∑
i=1

E (ε̃it1)E (ε̃it2)
)2

≤ 1
T 4

p∑
j=1

∑
t1 6=t2

E
(
ε̃2
j,t1−1

)
E
(
ε̃2
j,t2−1

)( p∑
i=1

(
sup

1≤i≤p,0≤t≤T
E (ε̃it)

)2
)2

≤ C3

T 4

p∑
j=1

∑
t1 6=t2

1
T 3

(
p∑
i=1

(
sup

1≤i≤p,0≤t≤T
E
(
|εit|4I(|εit|≥η·T 1/4)

))2
)2

= O
(
T−2) .

Therefore, a.s. M2 → 0, as T →∞.

Consequently,
∥∥∥ 1
T

∑T
i=1 E (ε̃i) ε̃ti−1

∥∥∥2

F
→ 0, a.s. Similarly, we can prove that the last term in

equation (A.1) tends to zero almost surely. As for the first term, we have∥∥∥∥∥ 1
T

T∑
i=1

E (ε̃i)E
(
ε̃ti−1

)∥∥∥∥∥
2

F

=
p∑

i,j=1

(
1
T

T∑
t=1

(E (ε̃it)E (ε̃j,t−1))
)2

= 1
T 2

p∑
i,j=1

T∑
t1=1

T∑
t2=1

E (ε̃it1)E (ε̃j,t1−1)E (ε̃it2)E (ε̃j,t2−1)

≤ C4

T 2

p∑
i,j=1

T∑
t1=1

T∑
t2=1

1
T 3

(
sup

1≤i≤p,0≤t≤T
E
(
|εit|4I(|εit|≥η·T 1/4)

))4
= O

(
T−1) .

Therefore

N2 = tr

 1
T 2

(
T∑
i=1

ε̂iε̂
t
i−1 −

T∑
i=1

ε̃iε̃
t
i−1

) T∑
j=1

ε̂j−1ε̂
t
j −

T∑
j=1

ε̃j−1ε̃
t
j

→ 0, a.s.

Now, we consider N1,

1
p2 tr

 1
T 2

(
T∑
i=1

ε̂iε̂
t
i−1

) T∑
j=1

ε̂j−1ε̂
t
j

+ 1
T 2

(
T∑
i=1

ε̃iε̃
t
i−1

) T∑
j=1

ε̃j−1ε̃
t
j

=:M3 +M4,

Firstly, for M3, since E (ε̂it) = 0,

E (M3) = E

 1
p2T 2

p∑
i,j=1

(
T∑
t=1

ε̂itε̂j,t−1

)2
= 1
p2T 2

p∑
i,j=1

T∑
t=1

E
(
ε̂2
it

)
E
(
ε̂2
j,t−1

)
= O

(
1
T

)
.
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Moreover,

V ar (M3) = E

 1
p2T 2

p∑
i,j=1

(
T∑
t=1

ε̂itε̂j,t−1

)22

− (E (M3))2

= 1
p4T 4E

 p∑
i,j=1

T∑
t=1

ε̂2
itε̂

2
j,t−1

2

+ 1
p4T 4E

 p∑
i,j=1

∑
t1 6=t2

ε̂it1 ε̂j,t1−1ε̂it2 ε̂j,t2−1

2

+O

(
1
T 2

)

≤ O
(

1
T 2

)
+O

(
1
T 3

)
+O

(
1
T 2

)
= O

(
1
T 2

)
.

Therefore M3 → 0, a.s. Next for M4,

E (M4) = E

 1
p2T 2

p∑
i,j=1

(
T∑
t=1

ε̃itε̃j,t−1

)2
= 1
p2T 2

p∑
i,j=1

T∑
t=1

Eε̃2
itEε̃2

j,t−1 + 1
p2T 2

p∑
i,j=1

∑
t1 6=t2

E (ε̃it1)E (ε̃j,t1−1)E (ε̃it2)E (ε̃j,t2−1)

≤ O
(

1
T

)
+ 1
p2T 2

p∑
i,j=1

∑
t1 6=t2

1
η12T 3

(
sup

1≤i≤p,0≤t≤T
E
(
|εit|4I(|εit|≥η·T 1/4)

))4
= O

(
1
T

)
.

V ar (M4) = 1
p4T 4V ar

 p∑
i,j=1

(
T∑
t=1

ε̃itε̃j,t−1

)2
≤ 1
p4T 4E

 p∑
i,j=1

(
T∑
t=1

ε̃itε̃j,t−1

)22

= 1
p4T 4E

 p∑
i,j=1

T∑
t=1

ε̃2
itε̃

2
j,t−1

2

+ 1
p4T 4E

 p∑
i,j=1

∑
t1 6=t2

ε̃it1 ε̃j,t1−1ε̃it2 ε̃j,t2−1

2

≤ O
(

1
T 2

)
+O

(
1
T 6

)
= O

(
1
T 2

)
.

Therefore, M4 → 0, a.s.. All in all,

L4
(
F Â, F Ã

)
≤ N1 ·N2 ≤ 4 (M3 +M4) (M1 +M2)→ 0, a.s.T →∞.

A.3. Rescaling

Define ε̃it = εitI{|εit|≤ηT 1/4}, ε̂it = ε̃it − Eε̃it, σ̂2
it = E|ε̂it|2 = E|ε̃it − Eε̃it|2 and εit = ε̂it

σ̂it
, we first

show that σ̂2
its tend to 1 uniformly.

We consider the distance between Â = 1
T 2

(∑T
t=1 ε̂tε̂

t
t−1

)(∑T
t=1 ε̂t−1ε̂

t
t

)
andA = 1

T 2

(∑T
t=1 εtε

t
t−1

)(∑T
t=1 εt−1ε

t
t

)
.
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Since εit = ε̃it + εitI{|εit|>ηT 1/4} := ε̃it + rit, we have 0 = E (ε̃it + rit) = E (ε̃it) + E (rit). Next,

1 = V ar (εit) = V ar (ε̃it + rit) = V ar (ε̃it) + V ar (rit) + 2Cov (ε̃it, rit)

= V ar (ε̃it) + V ar (rit) + 2 [E (ε̃itrit)− E (ε̃it)E (rit)]

= V ar (ε̃it) + V ar (rit) + 2 [E (rit)]2 ,

so that

1− V ar (ε̃it) = E
(
r2
it

)
+ [E (rit)]2 ≤ 2E

(
r2
it

)
.

It follows that

max
1≤i≤p,0≤t≤T

(
1− σ̂2

it

)
≤ 2 max

1≤i≤p,0≤t≤T
E
(
ε2
itI{|εit|>ηT 1/4}

)
≤ 2 max

1≤i≤p,0≤t≤T
E

(
ε4+δ
it

ε2+δ
it

I{|εit|>ηT 1/4}

)

≤ 2 1
η2+δT 1/2+δ/4 max

1≤i≤p,0≤t≤T
E
(
ε4+δ
it I{|εit|>ηT 1/4}

)
≤ 2M

η2+δT 1/2+δ/4 → 0, as T →∞,

where the last step uses the uniform bound sup1≤i≤p,0≤t≤T E
(
|εit|4+δ) < M . As

1− σ̂it = 1− σ̂2
it

1 + σ̂it
≤ 1− σ̂2

it,

we have

kT := max
i,t

(1− σ̂it)→ 0, 1− kT ≤ σ̂it ≤ 1, ∀i, t

and

0 ≤ 1
σ̂it
− 1 ≤ 1

1− kT
− 1→ 0, as T →∞.

According to Corollary A.42 of [3], we have

L4
(
F Â, FA

)
≤ 2
p2

∥∥∥∥∥ 1
T

T∑
t=1

ε̂tε̂
t
t−1

∥∥∥∥∥
2

F

+

∥∥∥∥∥ 1
T

T∑
t=1

εtε
t
t−1

∥∥∥∥∥
2

F


·

∥∥∥∥∥ 1
T

T∑
t=1

ε̂tε̂
t
t−1 −

1
T

T∑
t=1

εtε
t
t−1

∥∥∥∥∥
2

F

.

Firstly, consider

1
p

∥∥∥∥∥ 1
T

T∑
t=1

(
ε̂tε̂

t
t−1 − εtεtt−1

)∥∥∥∥∥
2

F

= 1
p

∥∥∥∥∥ 1
T

T∑
t=1

(
ε̂tε̂

t
t−1 − εtε̂tt−1 + εtε̂

t
t−1 − εtεtt−1

)∥∥∥∥∥
2

F

≤ 2

1
p

∥∥∥∥∥ 1
T

T∑
t=1

(
ε̂tε̂

t
t−1 − εtε̂tt−1

)∥∥∥∥∥
2

F

+ 1
p

∥∥∥∥∥ 1
T

T∑
t=1

(
εtε̂

t
t−1 − εtεtt−1

)∥∥∥∥∥
2

F


:= 2 (M5 +M6) ,
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E
(
M2

5
)

= 1
p2T 4E

 p∑
i,j=1

(
T∑
t=1

(
1− 1

σ̂it

)
ε̂itε̂j,t−1

)22

= 1
p2T 4E

 p∑
i,j=1

T∑
t=1

(
1− 1

σ̂it

)2
ε̂2
itε̂

2
j,t−1

2

+ 1
p2T 4E

 p∑
i,j=1

T∑
t1 6=t2

(
1− 1

σ̂it1

)(
1− 1

σ̂it2

)
ε̂it1 ε̂j,t1−1ε̂it2 ε̂j,t2−1

2

≤ p2

T 2 max
i,t

(σ̂it − 1)4 + 1
T 2 max

i,t
(σ̂it − 1)4 = O( 1

T 2+δ ),

Therefore M5 → 0, a.s.

Similarly for M6,

E
(
M2

6
)

= 1
p2T 4E

 p∑
i,j=1

(
T∑
t=1

1
σ̂it

(
1− 1

σ̂j,t−1

)
ε̂itε̂j,t−1

)22

= 1
p2T 4E

 p∑
i,j=1

T∑
t=1

1
σ̂2
it

(
1− 1

σ̂j,t−1

)2
ε̂2
itε̂

2
j,t−1

2

+ 1
p2T 4E

 p∑
i,j=1

T∑
t1 6=t2

1
σ̂it1 σ̂it2

(
1− 1

σ̂j,t1−1

)(
1− 1

σ̂j,t2−1

)
ε̂it1 ε̂j,t1−1ε̂it2 ε̂j,t2−1

2

≤ p2

T 2 max
i,t

(σ̂it − 1)4 + 1
T 2 max

i,t
(σ̂it − 1)4 = O( 1

T 2+δ ),

Therefore, 1
p

∥∥∥ 1
T

∑T
t=1
(
ε̂tε̂

t
t−1 − εtεtt−1

)∥∥∥2

F
→ 0, a.s.

Secondly, consider

1
p

∥∥∥∥∥ 1
T

T∑
t=1

ε̂tε̂
t
t−1

∥∥∥∥∥
2

F

+

∥∥∥∥∥ 1
T

T∑
t=1

εtε
t
t−1

∥∥∥∥∥
2

F


= 1
p
tr

((
1
T

T∑
t=1

ε̂tε̂
t
t−1

)(
1
T

T∑
t=1

ε̂t−1ε̂
t
t

))
+ 1
p
tr

((
1
T

T∑
t=1

εtε
t
t−1

)(
1
T

T∑
t=1

εt−1ε
t
t

))
:= M7 +M8

Consider M7 = 1
pT 2 tr

((∑T
t=1 ε̂tε̂

t
t−1

)(∑T
t=1 ε̂t−1ε̂

t
t

))
,
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E
(
M2

7
)

= E

 1
pT 2

p∑
i,j=1

(
T∑
t=1

ε̂itε̂j,t−1

)22

= 1
p2T 4E

 p∑
i,j=1

T∑
t=1

ε̂2
itε̂

2
j,t−1

2

+ 1
p2T 4E

 p∑
i,j=1

∑
t1 6=t2

ε̂it1 ε̂j,t1−1ε̂it2 ε̂j,t2−1

2

= O (1) +O

(
1
T 2

)
= O (1) .

Moreover,

E
(
M2

8
)

= 1
p2T 4E

 p∑
i,j=1

(
T∑
t=1

ε̂it
σ̂it
· ε̂j,t−1

σ̂j,t−1

)22

= 1
p2T 4E

 p∑
i,j=1

T∑
t=1

ε̂2
it

σ̂2
it

·
ε̂2
j,t−1

σ̂2
j,t−1

2

+ 1
p2T 4E

 p∑
i,j=1

T∑
t1 6=t2

ε̂it1
σ̂it1
· ε̂j,t1−1

σ̂j,t1−1
· ε̂it2
σ̂it2
· ε̂j,t2−1

σ̂j,t2−1

 = O (1) .

Therefore

L4
(
F Â, FA

)
≤ 2(M7 +M8) · 2(M5 +M6)

= 4(M7M5 +M7M6 +M8M5 +M8M6),

since E|M7M5| ≤
(
E(M2

7 )
)1/2 (E(M2

5 )
)1/2 = O( 1

T 1+δ/2 ), we have M7M5 → 0, a.s. and similarly

for M7M6, M8M5, M8M6, therefore, L4
(
F Â, FA

)
→ 0, a.s.
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