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Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination
contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a
subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte
replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating
oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs’
characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known
characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI.More importantly,
we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against
regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the
development of therapeutic strategies.

1. Introduction

Spinal cord injury (SCI) is a catastrophic event that com-
monly results in axonal injuries and deaths of neurons and
glial cells. Subsequent secondary injuries that consist of
uncontrolled inflammation, excitotoxicity, edema, ischemia,
and chronic demyelination can lead to additional damages,
while the formation of glial scars also prohibits axonal
regeneration [1] (Figure 1). SCI causes disturbances to normal
sensory, motor, or autonomic functions and can significantly
affect patients’ physical, mental, and social well-being [2,
3]. Current therapies mainly rely on early operations for
mechanical decompression, symptomatic relief, supportive
care, and rehabilitation. With the development of stem cell
technologies, cell-based transplantation is now thought to
be a promising therapeutic approach for SCI. In fact, an
autologous bone marrow stem cell transplantation approach
is already undergoing a phase II clinical trial (NCT02009124,
https://clinicaltrials.gov/), while a neural stem cell transplan-
tation study is currently in phase I/II trial (NCT02326662,

https://clinicaltrials.gov/).Though exciting, their clinical util-
ities are still far frombeing clear partially due to unclear safety
issues such as teratoma formation.

A potentially useful cell source for post-SCI transplan-
tation is oligodendrocyte precursor cells (OPCs). The lat-
ter are the major source of oligodendrocytes responsible
for myelination within the central nervous system (CNS).
The proliferation, migration, and differentiation of OPCs
are sophisticatedly regulated by numerous factors including
neuronal- or axonal-glial neurotransmitters, growth factors,
neurotrophins, and transcription factors. The majority of
OPCs are quiescent with limited self-division under normal
circumstances, but they may respond rapidly to injuries and,
in particular, demyelination. However, their rescuing effects
are commonly hindered by the hostile microenvironment
at the injury sites, leading to incomplete remyelination and
clinical recovery. Therefore, finding ways to boost endoge-
nous OPCs by enhancing the positive regulatory factors
while attenuating negative ones has been an area of intense
investigations in neurotrauma research.
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Figure 1: The major pathophysiological phases after spinal cord injuries. BSCB: blood-spinal cord barrier; OLs: oligodendrocytes; ECM:
extracelluar matrix; CSPGs: chondroitin sulfate proteoglycans.

This review will first summarize known characteristics
of OPCs and then focus on the current understandings
about the potential roles of OPCs in SCI, in particular, their
effects on remyelination and glial scars formation. Recent
progress in OPCs transplantation research and associated
concerns will be discussed as well. Our aim is to shed lights
on important knowledge gaps and to provoke thoughts for
further researches and therapeutic treatment strategies.

2. Oligodendrocytes Loss and Demyelination
after Spinal Cord Injury

The myelin sheaths are essential for saltatory signal con-
duction and tropic support to maintain axonal integrity [4].
Unfortunately, mature oligodendrocytes, the only myelin-
forming cells within the CNS, are highly susceptible to
damages [5]. Grossman et al. observed an acute loss of
oligodendrocytes, along with neuronal death, as early as 15
minutes after injury in a rat spinal contusion model [6] and
which might last for 3 to 7 days [7]. In an observational study
with a 450-day follow-up after contusive SCI in adult rats,
the extent of demyelination significantly dropped within one
week after injury, followed by fluctuations at a lower level for
about 70 days, and then increased steeply during the rest of
the observation period. The findings suggested a chronic on-
going process of aggravated demyelination [8].

The underlying mechanisms are far from clear, how-
ever. Besides the initial acute insults, both necrosis and
apoptosis of oligodendrocytes have been observed in the
chronic phase of injury [9–12]. Numerous factors may con-
tribute to this process including the overabundant release of

proinflammatory cytokines such as tumor necrosis factor-𝛼
(TNF-𝛼) and interleukin-1𝛽 (IL-1𝛽), uncontrolled oxidative
stress, and ischemia as well as glutamate- and ATP-mediated
excitotoxicity [12, 13]. It is worth pointing out that though
autophagy, another type of cell death, has been shown to
cause oligodendrocytes death [14, 15], its positive and nega-
tive impacts remain controversial. Smith et al. demonstrated
that autophagy did not increase oligodendrocyte loss in
the spinal cord upon terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) assay and caspase-3
immunostaining; instead, autophagy was found to promote
myelin development [16].

Historically, it was thought that oligodendrocytes and
intact myelin sheath were primarily responsible for the facil-
itation of neuronal signal conduction only. The potential role
of oligodendrocytes in preserving the integrity and survival
of axons was not realized until Griffiths and McCulloch
reported acute retraction of some lateral loops fromparanode
at 1.5 hours after injury due to oligodendrocytes loss [17].
Given the fact that each oligodendrocyte is responsible for
30–80 distinct axons, it could be expected that extensive
demyelination may occur even after the collapse of only
a single oligodendrocyte [18, 19]. Indeed, transgenic mice
with mutated myelin proteins such as myelin proteolipid
protein (PLP) and DM-20 were found to show overt axonal
swelling and degeneration [20]. Similar observations were
also made in mice harboring mutations of other mature-
oligodendrocyte-related proteins or genes [21–23]. Together,
these findings have given rise to the current concept that
axonal integrity relies heavily on oligodendrocyte support
and that oligodendrocyte loss would result in axonal degen-
eration.
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It is known that axons of cortical neuron may project
as far as 100 cm within the corticospinal tract [24]. Besides,
myelin sheaths essentially shield axons from their surround-
ings and limit access to extracellular metabolites. These raise
concerns about metabolic homoeostasis and energy supply
to the axons. In this regard, oligodendrocytes have been
shown to produce lactate, an alternative energy source for
axons within the CNS [25–27]. Reducing MCT-1, one of the
monocarboxylate transporters (MCTs) in oligodendrocytes,
resulted in severe axonal swelling, indicative of the important
role of oligodendrocyte-derived lactate [28]. Furthermore,
myelinating oligodendrocytes were able to synthesize and
deliver ATP to axons through connexons, a kind of gap
junctions protein [29, 30]. This increases the conduction
speed of action potentials [31]. Other factors responsible
for axonal development and stabilization include 2,3-cyclic
nucleotide phosphodiesterase 1 (CNP-1) gene [32] and per-
oxisomal targeting signal 1 receptor (PEX5) gene [33]. These
findings suggest that, in addition to their predominant
functions in nerve conduction, oligodendrocytes may also
labor as mechanical and trophic supports to axons [24, 26].
As naked or demyelinated axons are more vulnerable to
injuries, it is reasonable to expect that, after injury, efficient
remyelination is critical not only for cellular replacement
but also neuron-glial cross talk reconstruction and neuronal
function recovery.

3. Oligodendrocyte Precursor Cells and Their
Characteristics

3.1. Multipotency of Oligodendrocyte Precursor Cells. Vaughn
and Peters first discovered a type of small and irregularly
shaped cells with stout processes that were without astrocytes
or oligodendrocytes characteristics in adult, embryonic, and
perinatal rat optic nerves [49]. On autoradiography, these
cells reacted to Wallerian degeneration and represented 85–
90% of proliferating cells after degeneration despite the
fact that they only accounted for ∼5% of all glia under
normal conditions [50, 51]. These cells were initially termed
“oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells”
due to their potencies for developing into either oligoden-
drocytes or type-2 astrocytes under specific conditions [52–
54]. More recently, these cells were renamed “oligodendro-
cyte precursor cells (OPCs)” because of their predominant
function of regenerating oligodendrocytes in demyelinating
conditions [55]. OPCs are found in both white and gray mat-
ters within the CNS though abundantly so in the former [56].
Morphologically, OPCs have small cell bodies and multiple
processes and may adopt a bipolar or tripolar shape [57].

Interestingly, the terminology of OPCs has received fur-
ther challenges because of recent discoveries of their abilities
to give rise to neurons. Purified OPCs from postnatal day 6
rat optic nerve have been shown to revert back to multiple
CNS stem cells, which could in turn give rise to neurons
and oligodendrocytes as well type-1 and type-2 astrocytes
[58]. Although these findings were initially challenged on the
ground of experimental techniques [59], they were subse-
quently confirmed both in vitro and in vivo [60, 61]. Guo et al.

detected low expression of doublecortin (DCX), a marker for
migrating and immature neurons, in a population of cells
with negative HuC/D signals (exclusively presented in neu-
rons) but positive PDGFR-𝛼 and Sox10 signals, both of which
are determinating markers of final oligodendrocyte matu-
ration [62]. These DCX+/PDGFR-𝛼+/HuCD- cells raised
thoughts about the idea that at least some endogenous OPCs
do have characteristics of neurons. Indeed, using PDGFR-𝛼
promoter-driven Cre, scientists were able to induce neuronal
formation from OPCs in adult piriform cortex [63]. Similar
findings were also observed in vivowithin adult rat neocortex
[64], neonatal mouse forebrain [65], and postnatal cerebral
cortex [62].

3.2. OPCs as Postsynaptic Neuronal Regulatory Targets. The
conventional dogma that classic chemical synapses exist
exclusively as neuron-neuron connections was challenged by
the discovery of functional glutamatergic synapses between
OPCs and axons [66–69].The latter would includeN-methyl-
D-aspartate receptor (NMDAR), alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR), and
kainite receptors. On oligodendrocytes, these receptors are
activated by glutamate released by either neurons or axons,
which increases intracellular Ca2+ level through stimula-
tion of voltage-dependent Ca2+ channels or the reversal of
Na+/Ca2+-exchangers. Li et al. demonstrated that NMDA
would promote OPCs maturation and myelination in dorsal
root ganglions- (DRGs-) OPCs coculture system in vitro [69].
Moreover, glutamate released by cultured cortical neurons
could promote OPCs migration by stimulating NMDAR; T
lymphoma invasion and metastasis 1 (Tiam1), a Rac1 guanine
nucleotide exchange factor (Rac1-GEF) that is coexpressed
and interacts with NMDAR in OPCs, would antagonize
NMDAR and suppress migration [70].

Remyelination was found to be significantly delayed
by the NMDAR specific antagonist MK801 in an in vivo
cuprizone demyelination model, suggesting that NMDAR is
essential for the entire OPCs-initiated remyelination process
[69]. Others such as AMPA-type glutamate receptors may
also participate in neuron- and axon-OPCs connections.
AMPAR activation appeared to be essential for OPCs mor-
phological alterations rather than proliferation and differen-
tiation during myelination [71]. AMPAR blockade resulted
in the inhibition of OPCs morphological development while
promoting proliferation and differentiation [72]. Interest-
ingly, a recent study also demonstrated that the degree of
OPCs-neuron contacts actually differed between demyelina-
tion and remyelination phase in that synapses would only
form during remyelination upon sufficient proliferation after
demyelination [73]. These findings were derived from a
lysolecithin- (LPC-) induced demyelination model, however,
and whether the same would apply in SCI remains to be
tested. It is plausible that OPCs may lack glutamatergic
synapses immediately after injury in order to promote self-
proliferation, and synaptic inputs would only develop during
the migration and maturation stages in preparation for fur-
ther remyelination. And to accomplish final myelin sheaths
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formation, a subsequent regain of AMPA synapses may be
required for correct morphological development.

More than 90% of synaptic currents in OPCs in the
neocortex are evoked by gamma-aminobutyric acid-ergic
(GABAergic) synapse [74], and GABAergic connections
between neuronal axon and OPCs are abundant [75, 76].
As in the case of glutamatergic receptors, activation of
GABA-𝛼 receptors may trigger Ca2+ influx via Na+/Ca2+
exchangers and promote OPCs migration [77]. In light of
this evidence, it is highly likely that Ca2+ influx triggered
by either glutamatergic or GABAergic synapses is essential
for OPCs migration by means of cytoskeletal reorgani-
zation, cell mobility, membrane traffic, and cell adhesion
and deadhesion [78]. On the other hand, a more complex
case is found in a cerebellar diffuse white matter injury
model in which hypoxia-induced loss of GABA-𝛼 receptor-
mediated synaptic input to OPCs significantly suppressed
OPCs maturation while promoting proliferation [79]. In this
regard, it seems that depolarization or hyperpolarization of
GABAergic synapses contributes to different aspects of OPCs
regulation. The expression of GABA-𝛽 receptors on OPCs
and their physiological functions is incompletely understood.
It is known that both GABA-𝛽1 and GABA-𝛽2 subunits are
localized onOPCs and that stimulatingGABA-𝛽 receptors by
baclofen, a selective agonist, substantially increasesmigration
and proliferation, providing evidence for a functional role
of GABA-𝛽 receptors in oligodendrocyte development [80].
The temporal-spacial alteration of either type of GABAergic
synapses after CNS injury and the effect on OPCs and
posttraumatic remyelination are not yet clear.

Purinergic receptors, including P1 receptors (alternatively
termed as adenosine receptors), metabotropic P2Y receptors,
and ionotropic P2X receptors, are widely distributed in
neurons and glial cells. As the breakdown product of ATP,
adenosine is the main ligand targeting four subtypes of
adenosine receptors (A1, A2a, A2b, and A3 receptors), all
of which have been identified in OPCs [81]. Activation of
adenosine receptors evokes the alteration of Ca2+ signals via
G-protein coupled receptors in OPCs and regulates their
differentiation and myelination. Particularly, activation of A1
receptor may be indispensable in recruiting OPCs to sites of
injury where remyelination occurs [82]. Contrarily, A2 recep-
tors may possibly act in a different way since they simulate
cyclic adenosine monophosphate (cAMP) via Gs receptors
rather than Gi receptors as for A1 receptors. Indeed, selective
A2a receptor activation may suppress OPCs proliferation in
vitro through the inhibition of K+ currents [83].Though little
knowledge is provided yet, it is highly believed that figuring
out the effects of A2b receptors upon OPCs may offer more
information in regulating them under pathological circum-
stances since it is shown that higher concentration of adeno-
sine is needed for activation of A2b receptors, which probably
can be detected in trauma, hypoxia, or ischemia [84].

Adenine (i.e., ATP and ADP) and uracil nucleotides (i.e.,
UTP and UDP) activate P2 receptors rather than adenosine
receptors. Activating P2X7, the only functionally active P2X
receptor in OPCS, results in a sustained influx of Ca2+ and
regulates pathological responses ofOPCs [85].There is strong

evidence that blocking P2X7 can have a neuroprotective
effect against ATP-induced oligodendrocytes-toxicity [86]
and that downregulation of P2X7 receptors expression may
occur after hypoxic ischemic injury [87].Whilemetabotropic
P2Y receptors may or may not be directly related to cell
viability, their involvements in promoting OPCs migration
[88] and prohibiting proliferation [85] have been reported.
The functions of other P2Y receptors subtypes such as P2Y2,
P2Y4, and P2Y12 in OCPs and SCI are even less well
understood and deserve further investigations [89, 90].

The expression of muscarinic acetylcholine (mACh)
receptors, a subtype of cholinergic receptors, has been suc-
cessfully identified on OPCs [91]. Activation of mACh may
rescue OPCs from growth factor deprivation [92]. Alter-
natively, mACh receptors activation significantly promotes
OPCs proliferation while prohibiting their maturation [93].
Conversely, antimuscarinic adjunct therapy was found to
offer a prodifferentiative effect in human OPCs in vitro.
Enhanced functional recoveries were also shown with sys-
temic treatment with mACh receptors antagonist following
transplantation of human OPCs into hypomyelinated rats
[94]. The role of nicotinic acetylcholine (nACh) receptors,
which are expressed on OPCs also, is not yet known [95, 96].

3.3. Regulation of Oligodendrocyte Precursor Cells. OPCs
functions are intricately modulated by a complex network
of growth factors, cytokines and chemokines, neurotrophins,
and transcription factors, all of which would affect the
remyelinating process in SCI.

Growth Factors. Platelet-derived growth factor-A (PDGF-
A) and fibroblast growth factor-2 (FGF-2) are two classic
factors affecting oligodendrocyte lineage development. Sta-
ble expression of PDGFR-𝛼 in OPCs and the mitogenic
effect of PDGF-A, a ligand to PDGFR-𝛼, in oligodendrocyte
lineage have been long established [57]. OPCs in white
matter respond to PDGF-A stimulation via Wnt/𝛽-catenin
and phosphatidylinositol 3-kinase pathways by increasing
proliferation rate [97]. The evidence that PDGF-A stimulus
may accelerate the migration of OPCs by activating ERK
pathway gives thought to its potential prorecruitment role
on OPCs after SCI [98]. FGF-2 is another strong mitogen
to OPCs. Direct intraventricular injection of FGF-2 after
subventricular zone dissection injury not only enhanced
the generation of OPCs but also promoted the differenti-
ation of oligodendrocytes from OPCs [99]. In agreement
with this, a double knockout of FGF receptors 1 and 2
significantly impacted on the differentiation of OPCs and
hindered myelin sheaths formation in a chronic cuprizone-
induced demyelinationmodel but not in acute demyelination
in the same study [100]. Interestingly, proliferation of OPCs
can be induced in culture of conditioned medium from
B104 neuroblastoma cells, possibly due to the coexistence
and synergy of PDGF-A and FGF-2 [101]. Other growth
factors include insulin-like growth factor (IGF), which has
synergic functions with PDGF and FGF through common
downstream messengers like PI3K/AKT and ERK pathways.

Ciliary neurotrophic factor (CNTF), a pleiotropic
cytokine within the IL-6 family, has been shown to promote
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spinal cord-derived OPCs survival and differentiation in
culture as well as endogenous OPCs migration in an acute
demyelination model [102, 103]. In the situation of SCI, a
chronic and continua increase of CNTF level was observed
in contusive spinal cord tissues, especially along the border
of injury site where posttraumatic oligodendrogenesis
was severe [104]. The idea of CNTF being involved in the
regulation of OPCs after SCI is supported by a recent study
showing enhanced remyelination and functional recovery
after transplantation of CNTF-expressing adult OPCs into
contused spinal cord [34].

Neurotrophins. Neurotrophins are responsible for the regu-
lation of survival and development of neural cells including
neurons and progenitor cells. Direct promyelinating effect
of brain-derived neurotrophic factor (BDNF) via activation
of TrkB receptors has been demonstrated in dorsal root
ganglions- (DRGs-) OPCs coculture system [105]. Consis-
tently, deletion of TrkB receptors in mice reduced thickness
ofmyelin sheath but would have no effect on oligodendrocyte
maturation or the number of myelinated axons. Surprisingly,
knockout of TrkB receptors actually led to a significant
increase in the density ofOPCs, suggesting that the regulatory
effects of BDNF via TrkB receptors may be phase-dependent
[106]. Neurotrophin-3 (NT-3) is another neurotrophin that
has a positive role in inducing survival and proliferation of
OPCs [107]. Both BDNF and NT-3 expressions increase after
SCI in mammals [108, 109], and additional NT-3, alone or
combined with sonic hedgehog, could increase the number
of OPCs and enhance remyelination after SCI [110].

Chemokines and Cytokines. Chemokines are key players in
the immunological and hematological systems. They are
also coexpressed with neurotransmitters such as choline
and dopamine in specific regions of the brain where they
serve specific functions [111, 112]. Though the expression of
a number of chemokines would alter after SCI, not all are
responsible for OPCs modulation. For example, CCL2 (also
known as MCP-1) expression is elevated during the acute
phase after spinal cord damaging and its inhibition would
attenuate secondary SCI [113]; it does not affect proliferation
andmyelination ofOPCs [114]. In contrast, CXCL12 (SDF-1𝛼)
and its receptor CXCR4 would promote OPCs proliferation
and myelin sheath formation in a dose-dependent matter
[114–116]. CXCL1 (GPO-𝛼) and its receptor CXCR2 may also
take part in the regulation of OPCs survival in pathological
states. Enrichment of CXCL1 ameliorates OPCs death from
inflammation cascade, which is a major component of sec-
ondary injury after CNS trauma [117, 118].

It has been demonstrated that the synthesis of several
cytokines such as leukemia inhibitory factor (LIF) is upreg-
ulated after SCI [119]. LIF is known to promote oligoden-
drocyte lineage development [120] and protect OPCs after
demyelinating injuries and ischemic trauma [121, 122]. Also,
transportation of LIF through impaired spinal cord-blood
barrier has been observed after SCI [123]. Interferon-gamma
(IFN-𝛾) also exerts interesting dual effects on OPCs in a
concentration-dependent manner; it maintains OPCs in the
cell cycle at low level of expression, whilst higher levels would

cause demyelination [124]. IL-17A is another new candidate
that can induce OPCs to exit the cell cycle and commence
differentiation into mature oligodendrocytes by activating
ERK1/2 pathways in demyelinating pathologies [125]. These
effects may occur in conjunction with IL-1𝛽, which is known
to protect OPCs and promote their differentiation. But unlike
IL-17A, IL-1𝛽 arrests OPCs in the cell cycle and hinders their
mitosis [126]. It would be interesting to study the combined
effects of IL-17A and IL-1𝛽 upregulation after SCI [119].

Transcription Factors.A vast body of literatures has described
the transcriptional networks that regulateOPCs, one ofwhich
is the basic helix-loop-helix (bHLH) family. Of particular
interest is the significant role played by oligodendrocyte
transcription factors 1 (OLIG1) and OLIG2, both being
oligodendrocyte-specific genes [127, 128]. Double-mutant
OLIG1 and OLIG2 would eliminate the formation of OPCs
and the genesis of motor-neurons and oligodendrocytes
[129], while transient expression of OLIG1 would induce
the formation of OPCs from neural stem cells [130]. For
remyelination, a series of loss- and gain-of function in
vitro studies have demonstrated the comparatively more
predominant role of OLIG2 [131–133]. Overexpression of
OLIG2 in transgenicmicemay lead to precociousmyelination
throughout the CNS aswell as enhancedOPCsmigration and
remyelination [134]. OLIG1 and OLIG2 also interact. While
OLIG2 expression is upregulated in contused spinal cord
[135], its solo overexpressionwould result in tumorous cell
growth. Interestingly, such tumorigenesis is absent under the
situation of simultaneous expressions of OLIG1 and OLIG2,
indicating a directly restrictive and mutually modulatory
function between them [136]. Compared with OLIG2, OLIG1
plays a secondary and nonessential role in oligodendrogen-
esis as OLIG1 null mice lines have shown only a mild delay
in oligodendrocyte differentiation and maturation without
long-term effect [137].

OLIGs are modulated by other transcription factors
such as inhibitor of DNA-binding protein 4 (ID4) and its
companion ID2, both of which act as overt transcriptional
repressors upon OPCs differentiation and maturation by
sequestrating OLIG1 and OLIG2 and preventing them from
binding consensus DNA domains [138, 139]. This indicates a
potential modulating role of IDs on OPCs in SCI. Indeed,
electroacupuncture treatment after compressive spinal cord
injury was found to protect myelin sheath breakdown and
increase OPCs proliferation by promoting OLIG2 but atten-
uating ID2 expression [140].

The highmobility group (HMG) family, another group of
transcriptional factors, also modulates OPCs. In particular,
SOX5 and SOX6 from D subgroup of HMG are found in
OPCs, and they repress the terminal maturation of OPCs
and hinder their migration [141]. In OPCs, SOX6 expression
requires the consistent presence of SOX8 and SOX9, which
guarantee the generation of OPCs in conjunctionwith SOX10
[141, 142]. The latter is crucial for the terminal differentiation
of OPCs since ablation of SOX10 would lead to an altered
migration pattern and reduced quantity of OPCs due to
enhanced apoptosis [142]. SOX10 may also act as a regulating
target and mediator of OLIG1 and OLIG2 during OPCs
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maturation [136]. The likely synergistic relationship between
SOX10, OLIG, andMYRF further complicates the picture and
calls for more detailed posttranscriptional studies [143, 144].

Current evidence also suggests the positive participa-
tion of ZFP191 and ZFP488, two members of zinc fin-
ger transcription factors, in OPC regulations. Mutation of
ZFP191 in C3H/HeJ genetic mice would lead to significant
hypomyelination with preserved process-outreaching pro-
genitors, indicating that ZFP191 may have a stage-specific
action. ZFP488 is an oligodendrocyte-specific regulator. Its
overexpression would promote oligodendrocyte precursor
formation in cooperation with OLIG2 [145]. Of particular
interest is myelin transcription factor 1 (MYT1) which is
upregulated in the injured spinal cord [146]. In light of the
evidence that MYT1 is crucial for progenitor proliferation
and differentiation [147], it is possible that MYT1 may
contribute to the modulation of OPCs in SCI. Many other
transcription factors such as MASH1 (alternatively known as
ASCL1) [148], NKX family [149], and Yin Yang 1 (YY1) [150]
may similarly regulate oligodendrocytes generation although
concrete evidence is still lacking.

4. Roles of Oligodendrocyte Precursor Cells
after Spinal Cord Injuries

4.1. Alterations after Spinal Cord Injuries. OPCs respond to
SCI rapidly by altering their morphologies and accelerating
mitosis [151, 152]. Overall, the proliferation rate of OPCs
would significantly increase by the end of the first day after
injury and remain elevated in the following week. Cells
number would remain high for a whole month. Two different
subtypes of OPCs may be identified within and around the
injury site [153]. Round-shapedOPCswith highNG2 staining
and short thick processes were found along the injury lesions;
this contrasts with OPCs with multiple processes seen 200–
300 um away from the lesion. In general, OPCs positively
stained for NG2 and BrdU antibodies were found throughout
the impact site and the surrounding spared areas in the first
week after injury [154]. Elevated proliferation continued for
two weeks, followed by a decline within the epicenter and
rostral sections but not the caudal parts. Another time-course
study described a more rapidly upregulated proliferation by
day 2 that peaked by the 4th day and then declined by week
1 [155]. A closer look at the temporal-spatial pattern showed
that, instead of the epicenter, most BrdU+ OPCs were in fact
concentrated within 1.5mm rostral to the injury site 3 days
after SCI [7, 156]; the number of cells labeled with NG2/Ki67
would drop within 4 hours, indicating a local toxic effect after
injury [157].

There is hitherto scanty information on the mobility
of OPCs after SCI although they are generally thought to
migrate at a slower rate than their precursor stem cells
[158]. Whether proliferative OPCs around the injury site are
activated in situ or derived from immigrating cells remains
unknown. Carroll et al. studied experimental demyelinat-
ing optic nerve lesions and reported a centripetal migra-
tion of cells towards the lesion by day four. Though not
firmly identified as OPCs, these cells did differentiate into

oligodendrocytes during and after migration [159], and it is
possible that the same may occur in SCI. In another study
using a spinal contusion injury model, treatment with the
enzyme chondroitinase ABC, which removed the inhibitory
effects of chondroitin sulfate proteoglycans (CSPGs), could
significantly enhance the quantity ofOPCs 2-fold [160].Using
double-staining techniques, the authors further demon-
strated that none of the OPCs were positive for BrdU/Olig1 or
Ki67/Olig1, suggesting that the increase of OPCs number was
primarily due to migration rather than in situ proliferation.

4.2. Remyelination by Endogenous Oligodendrocytes Precursor
Cells. Identifying the exact cell type responsible for remyeli-
nation in diseases is critical for the development of ther-
apeutic interventions. Self-mitosis and replacement for the
damaged cells are considered as a direct and plausible way of
healing and recovery after injuries. As a consequence, mature
oligodendrocytes, being themyelin-forming cells in the CNS,
were initially thought to be responsible for posttraumatic
remyelination [161].However, this postulationwas challenged
by the evidence that terminally differentiated oligodendro-
cytes would represent no more than one-fourth of the total
BrdU+ cells in spinal cord tissue following contusive injury
[156], and surviving oligodendrocytes after injuries would
possess extremely limited abilities to divide [162].

An alternative hypothesis is that OPCs may be responsi-
ble for the generation of myelinating cells and remyelination
instead [152, 154, 163]. Watanabe et al. found a robust prolif-
eration of OPCs during the first week after chemical-induced
demyelination, followed by a steep decline of OPCs with an
increase in the number of mature oligodendrocytes [164].
More importantly, a few thin myelin rings were detectable on
day 14, and, by day 28, numerous myelin basic protein (MBP)
positive myelin sheaths were observed throughout the lesion.
The results indicated that new matured oligodendrocytes
were mainly derived from OPCs and were able to produce
myelin sheaths in vivo. Further supporting evidence is made
available from transplantation experiments (see below). Cao
et al. studied whether treatment with exogenous OPCs could
alleviate demyelination and improve motor function [34].
Using OPCs expressing CNTF, grafted cells were found to
differentiate intomature oligodendrocytes.Notably, transcra-
nial magneticmotor-evoked potentials (tcMMEPs) andmag-
netic interenlargement reflex (MIER) showed a progressive
recovery in both the CNTF-expressing OPCs group and the
controlOPCs group; no restorationwas detected in nontrans-
plantation groups. In another spinal cord irradiation injury
model treated with mouse embryonic stem cells- (mESCs-)
derived OPCs, a reduction in lesion volume and an increase
in dorsal funiculus density were observed [39]. Forelimb
locomotion improved in the transplantation group when
compared with controls. These findings suggested that OPCs
were able to generate mature oligodendrocytes, which may
then become integrated and functional within the injury site.

It is important to note that OPCs may not be the only
endogenous progenitors of myelinating oligodendrocytes
after spinal cord trauma. Ependymal cells, located in the
central canal of spinal cord, possess neural stem/progenitor
cell properties and may respond extensively to insulting
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signals in spinal cord tissue. Such proliferative responses
seem to be exclusive to spinal cord trauma and do not occur
after chemical-induced demyelination [165]. Though, under
normal circumstances, the proliferative activity of ependymal
cells is only a tenth of that of OPCs, as soon as injury takes
place, ependymal cells would produce as much as double the
number of progenies compared to OPCs. Excitingly, a frac-
tion of these cells would finally differentiate into functioning
oligodendrocytes [166]. A recent study has demonstrated the
cholinergic enhancement of cell proliferation on ependy-
mal cells and, in turn, the upregulation in oligodendrocyte
markers in spinal cord tissue [167], thus shedding lights
on the possibility of endogenous oligodendrogenesis from
ependymal cells.

Since the promising findings in the origins and sources of
oligoregeneration and thewealthy understandings of endoge-
nous regulation of OPCs have been stated, is the remyeli-
nation complete? Such a speculation is cruelly diminished
by postmortem examinations providing disappointing results
with the presence of substantial amount of demyelinated
axons especially within the center of contused spinal cord
tissues [168]. And, given the difficulties with distinguish-
ing the boarder of injury epicenter and the chronic die
back of naked axons, pathological examinations focusing
on the injury site alone may potentially underestimate the
actual number of dysmyelinated or demyelinated axons after
spinal cord trauma. Spontaneous remyelination after CNS
injuries therefore remains a highly elusive phenomenon.
Recruitment of OPCs into injury site relies greatly on the
involvement of multiple stimulating factors, the levels of
which would diminish with age [169]. Another plausible
reason for insufficient remyelination after injury may be
the existence of myelin sheath debris containing inhibitory
molecules against OPCs differentiation such as NOGO66
via NOGO receptor complex [170]. Myelin sheaths that have
survived the initial insult may also inhibit the maturation of
OPCs probably by upregulating the expression of ID2 and ID4
[171]. Furthermore, glial scars formation would hinder not
only the recruitment and proliferation ofOPCs but also create
a hostile environment for OPCs differentiation and oligoden-
drocytes maturation. Paradoxically, OPCs themselves may
also partake in scar formation, suggesting a dual role of OPCs
after SCI (see below). Taken together, it is likely that myelin
sheaths repair and oligodendrocyte lineage regeneration are
hindered most significantly within the epicenter of injury,
whilst a more optimal site for regeneration may be found
along or even at a distance from the border of the injury [13].

Bone morphogenetic proteins (BMPs) belong to the
transforming growth factor-𝛽 (TGF-𝛽) super family.They act
on type I and type II BMPs receptors and are important neg-
ative regulators in oligodendrocyte lineage generation [172].
Earlier evidence demonstrated that the levels of BMPs would
alter after SCI [173]. Blockade of BMP4 by its extracellular
antagonist, Noggin, prohibited astrogenesis and promoted
the production of oligodendrocytes in OPCs culture [174].
Similarly, BMP4 was able to induce astrocyte generation
and suppress oligodendrocytes production via the Smad
pathways and other transcription factors [138, 173]. On the
other hand, intraventricular infusion of BMP4 has been

found to increase the number of OPCs during the demyeli-
nation phase. The number of OPCs significantly decreased
with an increase in astrocytosis during remyelination 1
week later. Antagonism of BMP4 by Noggin could enhance
remyelination and ablate the proastrogenesis effect of BMP4,
suggesting that BMPs may act in a phase-specific fashion
[174]. Understanding the role of BMP4 at different phases of
repair is therefore of translational significance.

As mentioned above, undamaged myelin sheaths can
inhibit remyelination via NOGO receptors. The latter inter-
act with leucine-rich repeat and Ig domain-containing 1
(LINGO-1), which is a major suppressor of OPCs differenti-
ation [175, 176]. Attenuating LINGO-1 significantly increased
the survival of oligodendrocytes and improved functional
recovery after spinal cord hemisection [177]. LINGO-1 may
also function as a negative regulator of neurotrophin BDNF
signaling through direct interaction with TrkB receptors
[178]. Another negative regulator is tumor necrosis factors-
alpha (TNF-𝛼). Both TNF-𝛼 and its receptor, TNF-R1, are
found in OPCs. Inhibition of TNF-𝛼 or TNF-R1 blockade
could significantly attenuate the inhibitory effects of reactive
astrocytes on OPCs differentiation at the epicenter of spinal
cord [179].

Generally speaking, there are two major strategies that
can potentially enhance remyelination: to increase the effects
of stimulating factors and to block the effects of inhibitory
factors.Themanipulation of a single factor alone is, however,
unlikely to the necessary effects, as exemplified by the failure
to enhance remyelination in transgenic mice overexpressing
PDGF-A despite an increase in OPCs density [180]. Some of
the factors, such as BMP4 and ZFP191, may have dual effects
that materialize in a phase-specific or region-specific fash-
ion. Therefore, therapeutic strategies targeted at endogenous
remyelination need to take into considerations the impacts
of different treatment time points, site of application, and,
most importantly, the combined effects of different factors.
Currently, the use of exogenous cell source and biomaterial
scaffolds have attracted considerable research effort.

4.3. Transplantation of Oligodendrocyte Precursor Cells. A
growing body of evidence has demonstrated that cellu-
lar transplantation may be of benefits. Various kinds of
transplantable cells, including olfactory ensheathing cells,
Schwann cells, and stem cell-derived OPCs, have been stud-
ied [181].The current understanding is that transplanted cells
would offer not somuch the replacement of damaged cells but
the neuroprotective and immunomodulatory effects. Herein,
we will highlight a few relevant studies.

4.3.1. OPCs. Franklin et al. transplanted lac-Z-transfected O-
2A progenitor cells (CG4, a cell line of OPCs) into irradiated
spinal cord and observed cell survival, proliferation, and
migration throughout the cord [35]. They further examined
the reactions of CG4 cells in an ethidium-bromide induced
demyelination lesion in both irradiated and nonirradiated
spinal cords. By day 15 after injury, remyelination was
evidentmicroscopically in preirradiated demyelinated lesion.
Interestingly, the injected cells appeared to survive better
in an injured environment than in the normal spinal cord,
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indicating that damaged axonsmay emit factors that promote
the survivals of OPCs. ExogenousOPCs transplanted directly
into the injured site seven days after injury were found to
have proliferated and differentiated into oligodendrocytes but
not astrocytes or neurons. Both motor function tests and
electrophysiological studies confirmed neurological recov-
ery [36]. The therapeutic effects of transgenic OPCs were
further demonstrated in SCI by Rosenbluth et al. [37] and
Bambakidis and Miller [38]. A summary of these pioneering
studies is provided in Table 1.

These preclinical studies have provided proof of concept
evidence that exogenous OPCs could enhance remyelina-
tion, but whether they can provide clinical benefit remains
unknown.The availability of autologous OPCs is limited and
heterologous transplantation requires the use of long-term
immunosuppression that may cause serious side effects [182].
A possible alternative is human embryonic stem cells (hESCs)
which are capable of differentiating into oligodendrocytes.

4.3.2. hESCs-Derived OPCs. hESCs are a potentially use-
ful source of OPCs for clinical application [39]. They are
also versatile, pluripotent “super cells” that are capable
of differentiating into serotonergic [183] and dopaminergic
neurons [184]. Nistor et al. described the method by which a
population of OPCs with high purity and specificity could be
generated from hESCs [185]. Using this technique, Keirstead
et al. reported doubling of remyelinated axons one week after
thoracic contusive SCI. Motor functions in the hESCs-OPCs-
treated group were significantly better than those in controls
[40].The same research group also demonstrated that hESCs-
OPCs transplantation was associated with better sparing of
grey and white matter, attenuated cavitation, and altered gene
expression (e.g., interleukin-10 (IL-10), hepatocyte growth
factor (HGF), and Fas) in cervical spinal cord contusion [41].
In terms of somatosensory evoked potentials (SSEPs) as a
surrogate of ascending pathway integrity [186], animals were
found to have significant improvement in both amplitudes
and latencies following transplantation [42].

These encouraging “proof-of-concept” studies have pro-
vided important evidence to support clinical trials. Recently,
a company (Asterias) has obtained an approval from the US
Food and Drug Administration to conduct a clinical phase
I and phase II/a trial of OPCs transplantation (AST-OPC1)
for SCI (NCT02302157, https://clinicaltrials.gov/).The trail is
expected to commence in early 2015 and will test escalating
dosages of transplanted cells and safety profile.

4.3.3. iPSCs-Derived OPCs. OPCs may also be generated
from induced pluripotent stem cells (iPSCs). iPSCs-derived
OPCs provide the solutions for simultaneously resolving two
major hurdles within transplantation therapy, that is, the
scarcity of cell source and the problem of immune-rejection.
iPSCs were derived from human dermal fibroblasts in 2007
[187]. Later, by genetically reprogramming several OPCs-
related transcription factors (OLIG2, SOX10, and NKX6.2)
in mouse fibroblasts cells, functional OPCs with normal
morphology and oligodendrogenesis abilities were generated
[188].

In 2011, Czepiel et al. succeeded in differentiating mouse
iPSCs into OPCs and myelinating oligodendrocytes in vitro
[44].Themajority of iPSCs-derivedOPCswere found to have
survived the procedure and could develop into functioning
oligodendrocytes that participated in remyelination [45].
All et al. similarly transplanted iPSCs-derived OPCs into
contused spinal cord and reported less cavitation together
with enhanced axonal remyelination two months after treat-
ment [46]. Perplexingly, both viable-OPCs group and Heat-
killed-control group (one of the controls) showed functional
improvement during the first seven days after transplan-
tation. However, further improvement in the viable-OPCs
group was not evident until the end of the first month.
Notwithstanding, these studies have shown that iPSCs-
derived OPCs are a potentially promising and clinically
accessible cell source.

Douvaras et al. have reported an interesting study
in which isolated skin fibroblasts from multiple sclerosis
patients were induced to form iPSCs and later OPCs. These
patient-iPSCs-derivedOPCswere able to initiatemyelination
well after being transplanted into shiverer mice with myelin
deficiency [47]. The limited migratory capacity of iPSC-
derived OPCs derived from iPSCs could also be overcome by
means of overexpressing polysialylating enzyme sialyltrans-
ferase X [48].

There are definite clinical risks associated with the use
of stem cell-derived OPCs. The tumorigenicity is a major
concern [189] even though no teratoma formation has so far
been reported in Keirstead’s serial studies [40, 41] or Geron’s
preclinical trial [190]. In another independent study, a total
of 650 million hESCs-derived OPCs were injected, again,
without any subsequent tumor-formation [43]. Another con-
cern is that clinical and experimental SCI involve different
pathological processes and that experimentalmodelsmay fail
to capture all critical elements found in clinical situations
[191]. Whether derived OPCs are able to generate new
oligodendrocytes and myelinate damaged axon is unknown.
In addition, there are ethical considerations with regard to
the use of human embryos that are beyond the scope of this
review.

4.3.4. Other Sources of Transplantable Cells. There are other
types of transplantable cells that are potentially useful for the
treatment of SCI including neural stem cells [192, 193], bone
marrow cells [194, 195], and Schwann cells [196, 197]. The
latter are the myelin-forming cells within the peripheral ner-
vous system. The major advantages of Schwann cells include
their accessibility and immune-compatibility. Their positive
roles in myelinating regenerated axons, reducing cyst forma-
tion, and improving neural functions have been extensively
studied. Another candidate for therapeutic transplantation
is olfactory ensheathing cells. Preclinical studies have shown
that these cells could promote remyelination [198, 199], and
autologous olfactory ensheathing cells are currently being
studied in clinical trials with some encouraging results [199–
202]. In a recent study using autologous olfactory lamina
propria transplantation, half of the patients with complete
SCI showed some improvement in either motor or sensory
functions upon long-term follow-up although the findings
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are not conclusive [203]. The authors tried to link several
reasons to their results, one of which was the relatively
small size of input graft when compared with the lesion
size. Indecipherable enlargement of syringomyelia might also
contribute to the mere recovery in this study. From our point
of view, another plausible reason may be the long time span
since spinal cord trauma (not less than 6 months), as it is
indicated that benefits may not be witnessed when treatment
is carried out after a several months-long period of time [40].

4.4. Inhibition by Oligodendrocyte Precursor Cells. Astroglio-
sis and glial scar formation are ubiquitous findings in SCI
[204–206]. Although they serve important functions during
the acute and subacute phases of injury, chronic scarring
would limit axonal regeneration [207, 208]. The observation
of extensive OPCs proliferation along injury boundaries
also raises the question of whether these cells may in fact
contribute to scarring. There are two main areas within a
glial scar—the fibroblastic core and the glial surrounding
zone [209]. NG2-positive cells were known to populate lesion
cavities 2 days after injury, and, by day 10, these cells formed
small plaques that corresponded to the glial surrounding
zone. Similarly, oligodendrocytes precursors have also been
identified within the fibroblastic core [210]. Hence, there
is evidence to suggest that OPCs may also partake in the
formation of glial scar that prohibits axonal regeneration.

Apart from being a physical barrier against regeneration,
a glial scar may also act as a source of inhibitory molecules,
including chondroitin sulfate proteoglycans (CSPGs),
semaphorin 3, and eph/ephrin tyrosine kinases [211]. CSPGs
consist of several subtypes (e.g., aggrecan, versican, NG2,
neurocan, brevican, and phosphacan) and are closely linked
with OPCs [212, 213]. Amongst these, NG2 is of particular
interests. Chen et al. found that growing neurites would
avoid OPCs-covered areas in vitro. But when incubated
with anti-NG2 antisera, these OPCs-coated membranes
would attract neurite ingrowth, suggesting that NG2 may be
responsible for the growth-inhibiting effect of CSPGs [214].
The underlying mechanism is incompletely understood
but may involve the activations of the N-terminal globular
domain (domain 1) and the juxtamembrane domain (domain
3) of NG2 [215]. Results from subsequent in vivo studies
were less clear-cut, however. de Castro et al. compared
between wild-type and NG2 knockout mice and found
no difference in the morphology of the transection scar.
Surprisingly, calcitonin gene-related protein-positive fibers
were found to grow into the scars in wild-type animals just
as extensively as in NG2-null ones [216]. On the other hand,
blockage of NG2 has been shown to facilitate the growth
of ascending sensory axons across the caudal boundary of
a lesion [217]. Similar growth-promoting effects could also
be achieved by using chondroitinase ABC [218] and NG2
neutralizing antibodies [219]. There is as yet no satisfactory
explanation for these controversial findings but differences
in regenerating capabilities between subtypes of neurons
may be responsible.

Recent studies also suggested that CSPGs might affect
the formation of cellular processes by OPCs and oligoden-
drocytes. In an in vitro study, the presence of CSPGSs was

found to reduce the length and number of processes in
predifferentiated OPCs [220]. Furthermore, CSPGs could
affect myelination, resulting in fewer membrane sheets that
were smaller and atrophic [221]. Both Rho-Rock and protein
kinase C signaling pathways [221], as well as the protein
tyrosine phosphatase sigma (PTP𝜎) pathway [222], were
thought to play important roles. Conversely, the reduction of
CSPGs by xyloside was found to result in a robust increase
in OPCs number as well as CC1+ mature oligodendrocytes
in a mouse model of lysolecithin-injected spinal cord injury
[223]. To further complicate the picture, different classes of
CSPGs may exert different effects on OPCs [160]. Therefore,
further researches are clearly needed.

5. Conclusions

Demyelination and oligodendrocyte loss following SCI cause
significant interruption of neural functions. Current evi-
dence supports the notion that efficient oligodendrocyte
replacement and sufficient remyelination would ameliorate
pathological cascades and improve neural functions. OPCs
are the natural source ofmyelinating oligodendrocytes within
the CNS following SCI. The enhancement of endogenous
regeneration by innate OPCs and the transplantation of
myelinating cells represent the two most promising thera-
peutic strategies. The elusive biological properties of OPCs
and the complexity of the associated regulatory network are
incompletely understood and continue to be a critical area
of future investigations. A simplistic approach of targeting
a single factor is unlikely to provide significant clinical
benefit. The latter would necessitate a far more thorough
understanding and exploitation of the complex regulatory
network.

In the context of transplantation, OPCs derived from dif-
ferent sources may respond differently to individual growth
factors and within different regions around the injury site
[97, 101]. More intriguing is the possible role of OPCs in
promoting glial scar formation that may itself inhibit axonal
regeneration, and it is conceivable that future discoveriesmay
argue against the utilization of OPCs transplantation in the
treatment of SCI and other demyelinating conditions. The
situation is further complicated by the fact that CSPGs may
in turn prohibit OPCs. Existing evidence suggests that adult
OPCs contribute to CSPGs accumulation at the lesion site
after injury and that premature oligodendrocytes probably do
not [213].This renders premature oligodendrocytes an attrac-
tive source of transplantable cells that are capable of generat-
ingmature oligodendrocytes without emittingCSPGs. Again,
given the extremely complicated neuron-glial, glial-glial, and
extracellular matrix-glial cross talks, it is unlikely that single-
agent treatment would be effective; instead, combinatorial
strategies targeted at oligodendrocytes lineage protection,
blockage of extracellular inhibitory molecules, and myelina-
tion promotion are probably necessary.
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Samart́ın, R. O. Arellano, and C. Matute, “A3 adenosine recep-
tors mediate oligodendrocyte death and ischemic damage to
optic nerve,” Glia, vol. 62, no. 2, pp. 199–216, 2014.

[85] C. Agresti, M. E. Meomartini, S. Amadio et al., “ATP regulates
oligodendrocyte progenitor migration, proliferation, and dif-
ferentiation: involvement of metabotropic P2 receptors,” Brain
Research Reviews, vol. 48, no. 2, pp. 157–165, 2005.

[86] C. Matute, I. Torre, F. Pérez-Cerdá et al., “P2X(7) receptor
blockade prevents ATP excitotoxicity in oligodendrocytes and
ameliorates experimental autoimmune encephalomyelitis,”The
Journal of Neuroscience, vol. 27, no. 35, pp. 9525–9533, 2007.

[87] L.-Y. Wang, W.-Q. Cai, P.-H. Chen, Q.-Y. Deng, and C.-M.
Zhao, “Downregulation of P2X

7
receptor expression in rat

oligodendrocyte precursor cells after hypoxia ischemia,” Glia,
vol. 57, no. 3, pp. 307–319, 2009.

[88] C. Agresti, M. E. Meomartini, S. Amadio et al., “Metabotropic
P2 receptor activation regulates oligodendrocyte progenitor
migration and development,” Glia, vol. 50, no. 2, pp. 132–144,
2005.

[89] J. T. Laitinen, A. Uri, G. Raidaru, and R. Miettinen,
“[(35)S]GTPgammaS autoradiography reveals a wide distribu-
tion of Gi/o-linked ADP receptors in the nervous system:
close similarities with the platelet P2YADP receptor,” Journal of
Neurochemistry, vol. 77, no. 2, pp. 505–518, 2001.

[90] S. Amadio, G. Tramini, A. Martorana et al., “Oligodendrocytes
express P2Y12 metabotropic receptor in adult rat brain,”Neuro-
science, vol. 141, no. 3, pp. 1171–1180, 2006.

[91] J. N. Larocca andG. Almazan, “Acetylcholine agonists stimulate
mitogen-activated protein kinase in oligodendrocyte progeni-
tors by muscarinic receptors,” Journal of Neuroscience Research,
vol. 50, no. 5, pp. 743–754, 1997.

[92] Q.-L. Cui, E. Fogle, and G. Almazan, “Muscarinic acetylcholine
receptors mediate oligodendrocyte progenitor survival through
Src-like tyrosine kinases and PI3K/Akt pathways,” Neurochem-
istry International, vol. 48, no. 5, pp. 383–393, 2006.

[93] F. De Angelis, A. Bernardo, V. Magnaghi, L. Minghetti, and
A. M. Tata, “Muscarinic receptor subtypes as potential targets
to modulate oligodendrocyte progenitor survival, proliferation,



16 BioMed Research International

and differentiation,” Developmental Neurobiology, vol. 72, no. 5,
pp. 713–728, 2012.

[94] K. Abiraman, S. U. Pol, M. A. O’Bara et al., “Anti-muscarinic
adjunct therapy accelerates functional human oligodendrocyte
repair,” Journal of Neuroscience, vol. 35, no. 8, pp. 3676–3688,
2015.
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[182] E. M. Medina-Rodŕıguez, F. J. Arenzana, A. Bribián, and F.
de Castro, “Protocol to isolate a large amount of functional
oligodendrocyte precursor cells from the cerebral cortex of



BioMed Research International 19

adult mice and humans,” PLoS ONE, vol. 8, no. 11, Article ID
e81620, 2013.

[183] T. Deacon, J. Dinsmore, L. C. Costantini, J. Ratliff, and
O. Isacson, “Blastula-stage stem cells can differentiate into
dopaminergic and serotonergic neurons after transplantation,”
Experimental Neurology, vol. 149, no. 1, pp. 28–41, 1998.

[184] S. Kriks, J.-W. Shim, J. Piao et al., “Dopamine neurons derived
from human ES cells efficiently engraft in animal models of
Parkinson’s disease,”Nature, vol. 480, no. 7378, pp. 547–551, 2011.

[185] G. I. Nistor, M. O. Totoiu, N. Haque, M. K. Carpenter, and H.
S. Keirstead, “Human embryonic stem cells differentiate into
oligodendrocytes in high purity and myelinate after spinal cord
transplantation,” Glia, vol. 49, no. 3, pp. 385–396, 2005.

[186] N. Li, L. Tian, W. Wu et al., “Regional hypothermia inhibits
spinal cord somatosensory-evoked potentials without neural
damage in uninjured rats,” Journal of Neurotrauma, vol. 30, no.
15, pp. 1325–1333, 2013.

[187] K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of
pluripotent stem cells from adult human fibroblasts by defined
factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007.

[188] F. J. Najm, A. M. Lager, A. Zaremba et al., “Transcription
factor-mediated reprogramming of fibroblasts to expandable,
myelinogenic oligodendrocyte progenitor cells,”Nature Biotech-
nology, vol. 31, no. 5, pp. 426–433, 2013.

[189] H. Hentze, P. L. Soong, S. T. Wang, B. W. Phillips, T. C. Putti,
and N. R. Dunn, “Teratoma formation by human embryonic
stem cells: evaluation of essential parameters for future safety
studies,” Stem Cell Research, vol. 2, no. 3, pp. 198–210, 2009.

[190] T. Okarma, “Interview with Thomas Okarma, M.D., Ph.D.;
CEO, Geron,” Rejuvenation Research, vol. 12, no. 4, pp. 295–300,
2009.

[191] T. Yilmaz and E. Kaptanoğlu, “Current and future medical
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