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Abstract

Rare variants

Background: Pooling is a cost effective way to collect data for genetic association studies, particularly for rare genetic
variants. It is of interest to estimate the haplotype frequencies, which contain more information than single locus
statistics. By viewing the pooled genotype data as incomplete data, the expectation-maximization (EM) algorithm is
the natural algorithm to use, but it is computationally intensive. A recent proposal to reduce the computational
burden is to make use of database information to form a list of frequently occurring haplotypes, and to restrict the
haplotypes to come from this list only in implementing the EM algorithm. There is, however, the danger of using an
incorrect list, and there may not be enough database information to form a list externally in some applications.

Results: We investigate the possibility of creating an internal list from the data at hand. One way to form such a list is
to collapse the observed total minor allele frequencies to “zero” or “at least one”, which is shown to have the desirable
effect of amplifying the haplotype frequencies. To improve coverage, we propose ways to add and remove
haplotypes from the list, and a benchmarking method to determine the frequency threshold for removing
haplotypes. Simulation results show that the EM estimates based on a suitably augmented and trimmed collapsed
data list (ATCDL) perform satisfactorily. In two scenarios involving 25 and 32 loci respectively, the EM-ATCDL estimates
outperform the EM estimates based on other lists as well as the collapsed data maximum likelihood estimates.

Conclusions: The proposed augmented and trimmed CD list is a useful list for the EM algorithm to base upon in
estimating the haplotype distributions of rare variants. It can handle more markers and larger pool size than existing
methods, and the resulting EM-ATCDL estimates are more efficient than the EM estimates based on other lists.

Keywords: Collapsed data, EM algorithm, Haplotype frequency estimation, Haplotype list, Pooled genotype data,

Background

In statistical genetics, the haplotype distribution is the
joint distribution of the allele types at, say, L loci. We will
focus on bi-allelic loci in this article so that each haplo-
type vector is a vector of binary values, and the haplo-
type distribution is a multivariate binary distribution. The
importance of haplotypes is well documented [1-3] and
reinforced more recently by the works of Muers [4] and
Tewhey et al. [5]. By incorporating linkage disequilibrium
information from multiple loci, haplotype-based inference
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can lead to more powerful tests of genetic association than
single-locus analyses. Haplotype distributions are usually
estimated from individual genotype data which is the sum
of the maternal and paternal haplotype vectors of an indi-
vidual. As reviewed by Niu [6] and Marchini et al. [7],
statistical approaches to haplotype inference based on
individual genotype data are effective and cost-efficient.
These include the expectation-maximization (EM) type
algorithms for finding maximum likelihood estimates
(MLE) [8], and the Bayesian PHASE algorithm [9]. Since
DNA pooling is a popular and cost-effective way of col-
lecting data in genetic association studies [10-14], the
EM algorithm and its variants have been extended by
various authors [15-18] to handle pooled genotype data
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(i.e., the sum of all 2k haplotype vectors of all k individu-
als in a pool), whereas Pirinen et al. [19], Gasbarra et al.
[20] and Pirinen [21] have extended Bayesian algorithms
using Markov Chain Monte Carlo (MCMC) or reversible
jump MCMC schemes. Also from a Bayesian perspective,
Iliadis et al. [22] conduct deterministic tree-based sam-
pling instead of MCMC sampling, but their algorithm is
feasible for small pool sizes only, even though the block
size can be arbitrary. Despite the falling costs of genotyp-
ing, the popularity of the pooling strategy has not waned,
with Kim et al. [23] and Liang et al. [24] advocating the
use of pooling for next-generation sequencing data. The
importance of pooling increases with the recent surge of
interest in rare variant analysis based on re-sequencing
data [25] to explain missing heritability [26] and diseases
that cannot be explained by common variants. Roach et al.
[27] predict that “haplotypes that include rare alleles ...
will play an increasingly important role in understanding
biology, health, and disease” Perhaps more so than in the
analysis of common variants, pooling has an important
role to play in the analysis of rare variants. This is because
the standard methods for testing genetic association are
underpowered for rare variants due to insufficient sam-
ple size as only a small percentage of study subjects would
carry a rare mutation, and pooling is a way to increase
the chance of observing a rare mutation. By using a pool-
ing design, we could include more individuals in a study
at the same genotyping cost. The study by Kuk et al. [28]
shows that pooling does not lead to much loss of esti-
mation efficiency relative to no pooling when the alleles
are rare.

Our focus is on developing computationally feasible
EM-type algorithms to estimate haplotype frequencies of
rare variants from pooled genotype data. There are two
main impediments to the use of EM algorithm in esti-
mating haplotype distribution from pooled genotype data.
First, the number of putative haplotypes grows exponen-
tially with the number of loci. Secondly, things get worse
when pool size increases as the number of individual hap-
lotype configurations compatible with the observed pool
totals quickly becomes astronomical. As a result, the EM
algorithm can only be applied to data with small to mod-
erate number of loci and pool size. For example, Gasbarra
et al. [20] commented that without prior knowledge or
restriction on the possible haplotypes, existing algorithms
cannot handle the case of 21 loci with pool size 6. We
have recorded running times of 1862 and 2900 seconds
on an intel (R) Core (TM) desktop when the traditional
EM algorithm is applied to pooled genotype data with
12 loci for 74/37 pools of size 2/4 each. Gasbarra et al.
[20] advocate the use of database information to create
a list of frequently occurring haplotypes. By combining
this idea of using database information to create a list
with a normal approximation [17] for the density of the
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pooled allele frequencies, Pirinen [21] proposed an AEML
(Approximate EM with List) algorithm which runs much
faster than the unrestricted EM algorithm.

We do not assume the existence of an external list for
two reasons. First, database information for rare alleles
is currently still lacking. Secondly, an EM type algorithm
restricted to a list is sensitive to the correct choice and
completeness of the external list used. Instead, we use
the data on hand to construct an internal list. Motivated
by the collapsed data estimation method developed by
Kuk et al. [29] which only keeps track of whether an
allele count is “0” or “> 17, we propose a collapsed data
(CD) list of possible haplotypes. It will be shown in the
Methods section that for rare genetic variants, the CD list
has inflated probabilities of capturing the true underlying
haplotypes. To improve coverage, we augment the CD list
by adding those haplotypes with only one “1” (i.e., only one
rare variant occurs) to result in an augmented CD (ACD)
list. The EM algorithm restricted to the ACD list still
does not perform satisfactorily in our simulation studies,
apparently due to the inclusion of too many false hap-
lotypes. In response, we propose an ATCD (augmented
and trimmed CD) list where those haplotypes with esti-
mated frequencies lower than a threshold at each iteration
of the algorithm are removed from the list. We propose
a method to select the threshold by benchmarking the
resulting EM estimate of the frequency of the ancestral
haplotype of all zeros (i.e., no variant occurs) with the
corresponding estimate obtained using the collapsed data
method of Kuk et al. [29]. To assess the performance of
the various estimators, we simulate genotype data resem-
bling those collected for the 148 obese individuals in
the CRESCENDO cohort study http://clinicaltrials.gov/
ct/show/NCT00263042, at 25 loci near the MGLL gene on
chromosome 3, and 32 loci near the FAAH gene on chro-
mosome 1. The EM estimates based on the CD list and
the ACD list do not perform well in the simulation study.
In particular, they over-estimate the haplotype frequency
of the ancestral haplotype of all zeros. The EM estimates
based on the ATCD list, on the other hand, perform very
well. In the two scenarios involving 25 and 32 loci, the EM-
ATCDL estimates outperform the EM estimates based on
other lists as well as the collapsed data maximum like-
lihood estimates. We conclude that the augmented and
trimmed CD list is a useful list for the EM algorithm to
base upon in estimating the haplotype distributions of rare
variants.

Results

To identify rare genetic variants associated with obesity,
investigators of the CRESCENDO cohort study obtained
re-sequenced data for 148 obese persons and 150 controls
around two genes known to be involved in endocannabi-
noid metabolism: FAAH on chromosome 1, and MGLL
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on chromosome 3. There are 31Kbp of re-sequenced data
near the FAAH gene, and 157Kbp near the MGLL region.
Bhatia et al. [30] discovered two 5Kbp regions enriched
in rare variants (RVs) located just upstream of the FAAH
and MGLL genes respectively, with 32 RVs in the first
region, and 25 RVs in the second region. To estimate
the underlying haplotype distributions, we apply the algo-
rithms proposed in this paper, as well as the EM with
a list (EML) method described in Kuk et al. [29], where
the list is determined combinatorially. The collapsed data
maximum likelihood estimates (CDMLE) are also com-
puted. To save space, we only report the estimates based
on the obese individuals, which is the more interesting
case, as there are very few mutations among the control
subjects. Table 1 reports the CDMLE’s, as well as the esti-
mates obtained using EML, EM-CDL (EM with CD list)
and EM-ATCDL (EM with augmented and trimmed CD
list) algorithms for the 25 loci case. The estimates on the
left panel (k = 1) are based on individual genotype data,
whereas the right panel (k = 2) estimates are based on
pooled genotype data that result from grouping the 148
obese individuals into 74 pools of size 2 each. Obviously,
the estimates based on 148 pools of size 1 (i.e., individual
genotype data) should be more reliable than those based
on 74 pools of size 2, and so we should use the estimates
on the left panel of Table 1 as the benchmark. It is inter-
esting to note that as the pool size k increases to 2, the
CDMLE, EML and EM-CDL estimates remove some hap-
lotypes that are assigned probabilities in the k = 1 case,
and in their place, some other haplotypes not presented
in the k = 1 case are assigned probabilities in the k = 2
case. We will see later in the Methods section that it is
an inherent property of the CD list to include extrane-
ous false haplotypes as pool size increases. By augmenting
and trimming the CD list in the proposed way, the EM-
ATCDL estimates based on k = 1 and 2 are much more
comparable with similar support, which is desirable.

Table 2 reports the running times of various algorithms.
It can be seen that the EML algorithm takes longer to
run than EM-CDL and EM-ATCDL, and is computation-
ally prohibitive (takes longer than 10 hours on an Intel (R)
Core (TM) 2 desktop) when the pool size is k = 4 in both
the 25 and 32 loci cases. Both EM-CDL and EM-ATCDL
remain computationally feasible when k = 4. Understand-
ably, EM-CDL is a bit faster to run as no augmentation
and trimming is involved.

To facilitate comparison of estimators in situations
similar to those under which the original data were
collected, we simulate haplotype data from the MGLL
region (25 loci) and FAAH region (32 loci) according to
the haplotype distributions listed as “true” in Tables 3
and 4. These distributions are actually the haplotype
distributions estimated using EM-CDL from the individ-
ual genotype data of the 148 cases of the CRESCENDO
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cohort study, but we will treat them as the true distri-
butions in our simulation study. Thus there are only 22
possible haplotypes for the 25 loci case, and 32 haplo-
types for the 32 loci case. After generating the haplotypes,
we form # pools of 2k haplotypes each (n = 100, 200;
k = 1,2,3,4) and the resulting pooled genotype data will
be treated as the observed data to be used to construct
estimates. The results reported in Tables 3 and 4 are based
on 100 simulations. The gold standard that we use is the
EM-PL estimator, which assumes knowledge of the per-
fect list (i.e, knowing exactly which f(y) > 0). Because
the perfect list is used, the EM algorithm in this case will
yield the MLE based on the pooled genotype data. We
will not have such knowledge in reality and so our real
interest is in comparing the performance of the follow-
ing estimators: CDMLE (collapsed data MLE), EML (EM
with combinatorially determined list), EM-CDL (CD list),
EM-ACDL (augmented CD list), EM-ATCDL (augmented
and trimmed CD list), and EM-TCDL (CD list with trim-
ming and no augmentation). For removing haplotypes
from both the ATCD and TCD lists, we try threshold val-
ues from 0.0001 to 0.002 in steps of 0.0001, and select the
threshold to yield an estimate of f(0) as close to fCD(O)
as possible. Based on the study of Kuk et al. [29], fCD(O)
seems to be a reasonable benchmark to use. InAfact, we can
see from Tables 3 and 4 that the average of fcp(0) (over
100 simulations) is always close to the average of the gold
standard fEM_pL (0), and this lends further support to the
use of fCD (0) as a benchmark. We have simulated data for
k =1,2,3,4. As the EML algorithm takes too long to run
(see Table 2), we compute the EML estimates for k = 1
and 2 only. To save space, we only report the results of
k = 2and 4 in Tables 3 and 4. The results for EM-CDL and
EM-ACDL are close, and so we table the results of EM-
CDL only. In order not to make the tables unduly long, we
table only the averages of f (y) for those y with f(y) > 0,
together with the sum of f (y) over the remaining y’s, as
well as the averages over simulations of the sum of squared
errors » {f(y) —f) }2, Q = {0, 1}, for the various esti-
ye2

mators of f(y). To supplement Tables 3 and 4, we plot the
simulated averages of the sum of squared errors against
pool size k for all 7 estimators, including EM-PL.

It can be seen from Tables 3 and 4 that EM-CDL over-
estimated the frequency f(0) of the ancestral haplotype
quite severely, and it has the largest sum of squared error
among all the estimators. The performance of EML is very
similar to that of EM-CDL (both unsatisfactory) but the
computational cost is much higher. It suffers from assign-
ing small probabilities to too many false haplotypes. For
example, for the 25 loci case with n = 100, k = 2,
the EML list on the average contains 116 haplotypes
even though the true distribution is concentrated on 22
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Table 1 Haplotype frequency estimates in the MGLL region using data from 148 obese individuals

k=1,n=148 k=2, n=74
Position of 1’s CDMLE EML EM-CDL EM-ATCDL CDMLE EML EM-CDL EM-ATCDL
None 0.7927 0.7941 0.7995 0.7984 0.7912 0.8202 0.8169 0.7898
1 0.0536 0.0505 0.0509 0.0544 0.0497 0.0397 0.0398 0.0494
2 0.0043 0.0034 0.0034 0.0034 0.0034
3 0.0456 0.0433 0.0436 0.0441 0.0381 0.0291 0.0291 0.0440
5 0.0043 0.0034 0.0034 0.0034 0.0034
6 0.0043 0.0034 0.0034 0.0034 0.0067 0.0034 0.0034 0.0034
9 0.0085 0.0072 0.0073 0.0103 0.0133 0.0079 0.0079 0.0101
1 0.0043 0.0034 0.0034 0.0034 0.0034
14 0.0034
15 0.0043 0.0034 0.0034 0.0034 0.0034
19 0.0043 0.0068 0.0068 0.0068 0.0067 0.0069 0.0101 0.0101
20 0.0043 0.0068 0.0068 0.0068 0.0067 0.0069 0.0101 0.0101
21 0.0043 0.0034 0.0034 0.0034 0.0034
22 0.0127 0.0101 0.0102 0.0103 0.0197 0.0101 0.0101 0.0101
23 0.0043 0.0034 0.0034 0.0034 0.0067 0.0034 0.0034 0.0034
24 0.0127 0.0101 0.0102 0.0103 0.0067 0.0040 0.0040 0.0040
1,3 0.0048 0.0040 0.0040 0.0038 0.0090 0.0059 0.0059 0.0020
1,9 0.0034 0.0029 0.0029 0.0032 0.0022 0.0022
1,15 0.0056 0.0034 0.0034
1,24 0.0098 0.0064 0.0064 0.0095
2,3 0.0059 0.0034 0.0034
3,14 0.0040 0.0034 0.0034 0.0059 0.0034 0.0034
3,11 0.0059 0.0034 0.0034
521 0.0067 0.0034 0.0034
6,7 0.0250 0.0203 0.0204 0.0205 0.0314 0.0182 0.0181 0.0189
19,20 0.0017 0.0033
3,67 0.0026 0.0034 0.0034 0.0034 0.0066 0.0057 0.0057 0.0081
6,19,20 0.0017
7,19,20 0.0017
1,6,7,24 0.0039 0.0034 0.0034 0.0034
6,7,19,20 0.0041 0.0017 0.0057 0.0033 0.0034 0.0034
1,3,6,7,24 0.0041 0.0032 0.0032
1,12,13,22,25 0.0039 0.0034 0.0034 0.0034 0.0053 0.0034 0.0034 0.0034

Estimates of haplotype frequencies for the 25 rare variants in the MGLL region obtained by CDMLE (collapsed data maximum likelihood estimation), EML (EM with
combinatorially determined list), EM-CDL (EM with CD list) and EM-ATCDL (EM with augmented and trimmed CD list with adaptive threshold) based on n = 148/k
pools of k individuals each.

Table 2 Running times of EM algorithms based on different lists

MGLL FAAH
EML EM-CDL EM-ATCDL EML EM-CDL EM-ATCDL
k=1 1.14 0.08 3.68 0.72 0.13 4.57
k=2 18.71 0.10 7.05 12638 0.17 6.78
k=4 >10h 0.23 7.39 >10h 0.13 27.93

Running times in seconds for EML (EM with combinatorially determined list), EM-CDL (EM with CD list) and EM-ATCDL (EM with augmented and trimmed CD list with
adaptive threshold) for estimating the haplotype distributions of the 25 rare variants in the MGLL region and the 32 rare variants in the FAAH region when 148 obese
individuals are grouped into pools of various sizes.
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Table 3 Average estimates of haplotype frequencies for a 25 loci case

k=2 k=4
Positionof ‘1’ TRUE CDMLE EML EM-CDL EM-ATCDL EM-TCDL CDMLE EM-CDL EM-ATCDL EM-TCDL
(a)m = 100
None 0.7995 0.7973 0.8279 0.8283 0.8003 0.8067 0.7961 0.8535 0.7957 0.8119
(0.0232)  (0.0169) (0.0170) (0.0215) (0.0192) (0.0204)  (0.0118) (0.0179) (0.0144)
1 0.0509 0.0508 0.0412 0.0412 0.0477 0.0477 0.0502 0.0344 0.0457 0.0494
(0.0155)  (0.0115) (0.0115) (0.0119) (0.0112) (0.0152)  (0.0083) (0.0093) (0.0086)
2 0.0034 0.0036 0.0019 0.0019 0.0031 0.0024 0.0032 0.0008 0.0028 0.0020
(0.0040)  (0.0022) (0.0022) (0.0025) (0.0027) (0.0044)  (0.0012) (0.0023) (0.0029)
3 0.0436 0.0441 0.0353 0.0353 0.0425 0.0408 0.0435 0.0277 0.0396 0.0411
(0.0139)  (0.0104) (0.0104) (0.0112) (0.0107) (0.0144)  (0.0077) (0.0097) (0.0080)
5 0.0034 0.0035 0.0019 0.0019 0.0031 0.0027 0.0031 0.0008 0.0028 0.0015
(0.0039)  (0.0021) (0.0021) (0.0028) (0.0029) (0.0043)  (0.0011) (0.0017) (0.0024)
6 0.0034 0.0027 0.0017 0.0016 0.0029 0.0022 0.0038 0.0013 0.0030 0.0019
(0.0035)  (0.0021) (0.0021) (0.0028) (0.0030) (0.0050)  (0.0017) (0.0022) (0.0026)
9 0.0073 0.0092 0.0056 0.0056 0.0085 0.0087 0.0073 0.0029 0.0074 0.0079
(0.0065)  (0.0039) (0.0039) (0.0046) (0.0052) (0.0066)  (0.0026) (0.0045) (0.0062)
11 0.0034 0.0041 0.0022 0.0022 0.0036 0.0029 0.0032 0.0008 0.0027 0.0016
(0.0048)  (0.0025) (0.0025) (0.0029) (0.0031) (0.0046)  (0.0013) (0.0021) (0.0025)
15 0.0034 0.0039 0.0021 0.0021 0.0032 0.0026 0.0034 0.0009 0.0029 0.0017
(0.0052)  (0.0028) (0.0028) (0.0032) (0.0033) (0.0050)  (0.0013) (0.0021) (0.0025)
19 0.0068 0.0069 0.0039 0.0039 0.0061 0.0055 0.0075 0.0022 0.0058 0.0051
(0.0056)  (0.0031) (0.0031) (0.0040) (0.0044) (0.0066)  (0.0020) (0.0031) (0.0042)
20 0.0068 0.0073 0.0041 0.0041 0.0061 0.0058 0.0080 0.0023 0.0057 0.0051
(0.0060)  (0.0035) (0.0035) (0.0042) (0.0045) (0.0065)  (0.0020) (0.0028) (0.0040)
21 0.0034 0.0038 0.0020 0.0020 0.0032 0.0029 0.0041 0.0011 0.0033 0.0022
(0.0041)  (0.0022) (0.0022) (0.0027) (0.0031) (0.0051)  (0.0014) (0.0023) (0.0028)
22 0.0102 0.0117 0.0070 0.0070 0.0095 0.0099 0.0110 0.0043 0.0096 0.0091
(0.0075)  (0.0047) (0.0047) (0.0053) (0.0054) (0.0085)  (0.0033) (0.0046) (0.0056)
23 0.0034 0.0032 0.0018 0.0018 0.0028 0.0024 0.0038 0.0010 0.0029 0.0019
(0.0039)  (0.0023) (0.0023) (0.0028) (0.0030) (0.0045)  (0.0012) (0.0021) (0.0026)
24 0.0102 0.0096 0.0060 0.0060 0.0095 0.0098 00114 0.0043 0.0098 0.0118
(0.0065)  (0.0041) (0.0041) (0.0051) (0.0057) (0.0076)  (0.0028) (0.0047) (0.0057)
1,3 0.0040 0.0048 0.0039 0.0039 0.0045 0.0043 0.0071 0.0049 0.0061 0.0052
(0.0049)  (0.0037) (0.0037) (0.0041) (0.0040) (0.0070)  (0.0040) (0.0046) (0.0048)
1,9 0.0029 0.0030 0.0021 0.0021 0.0023 0.0018 0.0051 0.0023 0.0028 0.0017
(0.0035)  (0.0024) (0.0024) (0.0033) (0.0033) (0.0055)  (0.0021) (0.0031) (0.0032)
6,7 0.0204 0.0210 0.0150 0.0148 0.0215 0.0195 0.0203 0.0104 0.0210 0.0219
(0.0098)  (0.0072) (0.0072) (0.0075) (0.0077) (0.0105)  (0.0043) (0.0068) (0.0060)
3,14 0.0034 0.0035 0.0021 0.0021 0.0020 0.0028 0.0031 0.0012 0.0015 0.0021
(0.0037)  (0.0022) (0.0022) (0.0032) (0.0031) (0.0038)  (0.0015) (0.0024) (0.0026)
3,67 0.0034 0.0037 0.0028 0.0029 0.0025 0.0030 0.0047 0.0028 0.0022 0.0016
(0.0047)  (0.0036) (0.0036) (0.0044) (0.0047) (0.0053)  (0.0025) (0.0033) (0.0035)
1,6,7,24 0.0034 0.0031 0.0021 0.0021 0.0006 0.0006 0.0036 0.0018 0.0006 0.0000

(0.0033)  (0.0023) (0.0023) (0.0023) (0.0021) (0.0037)  (0.0018) (0.0017) (0.0004)
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Table 3 Average estimates of haplotype frequencies for a 25 loci case (Continued)

1,12,13,22,25 0.0034 0.0037 0.0024 0.0024 0.0026 0.0029 0.0038 0.0016 0.0005 0.0025
(0.0038) (0.0025) (0.0025) (0.0031) (0.0029) (0.0035) (0.0015) (0.0018) (0.0027)
Sum of remaining 0.0376 0.0248 0.0248 0.0117 0.0124 0.0893 0.0366 0.0255 0.0109

haplotype probabilities

Sum of probabilities 0.0247 0.0241 0.0244 0.0218 0.0286 0.0296 0.0285 0.0179 0.0367
of missed haplotypes

Sum of squared errors 0.00166 0.00186 0.00189 0.00110 0.00106 0.00201 0.00415 0.00091 0.00089
Length of list 26.77 116.28 26.77 19.06 18.25 4523 4523 2538 15.62
SD of length (3.26) (81.30) (3.26) (3.03) (2.18) (3.94) (3.94) (4.78) (2.40)

(a) m = 200

None 0.7995 0.7979 0.8248 0.8250 0.7981 0.8009 0.7990 0.8451 0.7970 0.8040

(0.0150) (0.0117) (0.0117) (0.0148) (0.0132) (0.0154) (0.0086) (0.0133) (0.0125)

1 0.0509 0.0514 0.0433 0.0433 0.0492 0.0503 0.0502 0.0387 0.0462 0.0507

(0.0103) (0.0082) (0.0082) (0.0089) (0.0088) (0.0121) (0.0069) (0.0077) (0.0080)

2 0.0034 0.0035 0.0020 0.0020 0.0033 0.0031 0.0037 0.0011 0.0030 0.0024

(0.0032) (0.0018) (0.0018) (0.0024) (0.0026) (0.0035) (0.0011) (0.0013) (0.0021)

3 0.0436 0.0430 0.0362 0.0362 0.0435 0.0426 0.0441 0.0322 0.0406 0.0426

(0.0092) (0.0075) (0.0075) (0.0082) (0.0074) (0.0105) (0.0054) (0.0071) (0.0065)

5 0.0034 0.0033 0.0018 0.0018 0.0032 0.0028 0.0034 0.0011 0.0030 0.0023

(0.0028) (0.0016) (0.0016) (0.0020) (0.0023) (0.0035) (0.0011) (0.0013) (0.0021)

6 0.0034 0.0038 0.0023 0.0023 0.0033 0.0031 0.0033 0.0014 0.0028 0.0022

(0.0031) (0.0019) (0.0020) (0.0021) (0.0025) (0.0035) (0.0013) (0.0014) (0.0019)

9 0.0073 0.0080 0.0054 0.0054 0.0079 0.0088 0.0081 0.0036 0.0070 0.0092

(0.0038) (0.0026) (0.0026) (0.0032) (0.0037) (0.0043) (0.0019) (0.0026) (0.0031)

1 0.0034 0.0032 0.0018 0.0018 0.0030 0.0027 0.0032 0.0010 0.0029 0.0023

(0.0026) (0.0016) (0.0016) (0.0022) (0.0024) (0.0031) (0.0011) (0.0015) (0.0021)

15 0.0034 0.0035 0.0019 0.0019 0.0030 0.0028 0.0038 0.0012 0.0031 0.0028

(0.0033) (0.0018) (0.0018) (0.0023) (0.0025) (0.0031) (0.0010) (0.0015) (0.0021)

19 0.0068 0.0063 0.0039 0.0039 0.0062 0.0061 0.0066 0.0026 0.0056 0.0057

(0.0039) (0.0025) (0.0025) (0.0029) (0.0034) (0.0041) (0.0015) (0.0018) (0.0026)

20 0.0068 0.0068 0.0042 0.0042 0.0062 0.0063 0.0063 0.0026 0.0054 0.0059

(0.0039) (0.0025) (0.0025) (0.0028) (0.0030) (0.0038) (0.0015) (0.0022) (0.0026)

21 0.0034 0.0038 0.0022 0.0022 0.0035 0.0032 0.0037 0.0012 0.0031 0.0025

(0.0035) (0.0020) (0.0020) (0.0023) (0.0026) (0.0034) (0.0011) (0.0015) (0.0021)

22 0.0102 0.0105 0.0071 0.0071 0.0097 0.0103 0.0112 0.0052 0.0086 0.0098

(0.0058) (0.0037) (0.0037) (0.0041) (0.0041) (0.0052) (0.0022) (0.0030) (0.0029)

23 0.0034 0.0039 0.0022 0.0022 0.0031 0.0030 0.0035 0.0011 0.0030 0.0025

(0.0027) (0.0015) (0.0016) (0.0021) (0.0022) (0.0030) (0.0010) (0.0015) (0.0021)

24 0.0102 0.0105 0.0069 0.0069 0.0107 0.0114 0.0106 0.0049 0.0088 0.0115

(0.0050) (0.0033) (0.0033) (0.0043) (0.0042) (0.0059) (0.0023) (0.0036) (0.0043)
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Table 3 Average estimates of haplotype frequencies for a 25 loci case (Continued)

1,3 0.0040 0.0046 0.0037 0.0037
(0.0041) (0.0032) (0.0032)
1,9 0.0029 0.0036 0.0026 0.0026
(0.0027) (0.0019) (0.0019)
6,7 0.0204 0.0191 0.0148 0.0146
(0.0067) (0.0048) (0.0047)
3,14 0.0034 0.0030 0.0019 0.0019
(0.0029) (0.0018) (0.0018)
3,6,7 0.0034 0.0039 0.0029 0.0029
(0.0035) (0.0025) (0.0025)
1,6,7,24 0.0034 0.0039 0.0028 0.0028
(0.0025) (0.0019) (0.0019)
1,12,13,22,25 0.0034 0.0035 0.0025 0.0024
(0.0022) (0.0016) (0.0017)
Sum of remaining 0.0340 0.0227 0.0227
haplotype probabilities
Sum of probabilities 0.0103 0.0097 0.0100
of missed haplotypes
Sum of squared errors 0.00077 0.00125 0.00126
Length of list 39.65 152.30 39.65
SD of length (3.90) (71.65) (3.90)

0.0041 0.0040 0.0052 0.0041 0.0049 0.0047
(0.0033) (0.0034) (0.0048) (0.0029) (0.0030) (0.0031)
0.0030 0.0022 0.0030 0.0018 0.0027 0.0010
(0.0026) (0.0028) (0.0031) (0.0015) (0.0022) (0.0020)
0.0215 0.0199 0.0206 0.0124 0.0212 0.0223
(0.0056) (0.0054) (0.0073) (0.0037) (0.0048) (0.0046)
0.0020 0.0027 0.0036 0.0015 0.0025 0.0029
(0.0026) (0.0025) (0.0026) (0.0011) (0.0020) (0.0018)
0.0021 0.0027 0.0038 0.0025 0.0024 0.0019
(0.0029) (0.0031) (0.0041) (0.0022) (0.0028) (0.0029)
0.0007 0.0006 0.0039 0.0020 0.0002 0.0000
(0.0019) (0.0018) (0.0026) (0.0014) (0.0009) (0.0002)
0.0027 0.0032 0.0033 0.0017 0.0004 0.0031
(0.0023) (0.0023) (0.0026) (0.0013) (0.0014) (0.0020)
0.0102 0.0074 0.0703 0.0310 0.0255 0.0076
0.0132 0.0173 0.0131 0.0118 0.0111 0.0200
0.00059 0.00054 0.00101 0.00281 0.00055 0.00048
22.08 19.63 71.24 71.24 29.29 19.81
(4.20) (3.70) (5.02) (5.02) (5.82) (5.22)

Average estimates of haplotype frequencies for a 25 loci case based on 100 simulations of n pools of k individuals each using CDMLE (collapsed data MLE), EML (EM
with combinatorially determined list), EM-CDL (EM with CD list), EM-ATCDL (augmented and trimmed CD list) and EM-TCDL (CD list with trimming and no

augmentation), with standard errors in parentheses.

haplotypes. The total probability that the EML estimator
attaches to haplotypes outside of the true 22 is only 0.0248
on the average. This foretells the need for trimming which
is a point we will come back to later.

Augmenting the CD list did not help much as the results
for EM-ACDL are almost the same as that of EM-CDL
when n = 200, and only slightly better when # = 100 (not
shown in the tables, but we can see this from Figures 1
and 2). Trimming in addition to augmenting the CD list
improved things a lot, as demonstrated by the good results
of EM-ATCDL in both Tables 3 and 4. From Figures 1
and 2, we can see that EM-ATCDL is clearly the best
estimator among those considered, other than the per-
fect list estimator which is not a legitimate estimator.
Since augmenting alone did not improve results much,
but trimming in addition to augmenting did, we were
curious to see whether trimming alone would work or
not. As expected, we can see from Tables 3 and 4 that
the TCD list (trimming without augmentation) is on the
average shorter than the ATCD list. Consequently, the

TCD list will miss more true haplotypes, and the sum of
probabilities of the missed haplotypes is higher for EM-
TCDL than for EM-ATCDL, and more so for the 32 loci
case and when the number of pools is 100 rather than
200. In particular, the sum of probabilities of the missed
haplotypes for the 32 loci case with k 4 is 0.0798
(after averaging over simulations) when # 100, and
improves slightly to 0.0553 when n = 200. The corre-
sponding figures for EM-ATCDL are 0.0328 and 0.0222.
In terms of sum of squared errors, EM-TCDL is also infe-
rior to EM-ATCDL for the 32 loci case, particularly when
n = 100.

The collapsed data MLE advocated by Kuk et al. [29]
behaves very similarly to the gold standard EM-PL esti-
mator in terms of bias or expected value, but it suffers
from having a larger variance, especially for larger pool
size. In contrast, the EM-CDL estimates have small vari-
ance but large bias. By benchmarking against COMLE, the
EM-ATCDL estimates have smaller bias than EM-CDL
and smaller variance than CDMLE. The main advantage



Kuk et al. BMC Genetics 2013, 14:82
http://www.biomedcentral.com/1471-2156/14/82

Table 4 Average estimates of haplotype frequencies for a 32 loci case

Page 8 of 17

k=2 k=4
Position of ‘1’ TRUE CDMLE EML EM- CDL EM-ATCDL EM-TCDL CDMLE EM-CDL EM-ATCDL EM-TCDL
(a) m = 100
None 0.7995 0.7979 0.8248 0.8250 0.7981 0.8009 0.7990 0.8451 0.7970 0.8040
(0.0150)  (0.0117) (0.0117) (0.0148) (0.0132) (0.0154) (0.0086) (0.0133) (0.0125)
1 0.0509 0.0514 0.0433 0.0433 0.0492 0.0503 0.0502 0.0387 0.0462 0.0507
(0.0103)  (0.0082) (0.0082) (0.0089) (0.0088) (0.0121) (0.0069) (0.0077) (0.0080)
2 0.0034 0.0035 0.0020 0.0020 0.0033 0.0031 0.0037 0.0011 0.0030 0.0024
(0.0032)  (0.0018)  (0.0018) (0.0024) (0.0026) (0.0035)  (0.0011) (0.0013) (0.0021)
3 0.0436 0.0430 0.0362 0.0362 0.0435 0.0426 0.0441 0.0322 0.0406 0.0426
(0.0092)  (0.0075)  (0.0075) (0.0082) (0.0074) (0.0105)  (0.0054) (0.0071) (0.0065)
5 0.0034 0.0033 0.0018 0.0018 0.0032 0.0028 0.0034 0.0011 0.0030 0.0023
(0.0028)  (0.0016) (0.0016) (0.0020) (0.0023) (0.0035) (0.0011) (0.0013) (0.0021)
6 0.0034 0.0038 0.0023 0.0023 0.0033 0.0031 0.0033 0.0014 0.0028 0.0022
(0.0031)  (0.0019) (0.0020) (0.0021) (0.0025) (0.0035) (0.0013) (0.0014) (0.0019)
9 0.0073 0.0080 0.0054 0.0054 0.0079 0.0088 0.0081 0.0036 0.0070 0.0092
(0.0038)  (0.0026)  (0.0026) (0.0032) (0.0037) (0.0043)  (0.0019) (0.0026) (0.0031)
1 0.0034 0.0032 0.0018 0.0018 0.0030 0.0027 0.0032 0.0010 0.0029 0.0023
(0.0026)  (0.0016)  (0.0016) (0.0022) (0.0024) (0.0031)  (0.0011) (0.0015) (0.0021)
15 0.0034 0.0035 0.0019 0.0019 0.0030 0.0028 0.0038 0.0012 0.0031 0.0028
(0.0033)  (0.0018) (0.0018) (0.0023) (0.0025) (0.0031) (0.0010) (0.0015) (0.0021)
19 0.0068 0.0063 0.0039 0.0039 0.0062 0.0061 0.0066 0.0026 0.0056 0.0057
(0.0039)  (0.0025) (0.0025) (0.0029) (0.0034) (0.0041) (0.0015) (0.0018) (0.0026)
20 0.0068 0.0068 0.0042 0.0042 0.0062 0.0063 0.0063 0.0026 0.0054 0.0059
(0.0039)  (0.0025)  (0.0025) (0.0028) (0.0030) (0.0038)  (0.0015) (0.0022) (0.0026)
21 0.0034 0.0038 0.0022 0.0022 0.0035 0.0032 0.0037 0.0012 0.0031 0.0025
(0.0035)  (0.0020)  (0.0020) (0.0023) (0.0026) (0.0034)  (0.0011) (0.0015) (0.0021)
22 0.0102 0.0105 0.0071 0.0071 0.0097 0.0103 0.0112 0.0052 0.0086 0.0098
(0.0058)  (0.0037) (0.0037) (0.0041) (0.0041) (0.0052) (0.0022) (0.0030) (0.0029)
23 0.0034 0.0039 0.0022 0.0022 0.0031 0.0030 0.0035 0.0011 0.0030 0.0025
(0.0027)  (0.0015) (0.0016) (0.0021) (0.0022) (0.0030) (0.0010) (0.0015) (0.0021)
24 0.0102 0.0105 0.0069 0.0069 0.0107 00114 0.0106 0.0049 0.0088 0.0115
(0.0050)  (0.0033)  (0.0033) (0.0043) (0.0042) (0.0059)  (0.0023) (0.0036) (0.0043)
1,3 0.0040 0.0046 0.0037 0.0037 0.0041 0.0040 0.0052 0.0041 0.0049 0.0047
(0.0041)  (0.0032)  (0.0032) (0.0033) (0.0034) (0.0048)  (0.0029) (0.0030) (0.0031)
1,9 0.0029 0.0036 0.0026 0.0026 0.0030 0.0022 0.0030 0.0018 0.0027 0.0010
(0.0027)  (0.0019) (0.0019) (0.0026) (0.0028) (0.0031) (0.0015) (0.0022) (0.0020)
6,7 0.0204 0.0191 0.0148 0.0146 0.0215 0.0199 0.0206 0.0124 0.0212 0.0223
(0.0067)  (0.0048) (0.0047) (0.0056) (0.0054) (0.0073) (0.0037) (0.0048) (0.0046)
3,14 0.0034 0.0030 0.0019 0.0019 0.0020 0.0027 0.0036 0.0015 0.0025 0.0029
(0.0029)  (0.0018)  (0.0018) (0.0026) (0.0025) (0.0026)  (0.0011) (0.0020) (0.0018)
3,6,7 0.0034 0.0039 0.0029 0.0029 0.0021 0.0027 0.0038 0.0025 0.0024 0.0019
(0.0035)  (0.0025)  (0.0025) (0.0029) (0.0031) (0.0041)  (0.0022) (0.0028) (0.0029)
1,6,7,24 0.0034 0.0039 0.0028 0.0028 0.0007 0.0006 0.0039 0.0020 0.0002 0.0000
(0.0025)  (0.0019)  (0.0019) (0.0019) (0.0018) (0.0026)  (0.0014) (0.0009) (0.0002)
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Table 4 Average estimates of haplotype frequencies for a 32 loci case (Continued)

1,12,13,22,25 0.0034 0.0035 0.0025 0.0024 0.0027 0.0032 0.0033 0.0017 0.0004 0.0031
(0.0022) (0.0016) (0.0017) (0.0023) (0.0023) (0.0026) (0.0013) (0.0014) (0.0020)
Sum of remaining 0.0340 0.0227 0.0227 0.0102 0.0074 0.0703 0.0310 0.0255 0.0076

haplotype probabilities

Sum of probabilities 0.0103 0.0097 0.0100 0.0132 0.0173 0.0131 0.0118 0.0111 0.0200
of missed haplotypes

Sum of squared errors 0.00077 0.00125 0.00126 0.00059 0.00054 0.00101 0.00281 0.00055 0.00048
Length of list 39.65 152.30 39.65 22.08 19.63 7124 7124 29.29 19.81
SD of length (3.90) (71.65) (3.90) (4.20) (3.70) (5.02) (5.02) (5.82) (5.22)
(b) n = 200
None 0.7113 0.7108 0.7674 0.7677 0.7115 0.7219 0.7110 0.8075 0.7109 0.7374
(0.0202) (0.0132) (0.0132) (0.0197) (0.0161) (0.0232) (0.0119) (0.0192) (0.0147)
1 0.0034 0.0031 0.0013 0.0013 0.0032 0.0022 0.0034 0.0005 0.0031 0.0012
(0.0032) (0.0014) (0.0014) (0.0022) (0.0025) (0.0054) (0.0007) (0.0015) (0.0018)
3 0.0034 0.0039 0.0016 0.0016 0.0032 0.0028 0.0036 0.0005 0.0030 0.0017
(0.0034) (0.0014) (0.0014) (0.0022) (0.0025) (0.0047) (0.0007) (0.0014) (0.0022)
5 0.0034 0.0037 0.0016 0.0016 0.0035 0.0029 0.0036 0.0006 0.0032 0.0017
(0.0035) (0.0015) (0.0015) (0.0022) (0.0027) (0.0049) (0.0007) (0.0013) (0.0022)
7 0.0068 0.0066 0.0038 0.0041 0.0061 0.0064 0.0065 0.0027 0.0058 0.0061
(0.0048) (0.0024) (0.0028) (0.0030) (0.0040) (0.0070) (0.0024) (0.0024) (0.0053)
9 0.0034 0.0037 0.0015 0.0015 0.0034 0.0029 0.0038 0.0006 0.0031 0.0016
(0.0038) (0.0016) (0.0016) (0.0024) (0.0029) (0.0049) (0.0008) (0.0015) (0.0022)
10 0.0102 0.0098 0.0050 0.0050 0.0087 0.0093 0.0103 0.0026 0.0088 0.0085
(0.0059) (0.0029) (0.0030) (0.0035) (0.0035) (0.0072) (0.0017) (0.0026) (0.0042)
11 0.0034 0.0038 0.0016 0.0016 0.0032 0.0029 0.0027 0.0004 0.0031 0.0010
(0.0030) (0.0013) (0.0013) (0.0023) (0.0026) (0.0044) (0.0007) (0.0014) (0.0019)
14 0.0034 0.0034 0.0014 0.0014 0.0031 0.0023 0.0030 0.0004 0.0029 0.0013
(0.0037) (0.0016) (0.0016) (0.0022) (0.0027) (0.0048) (0.0007) (0.0015) (0.0021)
17 0.0034 0.0033 0.0014 0.0014 0.0029 0.0023 0.0031 0.0005 0.0028 0.0014
(0.0035) (0.0014) (0.0014) (0.0021) (0.0024) (0.0047) (0.0008) (0.0015) (0.0021)
20 0.0034 0.0037 0.0015 0.0015 0.0030 0.0025 0.0028 0.0004 0.0029 0.0014
(0.0035) (0.0014) (0.0014) (0.0019) (0.0025) (0.0042) (0.0006) (0.0014) (0.0021)
21 0.0264 0.0251 0.0164 0.0164 0.0252 0.0252 0.0266 0.0117 0.0257 0.0260
(0.0089) (0.0051) (0.0051) (0.0064) (0.0063) (0.0135) (0.0040) (0.0055) (0.0056)
22 0.0068 0.0074 0.0040 0.0040 0.0095 0.0099 0.0067 0.0016 0.0089 0.0074
(0.0055) (0.0029) (0.0029) (0.0040) (0.0051) (0.0067) (0.0017) (0.0038) (0.0062)
24 0.0306 0.0307 0.0223 0.0234 0.0289 0.0295 0.0297 0.0194 0.0273 0.0291
(0.0096) (0.0066) (0.0066) (0.0070) (0.0074) (0.0146) (0.0049) (0.0058) (0.0061)
25 0.0136 0.0138 0.0075 0.0075 0.0129 0.0129 0.0155 0.0047 0.0139 0.0125
(0.0072) (0.0036) (0.0036) (0.0040) (0.0036) (0.0100) (0.0029) (0.0042) (0.0051)
26 0.0034 0.0033 0.0013 0.0013 0.0029 0.0023 0.0037 0.0005 0.0031 0.0014

(0.0035) (0.0014) (0.0014) (0.0024) (0.0026) (0.0052) (0.0007) (0.0014) (0.0021)
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28 0.0675 0.0661 0.0487 0.0488 0.0615 0.0640
(0.0136) (0.0089) (0.0089) (0.0107) (0.0105)
30 0.0036 0.0032 0.0017 0.0017 0.0070 0.0064
(0.0029) (0.0015) (0.0015) (0.0039) (0.0056)
31 0.0034 0.0037 0.0016 0.0016 0.0031 0.0025
(0.0037) (0.0016) (0.0016) (0.0021) (0.0025)
32 0.0038 0.0034 0.0016 0.0016 0.0045 0.0041
(0.0032) (0.0015) (0.0016) (0.0029) (0.0037)
2,25 0.0034 0.0034 0.0015 0.0015 0.0021 0.0026
(0.0033) (0.0015) (0.0015) (0.0029) (0.0028)
7,24 0.0510 0.0507 0.0403 0.0386 0.0525 0.0530
(0.0120) (0.0079) (0.0078) (0.0094) (0.0084)
12,13 0.0034 0.0031 0.0013 0.0013 0.0016 0.0023
(0.0033) (0.0015) (0.0015) (0.0025) (0.0026)
21,23 0.0034 0.0031 0.0015 0.0015 0.0018 0.0023
(0.0035) (0.0016) (0.0016) (0.0027) (0.0026)
21,28 0.0009 0.0031 0.0021 0.0021 0.0022 0.0019
(0.0038) (0.0022) (0.0022) (0.0027) (0.0030)
21,30 0.0033 0.0035 0.0018 0.0018 0.0022 0.0018
(0.0033) (0.0016) (0.0016) (0.0027) (0.0027)
22,30 0.0034 0.0029 0.0014 0.0013 0.0017 0.0017
(0.0031) (0.0015) (0.0015) (0.0024) (0.0027)
24,28 0.0034 0.0042 0.0034 0.0033 0.0036 0.0035
(0.0048) (0.0030) (0.0030) (0.0032) (0.0034)
28,32 0.0030 0.0034 0.0019 0.0019 0.0022 0.0019
(0.0033) (0.0018) (0.0019) (0.0028) (0.0028)
4,7,24 0.0034 0.0028 0.0015 0.0016 0.0013 0.0024
(0.0025) (0.0014) (0.0014) (0.0022) (0.0022)
7,22,24 0.0034 0.0042 0.0025 0.0026 0.0019 0.0011
(0.0036) (0.0022) (0.0021) (0.0028) (0.0024)
7,24,30 0.0034 0.0034 0.0023 0.0023 0.0019 0.0018

(0.0032) (0.0022) (0.0022) (0.0031) (0.0031)

Sum of remaining 0.0828 0.0454 0.0453 0.0178 0.0083
haplotype probabilities

Sum of probabilities 0.0278 0.0265 0.0271 0.0263 0.0384
of missed haplotypes

Sum of squared errors 0.00161 0.00451 0.00456 0.00103 0.00100
Length of list 62.39 159.68 62.39 30.60 2357
SD of length (4.88) (27.84) (4.88) (6.04) (4.22)

0.0668
(0.0162)
0.0043
(0.0053)
0.0031
(0.0044)
0.0041
(0.0060)
0.0036
(0.0048)
0.0523
(0.0139)
0.0029
(0.0049)
0.0035
(0.0042)
0.0035
(0.0050)
0.0035
(0.0044)
0.0037
(0.0051)
0.0064
(0.0072)
0.0033
(0.0037)
0.0028
(0.0027)
0.0029
(0.0034)
0.0033
(0.0035)

0.2194

0.0474

0.00334

106.91
(6.41)

0.0390
(0.0075)
0.0009
(0.0011)
0.0004
(0.0006)
0.0007
(0.0010)
0.0006
(0.0008)
0.0319
(0.0063)
0.0005
(0.0009)
0.0007
(0.0009)
0.0016
(0.0017)
0.0008
(0.0010)
0.0007
(0.0009)
0.0036
(0.0028)
0.0011
(0.0011)
0.0008
(0.0008)
0.0015
(0.0013)
0.0014
(0.0013)

0.0592

0.0462

0.01152

106.91
(6.41)

0.0614
(0.0090)
0.0077
(0.0040)
0.0030
(0.0013)
0.0042
(0.0021)
0.0013
(0.0020)
0.0524
(0.0089)
0.0011
(0.0020)
0.0016
(0.0023)
0.0015
(0.0023)
0.0016
(0.0024)
0.0014
(0.0021)
0.0037
(0.0029)
0.0018
(0.0021)
0.0008
(0.0016)
0.0018
(0.0024)
0.0018
(0.0024)

0.0243

0.0222

0.00092

36.11
(7.12)

0.0629
(0.0086)
0.0060
(0.0067)
0.0014
(0.0020)
0.0029
(0.0038)
0.0018
(0.0023)
0.0519
(0.0064)
0.0014
(0.0022)
0.0019
(0.0023)
0.0010
(0.0027)
0.0012
(0.0023)
0.0014
(0.0022)
0.0040
(0.0036)
0.0018
(0.0026)
0.0019
(0.0019)
0.0012
(0.0025)
0.0018
(0.0029)

0.0160

0.0553

0.00152

21.92
(5.11)

Average estimates of haplotype frequencies for a 32 loci case based on 100 simulations of n pools of k individuals each using CDMLE (collapsed data MLE), EML (EM

with combinatorially determined list), EM-CDL (EM with CD list), EM-ATCDL (augmented and trimmed CD list) and EM-TCDL (CD list with trimming and no

augmentation), with standard errors in parentheses.
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(b) n=200
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Figure 1 Expected sum of squared errors of various haplotype frequency estimators for a 25 loci case. Expected sum of squared errors of
various haplotype frequency estimators (EM-CDL: EM with CD list; EM-ACDL: augmented CD list; EML: EM with combinatorially determined list;
CDMLE: collapsed data MLE; EM-TCDL: CD list with trimming and no augmentation; EM-ATCDL: augmented and trimmed CD list; EM-PL: EM with
perfect list) based on 100 simulations of (@) n = 100 and (b) n = 200 pools of k individuals each when the true haplotype distribution over 25 loci is

of the collapsed data MLE is its simplicity and small bias.
As shown by Kuk et al. [29], the loss in efficiency due to
collapsing the pooled genotype data locus-wise to just “0”
and “> 1” is not large for small pool size (especially when
k = 1 which corresponds to individual genotype data) and
rare alleles, but it is better to use EM-ATCDL if k > 2.

To further see if our benchmarking method of deter-
mining the threshold for the removal of haplotypes is
reasonable or not, we also compute the EM-ATCDL

estimates based on fixed threshold in our simulation
study to find out which threshold is “optimal” Figures 3
and 4 depict the averages of the sum of squared errors
n 2

> [f(y) —f(y)} , Q = {0,1}%, over 100 simulations for
yeQ R

the EM-ATCDL estimates f(y) as a function of the thresh-
old value. The position of the “optimal” threshold which
minimizes that averaged sum of squared errors is depicted
by the vertical dashed line, whereas the average of the

(a) n=100
0
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EML
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g | EM-ATCDL
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Figure 2 Expected sum of squared errors of various haplotype frequency estimators for a 32 loci case. Expected sum of squared errors of
various haplotype frequency estimators (EM-CDL: EM with CD list; EM-ACDL: augmented CD list; EML: EM with combinatorially determined list;
CDMLE: collapsed data MLE; EM-TCDL: CD list with trimming and no augmentation; EM-ATCDL: augmented and trimmed CD list; EM-PL: EM with
perfect list) based on 100 simulations of (@) n = 100 and (b) n = 200 pools of k individuals each when the true haplotype distribution over 32 loci is

as given in Table 4.
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Figure 3 Expected sum of squared errors of the EM-ATCDL estimator with fixed threshold (25 loci case). Expected sum of squared errors of

the EM-ATCDL estimator for various choices of the threshold based on 100 simulations of n = 200 pools of (a) k = 2 and (b) k = 4 individuals each
when the true haplotype distribution over 25 loci is as given in Table 3; optimal threshold: the threshold obtained by minimizing the averaged sum
of squared errors; average adaptive threshold: adaptively chosen thresholds obtained by minimizing the distance between f(0) and f(0) over the

grid 0.0001 to 0.002 in steps of 0.0001.

adaptively chosen thresholds (obtained by minimizing the
distance between f (0) and f(0) over the grid 0.0001 to
0.002 in steps of 0.0001) is depicted by the dotted vertical
line. It can be seen that the averages of the adaptively cho-
sen thresholds are quite close to the “optimal” thresholds
which lends support to the proposed adaptive method.

Discussion and conclusions
The EM algorithm for estimating haplotype frequencies
from pooled genotype data is computationally not feasible

when the number of loci and/or the pool size is large
due to the combinatorial challenge of finding all possi-
ble haplotypes that are compatible with the observed pool
tools. Gasbarra et al. [20] raised the possibility of using
database information to form a list of frequently occur-
ring haplotypes, and by restricting attention to only those
haplotypes on such a list, Pirinen [21] made the EM algo-
rithm much more viable. The success of the EM with a
list method is, however, dependent on the correctness of
the list used. In the absence of an external list of possible
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Figure 4 Expected sum of squared errors of the EM-ATCDL estimator with fixed threshold (32 loci case). Expected sum of squared errors of
the EM-ATCDL estimator for various choices of the threshold based on 100 simulations of n = 200 pools of (a) k = 2 and (b) k = 4 individuals each
when the true haplotype distribution over 32 loci is as given in Table 4; optimal threshold: the threshold obtained by minimizing the averaged sum
of squared errors; average adaptive threshold: adaptively chosen thresholds obtained by minimizing the distance between ?(0) and f(0) over the
grid 0.0001 to 0.002 in steps of 0.0001.
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haplotypes, especially for rare alleles for which there is
not a lot of database information, and to protect against
using the wrong list, we look at the feasibility of using the
data at hand to create an internal list of possible haplo-
types to be fed into the EM algorithm. Motivated by the
collapsed data method studied by Kuk et al. [29], we pro-
pose a CD list with amplified haplotype frequencies. This
alone does not work well but with appropriate augmen-
tation and trimming, the resulting EM-ATCDL algorithm
performs very well in our simulation study. It should be
pointed out that even though the ATCD list originates
from the CD list which is based on collapsed data: a fur-
ther reduction of pooled genotype data, the EM-ATCDL
estimates themselves are computed using the pooled data,
which explains why they are better than the collapsed
data MLEs. The simulation results also suggest that aug-
menting the collapsed data list alone, or trimming the list
alone, is not good enough, and it is necessary to do both.
The average lengths of the various lists are also shown
in Tables 3 and 4. We can see that the average length
of the ATCD list ranges from 20 (k = 1,n = 100) to
30 (k = 4,n = 200) for the 25 loci case, and from 28
(k = 1,n = 100) to 36 (k = 4,n = 200) for the 32
loci case. Without using a list, there are 22° ~ 3e7 and
232 ~ 4e9 possible haplotypes. Thus by using the ATCD
list, we can restrict our attention to only 20 to 40 hap-
lotypes, hence the huge savings in running time. It can
also be seen from Tables 3 and 4 that making a list longer
does not guarantee better results, as the EML and CD
lists are much longer than the ATCD list but the result-
ing estimates are much worse. What seems important
is to add the right haplotypes and remove unnecessary
ones. If an imperfect external list exists, then a sensible
hybrid method is to combine it with the collapsed data
list to form a union list which can be further augmented
and trimmed using the techniques described in this
paper.

Currently we are only adding haplotypes with a single
“1” to the list, which seems reasonable for the study of rare
variants, but one can conceivably also add haplotypes with
two 1’s to the list. This will increase the number of pos-
sibilities substantially during the first iteration of the EM
algorithm, but most of these haplotypes will be removed
after one iteration.

The signs are promising that the use of the ATCD
list can push the limit of the EM algorithm in terms
of the number of loci and pool size that it can handle.
This method is particularly well suited for estimating the
haplotype distributions of rare variants which are of sub-
stantial current interest. Note that our method does not
require sampling, and is shown in simulation study to
work for case of 32 loci and pool size 4, which is beyond
the scope of most sampling-based methods, MCMC or
deterministic.
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Methods

Definitions and notation

Focusing on bi-allelic loci, the two possible alleles at each
locus can be represented by “1” (the minor or variant
allele) and “0” (the major allele). As a result, the alle-
les at selected loci of a chromosome can be represented
by a binary haplotype vector. Since human chromosomes
come in pairs, there are 2 haplotype vectors for each indi-
vidual, one maternal, and one paternal. Suppose we have
n pools of k individuals each so that there are K = 2k hap-
lotypes within each pool. Denote by Y;; = (Y1, - -+, Y1)
the /% haplotype in the i pool, where i = 1,---,n,
j=1,---,K,and L is the number of loci to be genotyped.
Assuming Hardy-Weinberg equilibrium, the #K haplo-
type vectors are independent and identically distributed
with probability function

f(yl’..- ,_)/L) :P(Yh} =91, ’YLij :yL)

for every L-tuple y = (y1, -+ ,yr) belonging to the Carte-
sian product Q = {0, 1}£. With pooling, the observed data
are the pool totals

K K K
TiZZYijZ ZYIij""’ZYLlj
=1 =1 =1

=Ty -, T, i=1---,n

The probability function p (¢3, - - - , 1) of each pool total
is given by the K-fold convolution of the haplotype prob-
ability function f(y1,-- - ,y1) and so the likelihood based
on the observed pooled data is highly intractable and not
easy to maximize directly.

Kuk et al. [29] defined the collapsed data via indicator
functions as

K K
Zi=|I{d Yy=1¢, 11 Y >1
j=1 j=1

= (Zii, ,2ZLi)

Note that what Z; does is to collapse each total allele fre-
quency to either “0” (coded as 0) or “at least 1” (coded as
1) as done in classical group testing [31]. From here on, we
will call {Yij,i =1---,mnj=1,--- ,K} the complete hap-
lotype data (usually not observed); {Ti, i=1,--- ,n} the
pooled genotype data (reduces to individual genotype data
if the pool size is 1), and {Z;,i = 1,--- , n} the collapsed
data. In this paper, we refer to k as the pool size, not K.

The collapsed data maximum likelihood estimator
Suppressing its dependence on the pool size k, let

g(Zl,~.. ,21) =P(Zyi=2z1,-+ ,Z1; = z1)

be the probability function of the collapsed data, and
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go(A) =P (Z; =0,l € A)

the probability of zero pool totals at a subset A of the L
loci. Kuk et al. [29] argued that the MLE of go(A) based on
the collapsed data Zy, - - - , Z,, is given by

aon) = ")
n
where nz0(A) is the number of pools with zero allele
counts at the positions specified by A.
By making use of the relationship fo(A) = go(A)%,
where fy(A) = P(Yh»j =0,l¢ A), and the inclusion-
exclusion principle, Kuk ef al. [29] obtained

. A |F
fCDU’)—{n}
+Z( 1y {"zo A(wUS)}I W
i

as the collapsed data MLE of f(y), where A(y)
= {l : y; = 0} stores the positions of the 0s in
y = (¥1,..,yL), with complement A'(y) = {{ : y; = 1},
which stores the positions of the 1’s, and m is the number
of 1’s in the haplotype vector y.

Since the collapsed data is a reduction of the pooled
data, the collapsed data MLE is less efficient than the
pooled data MLE. Kuk et al. [29] showed that the loss of
estimation efficiency due to the collapsing of pooled data
is not large for rare variants and small pool size. However,
if the pool size is moderate or large, which is recom-
mended from the cost saving point of view, an estimator
based on the original pooled data without collapsing can
be substantially more efficient than the collapsed data
MLE. This is why we want to modify the EM algorithm for
finding the pooled data MLE to make it computationally
feasible.

The EM algorithm based on the collapsed data list with

augmentation and trimming

If the individual haplotypes Yy, i = 1,---,n, j =
-, K, were actually observed, then the population hap-

lotype distribution function can be estimated simply by

the empirical haplotype distribution. In other words, the

so-called complete data MLE of f(y), y € €, is

m(Y)

Je) = ()

n
P
i=1j=1
appears in Yj;. The E-step of the EM algorithm involves

where m(y) = = y) is the number of times y
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taking conditional expectation of m(y) given the observed
data and current estimates f ® ), y € 2, to get

D) = E{mO)| Ty = t1, -+, Ty = t)
n K
=Y > P(Yy=)IT;=1)
i=1 j=1

n
i=1

where
PYn=yT =t
P(Yy=y|T;=¢t) =
(Ya yl i i) P(T; = 1))
> oo Lo
Y2, ,yKER

_ y+ya+- Ay =t;

K 7
> {Hj:lf(t) (J’i)}
Y1E€Q, - ,yK €
Y1ttty =ti

(3)

Since the complete data multinomial likelihood belongs
to the exponential family, the M-step can be carried out
analytically to yield the updating formula

1@ ()/)

7(¢4+1)
FEo) = =2

(4)
which is just (2) with m(y) replaced by the imputed value
m® ).

The E-step of the EM algorithm is very time consum-
ing. As one can see from (3), it involves finding all possible
underlying haplotype vectors that sum up to the observed
pool total. The combinatorial problem is greatly reduced
if we can restrict the possible haplotypes to come from a
relatively short list.

Let R C € be a reduced list of possible haplo-
types obtained by whatever method. The generic EM
with a list algorithm operates in the same way as the
EM algorithm described above except that the updat-
ing formula (4) is only applied to y € R C €, and
Q is replaced by R under the summation symbols in
Equation (3).

Kuk et al. [29] described a combinatorial method to
arrive at a reduced list R, but the resulting EML algo-
rithm is still very time consuming. As can be seen from
Table 2, the EML algorithm is not feasible for pool size
larger than 2. Thus there is a need for alternative methods
to arrive at a reduced list. Motivated by the fact that the
collapsed data MLE fCD () > 0 only for “those haplotypes
y which coincide with at least one of the collapsed data
vectors Z;,i = 1,---,n, in the sample’, it seems sensible
to apply the EM algorithm with haplotypes restricted to
this list, which we call the CD list. Let y be a non-ancestral
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Table 5 Sufficient conditions for non-ancestral haplotype
frequencies to be increased by collapsing data

Lower threshold of £(0)
k=1 k=2 k=3 k=4 k=5
0.5000 0.6300 0.6988 0.7430 0.7743

Sufficient conditions for collapsed data frequencies {g(y),y # 0} to be greater
than haplotype frequencies {f(y),y # 0} for various choices of pool size k.

haplotype (i.e., y # 0, the vector of all zeros) with fre-
quency f(y) > 0, the probability that it is captured in a
list of n randomly sampled haplotypes is 1 — {1 — f(y)}"
(= 1 — e Y if f(y) is small and # is large), whereas the
probability that it is captured by the CD list constructed
from # pools of k individuals each is 1 — {1 — g(y)}" =~
1—e " Thusifg(y) > f(y), the probability that y is cap-
tured by the CD list is higher than the probability that it is
captured by direct sampling of haplotypes (not to mention
the extra cost incurred in resolving the phase ambiguity
to sample the haplotypes directly), and by increasing the

Table 6 Induced collapsed data frequencies
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number of pools n, we can make the capture probability
arbitrarily large. For example, if we want the CD list to
capture y with probability at least 1 — ¢, all we have to do
is to solve 1 — e7"®) > 1 — ¢ (after Poisson approxima-
tion) to get n > _?(gy)(s). A sufficient condition for g(y) to

be greater than f(y) is given below.
Lemma 1. Let y be non-ancestral, g(y) > f(y) if f(0) >

()

Proof. A sufficient condition for Z = y is that one of the
2k haplotype vectors Y1, - - - , Yok in a pool of k individuals
isequaltoy = (y1, - - ,y1), and the other 2k — 1 haplotype
vectors are all zero vectors. Thus g(y) > 2kf(y)f(0)%~1,
and the lemma follows. O

1
The values of (zik)ﬁ for various choices of the pool
size k are given in Table 5. Thus if the alleles are
sufficiently rare in the sense that f(0) is larger than the
threshold given in Table 5, then there is a better chance

Haplotype y S £0v)

Positions of ‘1’s TRUE k=1 k=2 k=3 k=4
None 0.7995 0.6392 0.4085 0.2611 0.1669
1 0.0509 0.0839 0.1143 0.1169 0.1065
2 0.0034 0.0055 0.0070 0.0067 0.0058
3 0.0436 0.0716 0.0967 0.0980 0.0883
5 0.0034 0.0055 0.0070 0.0067 0.0058
6 0.0034 0.0055 0.0070 0.0067 0.0058
9 0.0073 0.0117 0.0151 0.0146 0.0125
1 0.0034 0.0055 0.0070 0.0067 0.0058
15 0.0034 0.0055 0.0070 0.0067 0.0058
19 0.0068 0.0109 0.0141 0.0136 0.0117
20 0.0068 0.0109 0.0141 0.0136 0.0117
21 0.0034 0.0055 0.0070 0.0067 0.0058
22 0.0102 0.0164 0.0213 0.0206 0.0178
23 0.0034 0.0055 0.0070 0.0067 0.0058
24 0.0102 0.0164 0.0213 0.0206 0.0178
1,3 0.0040 0.0117 0.0307 0.0482 0.0610
1,9 0.0029 0.0058 0.0105 0.0135 0.0148
3,14 0.0034 0.0057 0.0082 0.0088 0.0084
6,7 0.0204 0.0332 0.0439 0.0435 0.0384
3,6,7 0.0034 0.0077 0.0164 0.0231 0.0271
1,6,7,24 0.0034 0.0060 0.0097 0.0119 0.0132
1,12,13,22,25 0.0034 0.0059 0.0087 0.0097 0.0096
Sum of haplotype probabilities 1.0000 0.9751 0.8822 0.7650 0.6462

Haplotype frequencies f(y) for a 25-loci case and the induced collapsed data frequencies g(y) for various pool sizes k.
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of capturing each non-ancestral haplotype with f(y) > 0
by the CD list than by direct sampling of haplotypes.
This is achieved by re-distributing the probability of the
ancestral haplotype in the process of pooling and col-
lapsing. In other words, the reason why it is possible to
have g(y) > f(y) for non-ancestral y is because g(0) =
f (0)% < f(0). We cannot have g(y) > f(y) for all haplo-
types y because both g(y) and f (y) must sum to 1. Table 6
shows how the probabilities are being re-distributed for a
25-loci case. The true haplotype distribution f(y) is listed
in column 1 of Table 6, whereas the distributions g(y)
of the collapsed data for various pool sizes are given in
the subsequent columns. For non-ancestral y, we can see
from Table 6 that g(y) > f(y), and more so when the
pool size is increased (up to a point), which is good news
for the CD list. For example, f(1,0,---,0) = 0.0509,
whereas g(1,0,---,0) = 0.0839 when k = 1, and con-
tinues to increase to 0.1143 and 0.1169 when the pool
size is increased to 2 and 3. We are particularly interested
in the capability of the CD list in capturing haplotypes
with multiple 1’s. For the last haplotype listed in Table 6
(which contains five 1’s), f(y) = 0.0034, but g(y) is 0.0097
when the pool size is 3. Thus if we have n = 200
pools (which is one setting of our simulation study) of
k = 3 individuals each, the probability that this haplo-
type is captured by the CD list is 0.8577 = 1 — (1 —
0.0097)%00 ~ 1 — ¢=20000:0097) — (,8563. But g(y) will also
assign positive probabilities to some haplotypes y even
though f(y) = Osince Y g(y) < 1, which is why
¥ ()>0

we propose to trim the CD list. To see how g(y) can be
positive even though f(y) = 0, consider the following
case with just 2 loci. Suppose f(1,0) > 0, f(0,1) > 0,
but f(1,1) = 0. By pooling k individuals together, it is
obviously possible to have total allele counts 77 > 1,
T, > 1 at both loci, and hence (Z1,Z5) = (1,1), which
means that (1,1) will appear on the CD list even though
f(1,1) = 0.

The CD list misses some haplotypes with f(y) > O,
while some other haplotypes with f(y) = 0 are erro-
neously included. This suggests that the CD list needs to
be augmented as well as trimmed. Since we are focus-
ing on rare variants, we augment the CD list by adding
all those vectors with only one “1” to the list if they
are not already there. Thus we are adding at most L
haplotypes to the CD list. Beginning the EM iteration
with the augmented CD list, we remove a haplotype
from the list if its estimated frequency at the current
iteration of the EM algorithm is less than a threshold.
The way we select the threshold (typically over a grid)
is to choose the one that results in an estimate of the
ancestral haplotype frequency f(0) closest to the col-
lapsed data MLE fCD(O), which should be a reasonable
benchmark.
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