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Abstract: In this study, we develop binary polypropylene (PP) composites with hexagonal 

boron nitride (hBN) nanoplatelets and ternary hybrids reinforced with hBN and 

nanohydroxyapatite (nHA). Filler hybridization is a sound approach to make novel 

nanocomposites with useful biological and mechanical properties. Tensile test, osteoblastic 

cell culture and dimethyl thiazolyl diphenyl tetrazolium (MTT) assay were employed to 

investigate the mechanical performance, bioactivity and biocompatibility of binary PP/hBN 

and ternary PP/hBN-nHA composites. The purpose is to prepare biocomposite nanomaterials 

with good mechanical properties and biocompatibility for replacing conventional polymer 

composites reinforced with large hydroxyapatite microparticles at a high loading of 40 vol%. 

Tensile test reveals that the elastic modulus of PP composites increases, while tensile 

elongation decreases with increasing hBN content. Hybridization of hBN with nHA further 

enhances elastic modulus of PP. The cell culture and MTT assay show that osteoblastic cells 

attach and proliferate on binary PP/hBN and ternary PP/hBN-20%nHA nanocomposites. 

Keywords: boron nitride; hydroxyapatite; nanocomposite; osteoblast; cytotoxicity; 

hybridization 

 

OPEN ACCESS 

mailto:aptjong@cityu.edu.hk


Materials 2015, 8 993 

 

 

1. Introduction 

In recent years, the global demand for artificial human bone replacements has been ever increasing 

due to a surge in the number of patients suffering from aging, bone disease and injury. Most orthopedic  

implants are made of metallic materials, including austenitic 316L stainless steel, cobalt-chromium and 

titanium-based alloys, due to their high mechanical strength and good ductility. However, the Young’s 

modulus of such metallic alloys far exceeds that of human bones. This creates a stress shielding effect of 

the surrounding bone tissue, causing the implant to carry a higher proportion of the applied load. 

Consequently, bone resorption and loosening of the metallic implant can result in the failure of the 

replacement. Moreover, human body fluids with about 0.9 wt% sodium chloride at 37 °C are hostile to 

metallic alloys. Thus, metallic implants may undergo electrochemical dissolution or corrosion upon 

exposure to human body fluids, releasing metallic ions that induce inflammatory response, allergy  

and cytotoxicity. 

In general, nickel ion is the main cause of allergy, followed by cobalt and chromium [1,2]. 

Furthermore, Cr3+ and Co2+ ions can bind to several cellular proteins, induce oxidation and impair their 

biological function, thereby causing cell death and tissue damage [3]. Generally, stainless steels exhibit 

good wear and corrosion resistance in aqueous environments due to the formation of thin passive 

oxide/hydroxide films on their surfaces [4–6]. Unfortunately, chloride ions can breakdown the passive 

films of stainless steels, causing pitting and crevice corrosion and creating anodic dissolution in 

localized regions of steels. Cobalt-chromium and 316L steel are susceptible to localized corrosion in 

physiological saline Ringer’s solution. Ti-based alloy, such as Ti-6Al-4V, is more corrosion resistant, 

but inferior wear behavior is its main disadvantage [7]. These potential risks and health hazards with 

metallic devices have motivated materials scientists to search for other materials with good 

biocompatibility and no cytotoxicity. 

Polymers usually find useful applications in biomedical sectors, due to their being lightweight,  

the ease of fabrication and the relatively low cost [8–11]. Their tensile stress and modulus can be 

monitored by adding fillers of micrometer sizes [12–18]. Thus, the composite approach is an effective 

route for producing polymer biomaterials with desired mechanical properties for bone replacements. 

As an example, Bonfield and coworkers added 40 vol% hydroxyapatite microfillers to high-density 

polyethylene to form HAPEXTM composite [19,20]. Hydroxyapatite resembles the mineral component 

of human bones and is responsible for their mechanical strength and stiffness. However, synthetic 

hydroxyapatite microparticles (mHA) usually debond from the polymer matrix during the tensile  

test [21]. Moreover, large mHA particles usually break into small fragments upon tensile loading. 

These effects directly cause ineffective load transfer from the matrix to mHA fillers, resulting in low 

tensile strength and failure of the composite [21]. 

Recent advances in nanoscience and nanotechnology have led to the development and creation of 

functional nanomaterials with unique chemical, physical mechanical and biological characteristics.  

In the past decade, the use of nanomaterials in healthcare and biomedical sectors has been rapidly 

growing due to their potential applications in antimicrobial, bioimaging, drug delivery and orthopedic  

sectors [22–24]. As recognized, bone tissues are composed of nano-hydroxyapatite (nHA) platelets and 

collagen fibers. Accordingly, synthetic nanohydroxyapatite particles have been used as reinforcing 

fillers for non- and degradable polymers to form nanocomposites for biomedical applications, e.g., 
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bone plates and bone scaffolds [25–31]. The attachment and growth of osteoblasts are significantly 

enhanced on the surface of nHA fillers. In addition, the filler loadings in thermoplastic polymers can 

be drastically reduced by adding nHA particles. The incorporation of 20 wt% nHA (6.67 vol%) to 

polypropylene (PP) gives rise to good biocompatibility [32]. The nHA/polymer nanocomposites 

exhibit better mechanical properties over conventional mHA/polymer composites at the same filler 

loading level. 

In previous studies, we simultaneously added nHA and carbon nanotubes (CNTs) or carbon 

nanofibers (CNFs) to PP to form biocomposites for bone replacements [32,33]. The addition of low 

CNT/CNF loadings to nHA/PP composites further enhances their mechanical performance due to the 

large aspect ratio and remarkable high stiffness of carbonaceous nanofillers. Generally, CNTs are 

compatible with biological cells, provided that they are firmly embedded within the matrix of polymer 

composites. However, standalone or individual CNT suspension is reported to be particularly toxic to 

biological cells, and the cytotoxicity increases with increasing nanotube doses [34–36]. This is because 

needle-like CNTs can penetrate through the cell membrane and finally reside in the nucleus. BN sheets 

can also be rolled up into nanotubes with cellular seeding and growth behaviors similar to those of  

CNTs [37]. In certain cases, boron nitride nanotubes are even more cytotoxic than CNTs [38,39]. 

Hexagonal boron nitride (hBN) with a layered structure like graphite generally exhibits excellent 

lubricant behavior, superior thermal and chemical stability and good biocompatibility [40,41]. hBN  

and titania have been used as a filler for chitosan acting as a protective coating for stainless steel  

substrate [42]. In this study, we attempted to use planar hBN and nanohydroxyapatite to reinforce PP 

to form biocomposites for bone replacements. Boron nitride with platelet morphology was selected in 

order to avoid the cytotoxicity of tubular boron nitride. The main interest in employing layered hBN in 

polymer hybrid composites was their high chemical stability, good processability and good biological  

activity [43]. No information is available in the literature on the biocompatibility and tensile behavior 

of the hBN platelet/PP nanocomposites and hBN-nHA/PP hybrids for biomedical applications. To the 

best of our knowledge, the present work is the first investigation of the development of PP 

nanocomposites reinforced with hBN platelets and nHA rods and their biocompatibility. 

2. Experimental Section 

2.1. Materials 

Nanostructured & Amorphous Materials Inc. (Houston, TX, USA) supplied hBN powders for this 

study. Figure 1 shows the TEM image of hBN powders. TEM examination was performed using a 

Philips CM-20 TEM microscope (Philips, Amsterdam, The Netherlands) attached to an energy 

dispersive X-ray spectrometer. Apparently, hBN exhibited a platelet feature with sizes ranging from 

about 30 to 150 nm. Nanohydroxyapatite powders with a rod-like feature, i.e., a length of about  

100 nm and a width of 20 nm, were purchased from Nanjing Emperor Nano Materials (Nanjing, 

China). Figure 2 shows the TEM image of nHA with rod-like feature. Polypropylene pellets for 

injection molding purpose (Mophlen HP 500N) were obtained from Basell (Jubail, Saudi Arabia).  

In general, surface coupling agents can enhance interfacial bonding between the filler and the matrix; 
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however, they may induce cytotoxicity [44]. Both hBN and nHA fillers were not treated with organic 

surface coupling agents in order to avoid cytotoxicity of the biocomposites. 

 

Figure 1. TEM micrographs of hexagonal boron nitride (hBN) showing platelet feature 

with sizes ranging from about 30 to 150 nm. 

 

Figure 2. TEM micrograph of nHA showing rod-like feature with an average length of 90 nm. 
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2.2. Preparation of Nanocomposites 

Extrusion and injection molding are versatile and effective processes for large-scale manufacturing 

of PP-based composites [13,15,45]. Table 1 summarizes typical compositions of binary PP/hBN and 

ternary PP/hBN-nHA composites. Prior to melt-mixing, PP pellets were dried in an oven at 60 °C for 

24 h. Melt compounding was first performed by feeding the material mixtures into a Brabender  

twin-screw extruder at a screw rotation speed of 30 rpm. The six barrel zones of this extruder were 

heated to temperatures ranging from 190 to 230 °C. Extruded products were sliced into small pellets 

and loaded into the Brabender extruder again. The purpose was to obtain effective mixing and 

homogeneous dispersion of reinforcing fillers in the polymer matrix. The products were pelletized 

again, dried overnight in an oven and subsequently molded into dog-bone tensile bars and circular 

disks using an injection molder (Toyo TI-50H, Akashi, Japan). The disks were primarily used for cell 

seeding and proliferation measurements. The composites were twice extruded for filler homogenization 

followed by injection molding; the matrix material could be degraded slightly. However, applied stress 

was mainly carried by the fillers of composites, thus minute matrix degradation would not affect 

overall mechanical performance of the composites greatly. Furthermore, nHA fillers were found to be 

very effective at improving the dimensional and thermal stability of PP [32]. Such a “three-step processing” 

strategy was also adopted by other researchers for making composite materials with improved physical 

and mechanical properties [46]. 

Table 1. The compositions of the polypropylene (PP) composites studied. nHA, nanohydroxyapatite. 

Specimen PP (wt%) hBN (wt%) nHA (wt%) 

PP/5% hBN 95 5 0 

PP/10% hBN 90 10 0 

PP/15% hBN 85 15 0 

PP /20% hBN 80 20 0 

PP/20% nHA 80 0 20 

PP/5% hBN-20% nHA 75 5 20 

PP/10% hBN-20% nHA 70 10 20 

PP/15% hBN-20% nHA 65 15 20 

2.3. Material Characterization 

Scanning electron microscopy (SEM) was employed to examine the morphologies of fillers, 

composites and osteoblasts. Both field-emission SEM (Jeol JSM-6335F, Tokyo, Japan) and 

conventional SEM (Jeol JSM 820, Tokyo, Japan) were used for this purpose. The surfaces of 

composite samples were deposited with a thin carbon film. Tensile experiments were performed at 

room temperature using an Instron tester (Model 5567, Norwood, MA, USA) at a crosshead speed of 

10 mm·min−1 in accordance with ASTM D638-08 [47]. Young’s modulus of the samples was 

determined from the linear region of stress-strain curves. Five samples of each composition were used 

for testing, and the average values were evaluated. 
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2.4. Cell Seeding and Proliferation 

Human osteoblasts (Saos-2) were seeded in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% fetal bovine serum, penicillin and streptomycin. The samples (4 × 4 × 1 mm) 

for cell cultivation and proliferation tests were sliced from injection molded disks into small 

rectangles. They were rinsed with 70% ethanol and phosphate-buffered saline (PBS) solutions.  

A suspension of Saos-2 containing 104 cells was seeded on these samples placed in a 96-well plate and 

then kept in a humidified incubator with 5% CO2 in air at 37 °C for 4 and 7 days, respectively.  

The culture medium was refreshed every two days. Following the incubation, the samples were 

washed with PBS and fixed with 10% formaldehyde, followed by dehydration through a series of 

graded ethanol solutions and critical point drying. Once dry, they were deposited with a thin gold film 

and placed inside SEM. 

The proliferation of osteoblasts on all specimens was assessed using the  

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in 96-well plates. A cell 

suspension with 104 cells was introduced to cultured plates with and without samples followed by 

incubation in a humidified atmosphere of 5% carbon dioxide in air at 37 °C for 4 and 7 days, 

respectively. The culture medium was refreshed every 2 days. At selected cultivation periods, the 

medium was aspirated, then 10 μL of MTT solution (5 mg MTT:1 mL DMEM) was added to each well 

and incubated for 4 h for at 37 °C. At this stage, the tetrazolium ring of MTT salt was cleaved by the 

succinic dehydrogenase in mitochondria of viable osteoblasts, forming insoluble formazan crystals. 

The formazan was lastly dissolved in 10% sodium dodecyl sulfate (SDS)/0.01 M hydrochloric acid 

(100 µL). The absorbance or optical density (OD) of dissolved formazan was quantified 

spectrophotometrically at a wavelength of 570 nm using a multimode detector (Beckman Coulter DTX 

880, Fullerton, CA, USA), with a reference wavelength of 640 nm. Wells with culture medium, MTT, 

SDS and osteoblasts were used as the control, while wells without osteoblastic cells were employed as 

a blank background. The samples were used for each test, and the results were expressed in terms of 

mean ± standard deviation (SD). MTT tests were repeated at least twice. 

3. Results and Discussion 

3.1. Morphology and Mechanical Behavior 

Figure 3a,b shows representative SEM images of binary PP/5% hBN and PP/15%hBN composites. 

Apparently, hBN fillers are dispersed uniformly in the PP matrix of these composites. The morphology 

of the typical PP/15% hBN-20%nHA hybrid at low and high magnifications is shown in Figure 4a,b, 

respectively. Similarly, hBN fillers are distributed homogeneously in the polymer matrix. However, 

aggregates of nHA fillers can be observed in the PP/15% hBN-20%nHA hybrid, due to its high nHA 

content, i.e., 20 wt%. Large nHA content is added to the PP hybrid in order to promote the adhesion 

and proliferation of osteoblasts. PP homopolymer is bioinert and, thus, ineffective for anchoring 

osteoblasts on its surface. As mentioned before, bone tissues are composed of nHA platelets and 

collagen fibers. Homogeneous dispersion of nHA in the PP matrix can be achieved by adding low nHA 

contents. However, such PP nanocomposites are unsuitable for biomedical implant applications due to 
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their low biocompatibility. From our previous study, a minimum nHA content of 20 wt% is required 

for achieving good bioactivity and biocompatibility of the PP composites [32]. 

 

(a) 

 

(b) 

Figure 3. SEM micrographs showing fractured surfaces of (a) PP/5% hBN and  

(b) PP/15% hBN composites with a uniform dispersion of hBN fillers. Black arrow: hBN. 
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(a) 

 

(b) 

Figure 4. SEM micrographs showing fractured surface of PP/15% hBN-20% nHA hybrid 

at (a) low and (b) high magnifications. nHA aggregates can be readily seen. Black arrow: 

hBN; white arrow: nHA. 

The tensile test results for all specimens studied are tabulated in Table 2. For comparison, the 

tensile properties of high-density polyethylene (HDPE) composites reinforced with 10, 20, 30 and  

40 vol% mHA (4.14 μm), as well as human cortical bone are also listed in this Table [44,48]. It is 
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apparent that the hBN additions up to 20 wt% are beneficial for improving the elastic modulus of PP 

composites. Moreover, hBN-nHA filler hybridization further increases the modulus of composites,  

as expected. The PP/15%hBN-20%nHA hybrid displays a maximum modulus of 2.38 GPa, being a 

69% improvement over PP. The Young’s modulus vs. hBN content plots for binary PP/hBN 

composites and ternary PP/hBN-nHA hybrids are summarized in Figure 5. From Table 2, PP exhibits a 

large elongation at break (>600%). The additions of 5% and 10% hBN to PP do not impair its tensile 

ductility. However, the elongation of PP drops to 300% by adding 15 wt% hBN and further reduces to 

43% with the addition of 20% hBN. This is due to the interaction between the hBN fillers and the 

matrix restricts the movement of PP polymer chains at high filler loadings. This behavior is commonly 

observed in PP composites reinforced with fillers of micro- and nano-scale dimensions [45,49–51]. 

Hybridization of BN and nHA fillers decreases the tensile elongation of PP composites markedly, 

especially at high filler contents. Table 2 also reveals that conventional HDPE composites require  

20 vol% mHA content to achieve a modulus of 1600 MPa and 30 vol% mHA to reach 2730 MPa. 

However, the modulus of PP reaches 1615 MPa by adding only 4.5 vol% hBN and further increases to 

2383 MPa by adding 7.0 vol% (15 wt%) hBN and 6.67 vol% (20 wt%) nHA. The total hybrid filler 

content in PP/15 wt% hBN-20 wt% nHA composite is 13.67 vol%, being smaller than that of the 

HDPE/30 vol% mHA composite. The modulus of the PP/15 wt% hBN-20 wt% nHA hybrid is close to 

that of the HDPE/30 vol% mHA composite, but the tensile strength of the former is 27.5% higher than 

that of the latter. It is noted that the biocompatibility of the HDPE/30 vol% mHA composite is 

unsatisfactory; thus, filler loading of 40 vol% mHA is needed to fabricate conventional HAPEXTM 

composite. The PP/15 wt% hBN-20 wt% nHA hybrid exhibits a higher tensile strength, but lower 

stiffness than the HAPEXTM composite. HAPEXTM can only be used for non-loading maxillofacial 

bone-replacements, due to its stiffness being below the modulus of load-bearing cortical bone of 

humans [52]. 

Table 2 Mechanical properties of PP/hBN and PP/hBN-nHA biocomposites. 

Specimen 
Elastic modulus,  

MPa 

Tensile stress,  

MPa 

Elongation at break,  

% 

PP 1,414 ± 40 26.2 ± 0.5 >600 

PP/5 wt% (2.2 vol%) hBN 1,536 ± 34 26.8 ± 0.3 >600 

PP/10 wt% (4.5 vol%) hBN 1,615 ± 35 26.6 ± 0.4 >600 

PP/15 wt% (7.0 vol%) hBN 1,666 ± 21 26.4 ± 0.3 300 

PP/20 wt% (9.7 vol%) hBN 1,758 ± 33 26.5 ± 0.4 43.0 ± 6.3 

PP/20 wt% (6.67 vol%) nHA 2,226 ± 33 30.9 ± 0.4 9.9 ± 0.6 

PP/5 wt% hBN-20 wt% nHA 2,222 ± 68 27.0 ± 0.1 9.0 ± 2.0 

PP/10 wt% hBN-20 wt% nHA 2,276 ± 42 28.6 ± 0.3 7.1 ± 0.6 

PP/15 wt% hBN-20 wt% nHA 2,383 ± 18 26.9 ± 0.2 5.8 ± 0.3 

HDPE/10 vol% mHA [44] 980 ± 20 17.3 ± 0.3 >200 

HDPE/20 vol% mHA [44] 1,600 ± 20 17.8 ± 0.1 34.0 ± 9.5 

HDPE/30 vol% mHA [44] 2,730 ± 10 19.5 ± 0.2 6.4 ± 0.5 

HDPE/40 vol% mHA [44] 4,290 ± 17 20.7 ± 1.6 2.6 ± 0.4 

Cortical bone [48] 7,000‒30,000 ---------- 1‒3 
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Figure 5. Elastic modulus vs. hBN content for PP/hBN and PP/hBN-nHA composites 

showing the stiffening effect of hBN. 

Table 2 reveals that the elastic modulus of the composites increases slowly by adding hBN fillers. 

In other words, there exists no abrupt increase in the modulus of PP composites due to hBN additions, 

i.e., no mechanical percolation. Mechanical percolation is found in the composites reinforced with 

fillers of very large aspect ratios, such as carbon nanotubes [53,54]. In that case, the mechanical 

percolation model [55,56] can be used to describe a sudden increase in the elastic or shear modulus of 

the composites reinforced with CNTs of very large aspect ratios. From Figure 1, the aspect ratio 

(width/thickness) of hBN is estimated to be ~20. Thus, hBN with a low aspect ratio cannot link with 

itself to form a percolative network in the PP matrix by increasing the filler content up to a critical 

value. Figure 3b clearly shows the absence of a percolative network in the composite with high hBN 

content, i.e., 15 wt%. 

3.2. Cell Culture and Growth 

Figure 6a,b shows respective SEM images of the PP/5% hBN and PP/10% hBN composites after 

seeding with osteoblastic cells for four days. Apparently, the number of adhered cells on these samples 

increases with increasing hBN content. Similarly, hybrid composites also provide effective sites and 

support for the attachment of osteoblastic cells (Figure 7a,b). From these micrographs, the cells spread 

flatly on the surfaces of composite specimens. Osteoblasts anchor firmly on the sample surfaces via 

long filopodia. For the PP/15%hBN-20%nHA hybrid composite, cells are densely packed and piled up 

on each other, such that the entire composite surface is nearly covered with osteoblasts after seeding 

for four days (Figure 7b). 

As was recognized, bone matrix is composed of nHA platelets and collagen fibers. Thus, synthetic 

nHA mimics the nanostructure of the inorganic phase of bone tissue and can serve as an effective 

seeding site for the osteoblasts. Nanohydroxyapatite with large surface areas facilitates material-bone 

cell interactions via protein absorption [24]. Upon adhesion to a substrate, the cell probes its 

environment and moves using nanometer-scale processes, such as filopodia. These interactive events 
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lead to the formation of new bone cells. Webster et al. reported that synthetic nHA is biocompatible 

and very effective for enhancing the attachment and growth of osteoblasts. Moreover, ceramic 

materials, like alumina and titania, with grain sizes greater than 100 nm, have long been appreciated 

for their biocompatibility [57]. BN ceramic material also exhibits good biocompatibility [40], thereby 

promoting osteoblast adhesion. 

 

(a) 

 

(b) 

Figure 6. SEM images of (a) PP/5% hBN and (b) PP/10% hBN composites cultured with 

osteoblasts for four days showing spreading of bone cells on the composite surfaces. 
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(a) 

 

(b) 

Figure 7. SEM micrographs of (a) PP/5% hBN-20% nHA and (b) PP/15% hBN-20%nHA 

hybrid composites after seeding with osteoblasts for four days. Osteoblasts almost cover 

entire surface of the specimens. 

Cell proliferation is an important health indicator for osteoblasts for ensuring the good biocompatibility  

of medical implants. The in vitro biocompatibility of binary PP/hBN composites and ternary  

PP/hBN-nHA hybrids was examined by the MTT assay. This assay is widely used to determine the 
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mitochondria activity of the cells. Cytotoxicity is expressed as the percentage of cell viability by using 

the following relation: 

Cell viability (%) = 100 [OD of sample cells/OD of control] (1) 

The cellular viability of composite specimens is shown in Figure 8. It can be seen that cellular 

viability for the PP/hBN and PP/hBN-nHA composites increases with cell culture time from four to 

seven days. These specimens show low viability values. From the literature, the MTT test tends to give 

lower cellular viability due to formazan crystals clumping together with BN tubes and the water-insoluble 

nature of MTT-formazan [37,39]. However, (2-(4-iodopheneyl)-3-(4-nitophenyl)-5-(2,4-disulfophenyl)- 

2H-tetrazolium monosodium salt (WST-1) assay can yield higher cellular viability because of  

the water-soluble nature of its formazan product. It is likely that the interference of hBN with  

MTT-formazan also causes lower cellular viability of the PP/hBN and PP/hBN-nHA composites 

(28%–30%). Finally, the PP/hBN-nHA hybrid composite system exhibits a slightly higher proliferation 

rate than binary PP/hBN composites for all testing time intervals. This derives from the synergistic 

effect of the individual components of hybrid fillers. The results imply that all composite materials 

studied have no toxicity for the adhesion and growth of osteoblastic cells. From the tensile, cell culture 

and proliferation tests, it can be concluded that the PP/15%hBN-20% nHA hybrid has great potential 

for application in maxillofacial surgery. 

 

Figure 8. Cell viability of osteoblasts grown on PP/20% nHA, PP/hBN and PP/hBN-nHA 

composites after seeding for four and seven days. PP/15%hBN-20%nHA hybrid exhibits the  

highest viability. 

4. Conclusions 

This article presented the design and testing of binary and hybrid composites for human bone 

replacements. Binary PP/hBN and ternary PP/hBN-20%nHA composites were successfully prepared 

by melt mixing and injection molding techniques. Hybrid nanocomposites inherited the property of 

individual fillers by producing materials with better biocompatibility and mechanical properties. The 

results showed that the elastic modulus of PP composites increases with increasing the hBN content. 
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Hybridization of hBN with nHA further enhances the elastic modulus of PP composites. The hBN 

and/or nHA additions reduce tensile ductility of the PP biocomposites. Finally, cell cultivation and 

MTT assay results revealed that the osteoblasts can attach and proliferate on binary PP/BN and ternary  

PP/BN-20%nHA composites. 
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