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Canine influenza virus A (H3N2) is a newly emerged etiological agent for respiratory

infections in dogs. The mechanism of interspecies transmission from avian to canine

species and the development of diseases in this new host remain to be explored. To

investigate this, we conducted a differential proteomics study in 2-month-old beagles

inoculated intranasally with 106 TCID50 of A/canine/Guangdong/01/2006 (H3N2) virus.

Lung sections excised at 12 h post-inoculation (hpi), 4 days, and 7 days post-inoculation

(dpi) were processed for global and quantitative analysis of differentially expressed

proteins. A total of 17,796 proteins were identified at different time points. About

1.6% was differentially expressed between normal and infected samples. Of these,

23, 27, and 136 polypeptides were up-regulated, and 14, 18, and 123 polypeptides

were down-regulated, at 12 hpi, 4 dpi, and 7 dpi, respectively. Vann diagram analysis

indicated that 17 proteins were up-regulated and one was down-regulated at all three

time points. Selected proteins were validated by real-time PCR and by Western blot.

Our results show that apoptosis and cytoskeleton-associated proteins expression was

suppressed, whereas interferon-induced proteins plus other innate immunity proteins

were induced after the infection. Understanding of the interactions between virus and

the host will provide insights into the basis of interspecies transmission, adaptation, and

virus pathogenicity.

Keywords: canine influenza virus, H3N2, global proteomic analysis, tandem mass spectrometry

Introduction

Waterfowl are natural reservoir hosts for influenza A virus, which maintain a vast viral
gene pool and pose a continued threat to humans and other mammalian species (Webster
et al., 1992). The unique agriculture practice and ecological systems in China and other east-
ern Asian countries have provided ample opportunities for avian influenza virus (AIV) to
cross species and cause sporadic infections in these mammalian hosts (Su et al., 2014a,b,c).
Due to the close contact with humans and frequent interactions with wandering animals,
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FIGURE 4 | Continued
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FIGURE 4 | Ingenuity pathway analysis (IPA) of differentially

expressed proteins. (A) Cancer, free radical, scavenging,

dermatological disease, and conditions; (B) Cancer, developmental

disorder, and muscular and skeletal disorders; (C) Antimicrobial

response, inflammatory diseases, and antigen presentation; (D)

Hematological disease, immunological diseases, and infectious disease.

Red, significantly up-regulated proteins; pink, moderately up-regulated

proteins; light green, moderately down-regulated proteins; dark green,

significantly down-regulated proteins; white, proteins known to be in the

network but not identified in our study.
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FIGURE 5 | Transcriptional modulation and Western blot confirmation

of representative proteins. CIV-infected canine lung tissues at 4 dpi are

harvested. (A) Total RNAs from infected/uninfected lung tissues were

measured by real-time RT-PCR analysis. Samples were normalized with the

GAPDH gene as the control housekeeping gene. (B) Expression of Annexin

A2, Caspase9, Bcl-xL, and Mx1 in CIV-infected canine lung tissues is

indicated by the Western blot. Expression of GAPDH in from different lung

samples was evaluated as a normalization method. Consistent results were

obtained by three independent experiments.

et al., 2010). The cellular proteomics data obtained from A549
cells infected with H3N2 swine influenza virus and H1N1 human
influenza virus showed that Mx1, Mx2, and ISG15 were up-
regulated and some cytoskeleton proteins were down-regulated
(Coombs et al., 2010; Dove et al., 2012; Wu et al., 2013).

Mx1 can prevent the vRNPs virus from being transported
to the nucleus (Xiao et al., 2013) as well as facilitating a direct
interaction with the between MxA and influenza A virus NP
protein (Zimmermann et al., 2011). Mx2 protein inhibits han-
tavirus (Jin et al., 2001) and HIV-1 (Goujon et al., 2013) but
not influenza virus replication. TRIM22 can inhibit RNA viruses
infection such as encephalomyocarditis virus (ECMV), hepatitis
B virus (HBV), human immunodeficiency virus type 1 (HIV-1)
and influenza virus (Di Pietro et al., 2013). IFN-induced antiviral
activity against influenza virus is by reducing protein synthesis
by 5 to 20-fold. This action is implemented by suppressing ISG15
conjugation (Hsiang et al., 2009). The genes WARS, OAS1-3,
ISG20, UBA7, and DDX58 (Figure 4C) showed a strong response
to CIV (H3N2) infection, but the effect on viral replication

remains to be determined. In addition, the pathway for antigen
presentation mediated by MHC class I was strongly induced by
CIV (H3N2) infection (Figure 4C). Many genes related to cellu-
lar immunity were also up-regulated; e.g., beta-2-microglobulin
(β2m), TAP1, TAP2, TAPBP, and IRGM. The function of β2m is
mainly in the stabilization of the tertiary structure of the MHC
class I to permit the presentation of antigenic peptides to CD8+
cytotoxic T lymphocytes (Yu et al., 2013). Transporter associated
with antigen presenting (TAP) 1 and TAP2 genes are localized
in the major histocompatibility complex (MHC) class II region
and can form a heterodimer. These proteins play a key role in
endogenous pathways for antigen presentation. Expression of
HLA-DQA1 was also up-regulated. Overall, these results show
that CIV (H3N2) infection induces a strong immune response.

Other differentially expressed proteins identified, such as sur-
factant protein A1 (SFTPA) and surfactant protein B (SFTPB),
were also up-regulated in our study. SFTPA and SFTPB can bind
to the polysaccharides of microorganisms and are considered
as an important function in innate immunity (Reading et al.,
1997). SFTPA and SFTPB can inhibit influenza viral infectivity
by binding to the viral HA or NA (Benne et al., 1997; Hartshorn
et al., 1997, 2000; Reading et al., 1997). Previously, Qi et al. has
demonstrated that the increased pathogenicity for LPAI H9N2
PB2 627K may be associated with SFTPA (Qi et al., 2015), but in
monkey lungs infected with H1N1, it was found that surfactant
protein D (SFTPD) was down-regulated (Baas et al., 2006). In
general, CIV (H3N2) infection activates both innate and adap-
tive immune response and the virus is eliminated quickly from
the host.

Infection of influenza virus in the respiratory tract causes
cell damage and induction of cytokines and chemokines. These
molecules trigger inflammatory and respiratory distress symp-
toms. Cell death is by apoptosis, which is characterized by specific
morphological changes, including disruption of cytoskeleton,
condensation of the cytoplasm and chromatin, membrane bleb-
bing, loss of mitochondrial function, and fragmentation of DNA.
As shown in Figure 4B, a variety of cytoskeleton-associated pro-
teins, such as actin, collagen, matrilin were down-regulated upon
infection with the CIV in dogs. Notably, HPAI H5N1 infection
in chicken caused the up-regulation of brain cytoskeleton (Zou
et al., 2010); H9N2 AIV infection in mice led to the decrease of
lung cytoskeleton proteins including moesin, ezrin, and myosin
et al (Qi et al., 2015).

Two other proteins associated with cell death and apopto-
sis, B-cell lymphoma-extra-large (Bcl-xL) and Caspase-9, were
identified as being up-regulated and down-regulated by CIV
(H3N2) infection. Bcl-xL is a member of the Bcl-2 protein fam-
ily whose main function is to promote cell survival; Caspase-9
can catalyze Caspase-3, Caspase-6, and Caspase-7. Caspase-7 can
activate the caspase cascade and promotes apoptosis. Influenza
virus-induced apoptosis may be a host defense mechanism (Xie
et al., 2009). However, lung tissue injury may also be associ-
ated with apoptosis. Therefore, induction of apoptosis is a host
defense mechanism by which the replication and spread of virus
is blocked. Inhibiting influenza virus-induced apoptosis by Bcl-2
expression reduces virus yield, virus spread, and glycosylation
of viral protein such as, the HA (Saito et al., 1996; Nencioni
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et al., 2009). Inhibition of apoptosis happened during CIV infec-
tion could limit virus replication and reduce the lung damage.
Compared to results obtained from the influenza virus-infected
A549 cells (Kroeker et al., 2012), it was showed that apoptosis
associated-proteins were down-regulated in both studies, though
the proteins related to cell death signaling were not exactly
the same.

Although complete genome of dogs has been sequenced
(Lindblad-Toh et al., 2005), full annotation remains to be com-
pleted. This study is a first attempt to combine high-throughput
analysis and the canine genome data to understand the molecular
basis of a newly emerged virus in the new host. Despite limitation
of known functions for many differentially expressed proteins,
our results provide informaion formore refined understanding of
interspecies transmission, viral pathogenesis, and host response.
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