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ABSTRACT 

 

We consider a city with several highly compact central business districts (CBDs). The 

commuters’ origins are continuously dispersed. The travel demand to each CBD, which is 

considered to be a distinct commodity of traffic movements, is dependent on the total travel 

cost to that CBD. The transportation system is divided into two layers: major freeways and a 

dense network of surface streets. Whereas the major freeway network is modeled according 

to the conventional discrete network approach, the dense surface streets are approximated as 

a continuum. Travelers to each CBD can either travel within the continuum (surface streets) 

and then transfer to the discrete network (freeways) at an interchange (ramp) before moving 

to the CBD on the discrete network, or they can travel directly to the CBD within the 

continuum. Specific travel cost-flow relationships for the two layers of transportation 

facilities are considered. We develop a traffic equilibrium model for this discrete/continuum 

transportation system in which, for each origin-destination pair, no traveler can reduce his or 

her individual travel cost by unilaterally changing routes. The problem is formulated as a 

simultaneous optimization program with two sub-problems. One sub-problem is a traffic 
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assignment problem from the interchanges to the CBD in the discrete network, and the other 

is a traffic assignment problem within a continuum system with multiple centers (i.e., the 

interchange points and the CBDs). A Newtonian algorithm based on sensitivity analyses of 

the two sub-problems is proposed to solve the resultant simultaneous optimization program. 

A numerical example is given to demonstrate the effectiveness of the proposed method. 

 

Keywords: Discrete system, continuum system, multi-commodity, traffic equilibrium, 

elastic demand 

 

1. INTRODUCTION 

 

The rapid development of the transportation network equilibrium problem in recent decades 

has led to a large body of literature devoted to the theory of equilibrium prediction and to 

computer algorithms for the determination of flows. In the literature, two general approaches 

are used to deal with network equilibrium problems. The first is discrete modeling of 

transportation networks, in which the zones are identified as nodes in space and the roads are 

treated as links between these nodes. The other approach is continuum modeling of network 

problems. The major assumption of this latter form of modeling is that the differences 

between adjacent areas within a network are relatively small when compared to the variations 

over the entire network, and hence the characteristics of the network can be represented by 

smooth mathematical functions (Vaughan, 1987). 

 

Discrete modeling has been widely adopted for equilibrium prediction of transportation 

networks. Fernandez and Friesz (1983) and Boyce (1984) reviewed the different discrete 

approaches and methods that were proposed to deal with the equilibrium problem in a 

transportation network. Boyce and Daskin (1997) published a more recent review. Although 

the network equilibrium travel and route choice problem has been vigorously formulated and 

analyzed in considerable depth with the discrete approach, there is room for further 

improvement. First, although the algorithms developed to solve network equilibrium 

problems are good for small-scale networks, they are not generally efficient for dense 

transportation networks that involve many nodes and links and many possible routes between 

the origin-destination (O-D) pairs. Enormous computing time is consumed in the evaluation 

of the feasible flow at the equilibrium point for dense networks. Moreover, the computer 

solution for a very large network may give the flow pattern in such detail that it obscures 
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some of the qualitative interpretation of the results. It is also difficult to determine from 

computer solutions the manner in which the flow varies as one changes the properties of the 

network except by an exhaustive evaluation of the flows for a wide range of possible 

networks. Moreover, the discrete approach has an inherent drawback whereby the demand is 

assumed to be concentrated at nodes called centroids and the traffic enters the discrete 

network by means of a few pre-specified centroid connectors. This assumption is not realistic 

in modeling traffic demand, which is actually distributed over the entire study area. 

 

An alternative approach to the network equilibrium problem is to use continuum modeling 

for the network representation. The continuum approach usually involves only a small 

number of parameters that represent the network characteristics. The interrelation among 

these parameters can be determined with the help of a computer. Because the number of 

unknowns is lower than that for discrete modeling for a dense network, the computational 

effort is greatly reduced. In the best case, a simple analytical solution can be derived directly 

from the model. This information about the influence of various parameters is very useful in 

transportation planning, especially in the global sense. The continuum modeling of 

transportation systems can be broadly classified into two categories: specific city 

configuration approaches (Lam and Newell, 1967; Zitron, 1974; D’Este, 1987; Wong, 1994) 

and general city configuration approaches (Beckmann, 1952; Wardrop, 1971; Williams and 

Ortuzar, 1976; Puu, 1977; Buckley, 1979; Dafermos, 1980). 

 

Recently, Taguchi and Iri (1982) proposed a promising numerical procedure to solve the 

problem of a continuum transportation system for a general city configuration in which the 

finite-element method (Zienkiewicz and Taylor, 1989) was used to solve three continuum 

problems: the maximum flow problem, the shortest route problem, and the minimum-cost 

flow problem. For user equilibrium problems, Sasaki et al. (1990) provided a dual-based 

formulation in which the user equilibrium problem in a continuum system was solved by 

minimizing an objective function that was subject to a set of constraints. The finite-element 

method was also used to determine the cost potential in the city, and the flow intensity was 

then deduced from the potential function. To improve the numerical stability of this solution, 

a more robust algorithm was developed on the basis of the mixed finite-element formulation 

(Wong et al., 1998); this algorithm was also applied to solve the continuum modeling of a 

multi-commodity traffic assignment with fixed and variable demands (Wong, 1998) and a 

combined distribution and assignment problem (Wong and Sun, 2001; Wong et al., 2004). 
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For the problems of competitive facilities, Wong and Yang (1999) developed a continuum 

formulation for the determination of market areas and significantly extended it to incorporate 

the demand elasticity of customers over the space and market externality of each competitive 

facility (Yang and Wong, 2000). This extension added realism because congestion 

externalities and demand elasticity exist in practice. More recently, the continuum model has 

also been applied to solve multiclass equilibrium problems (Ho et al., 2003, 2004, 2006, 

2007), cordon-based congestion-pricing problems (Ho et al., 2005, 2013), dynamic paradigm 

problems (Jiang et al., 2011; Du et al., 2013; Tao et al., 2014),  environmental problems (Yin 

et al., 2012, 2013), airport problems (Loo et al., 2005), and housing problems (Ho and Wong, 

2005, 2007). 

 

Although the traffic equilibrium problem has been vigorously formulated and analyzed in 

considerable depth for both the discrete and continuum approaches, these approaches have 

different advantages and shortcomings, and it is promising to integrate them to form a 

combined model. D’Este (1987) studied discrete/continuum modeling by considering the 

problem of flow-dependent trip assignment in a city with a small number of radial major 

roads. He derived a system of differential equations for the spatial pattern of trip assignment 

in a model city with a continuous distribution of home locations and a ring-radial road 

network. Wong (1994) reformulated the problem as a minimization problem of an objective 

function that was subject to a set of constraints and solved by means of power series 

expansion. For a general city configuration, Yang et al. (1994) developed a dual-based 

formulation and a finite-element solution for a discrete/continuum network problem. In their 

approach, the solution algorithm is applicable to a special case in which only one feasible 

path exists from each interchange to the CBD. This restricts the solution’s applicability to a 

more general discrete/continuum transportation system configuration. Wong et al. (2003) 

proposed an improved method in which the problem was reformulated as a simultaneous 

optimization model and solved it by means of a fixed-point algorithm based on sensitivity 

analyses of both the discrete and continuum systems. In this paper, we extend that method to 

the case of a multi-commodity network with variable demand, which has substantially 

improved the modeling capability of this discrete/continuum approach and made it applicable 

to a more general transportation system with multiple origins and destinations. 

 

This paper is organized as follows. In Section 2, we introduce the modeled city with our 

assumptions, definitions, and notation. Section 3 describes the problem formulation, and 
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Section 4 presents the solution algorithm for the resultant problem. Section 5 uses a 

numerical example to demonstrate the effectiveness of the proposed method. 

 

2. NOTATION AND ASSUMPTIONS 

 

2.1 The modeled city 

 

We consider a city with several highly compact central business districts (CBDs), as shown 

in Figure 1, whose transportation system consists of two sub-systems: a discrete system for 

the freeway network and a continuum system for the dense network of surface streets. The 

discrete and continuum systems interact at the interchange locations (ramps), at which the 

travelers are collected to board the freeway network, and at the locations at which the 

travelers enter the CBDs. The commuters’ origins are continuously dispersed. We assume 

that the travel demand to each CBD is dependent on the total travel cost to that CBD. There 

are two possible manners in which travelers can move to the CBDs. They can either travel 

within the continuum (surface streets) and then exchange to the discrete network (freeways) 

at an interchange (ramp) before moving to the CBD on the discrete network, or they can 

travel directly to the CBD within the continuum. This approach provides a more realistic 

model for the transportation system, in which the travel demand is continuously distributed 

over the city rather than concentrated at arbitrarily chosen point sources (centroids) and in 

which most travelers, except those who are close to the CBDs, tend to find a nearby 

interchange to transfer onto the discrete freeway network to take advantage of high-speed 

movement. 

 

[Figure 1 to be inserted here] 

 

2.2 Continuum system 

 

The dense network of surface roads is approximated as a continuum, as shown in Figure 1c 

(Sasaki et al., 1990). There are M CBDs and N interchanges. These CBDs and interchanges 

are sufficiently compact for the continuum domain of the city. Denote the continuum region 

of the city as , the boundary of the city as , and the location of each CBD as mO , m = 1, 2, 

…, M. Note that a CBD can also act as an interchange for the other CBDs. Therefore, we 
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define for each CBD m the set of feasible interchanges (including the CBD m itself) as mI  

and the location of each of these interchanges as mnI , n = 1, 2, …, mN , where mN  is the 

number of feasible interchanges to CBD m. Note that 1Im  denotes the location of CBD m 

(i.e., mm OI 1  ) and that NMNm  . Each of these interchanges is of finite size and is 

enclosed by a clockwise boundary segment, c
mn , n = 1, 2, …, mN , m = 1, 2, …, M.  

 

As in conventional traffic assignment, the travel demand to each CBD (i.e., destination) is 

considered as a distinct commodity and is assumed to be continuously distributed over city 

. This demand is represented by a nonnegative, heterogeneous density function ),( yxqm , 

where mq  is the total demand per unit area from the home location ),( yx . To consider 

the elasticity of travel demand, ),( yxqm  is assumed to be a function of the minimum travel 

cost  

 ),),,((),( yxyxuDyxq mmm  , (1) 

where ),( yxum  and yxyxqm dd),(  are the minimum travel cost and the travel demand, 

respectively, that are generated from the location (x,y) to travel to CBD m. The function 

),(., yxDm  is assumed to decrease monotonically to reflect the elastic nature of travel 

demand with respect to the total cost, and its inverse function exists. 

 

The local travel cost in the continuum domain of the city is assumed to depend on the local 

flow intensity and road configuration, but not on the direction (the isotopic case), 

    ),(

1
),(),(),(),,(

yxM

m m yxyxyxyxc


 ff , (2) 

where c(x,y,f) is the cost per unit distance of travel at coordinate (x,y), (x,y), (x,y) and 

(x,y) are strictly positive scalar functions of the cost-flow relationship that reflect the local 

characteristics of the streets, (x,y) is the free-flow transportation cost per unit distance at 

coordinate (x,y), (x,y) is the sensitivity parameter that represents the congestion effect at 

coordinate (x,y), (x,y) is a positive conversion factor that transforms the actual cost 

component to the perceived cost component that is experienced by class m users, 

 Mmm ,,2,1,  ff ,  ),(),,(),( yxfyxfyx ymxmm f  is a vector that represents the flow 

state of commodity m in the city, ),( yxf xm  and ),( yxf ym  are the flow flux of commodity m 

in the x and y directions, respectively, and 
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 22 ),(),(),( yxfyxfyx ymxmm f , (3) 

is the norm of the flow vector at (x,y). This cost-flow relationship is generalized from the 

linear model by Wong (1998). A practical calibration process for the unit transportation cost 

function adopted in the continuum model was introduced by Wong and Wong (2015). 

 

Inside the continuum domain of city , the flow vector and travel demand of each 

commodity must satisfy the flow conservation condition as 

 Mmyxyxqyx mm ,,2,1,),(,0),(),(  f . (4) 

Assuming that no traffic flow crosses the boundary of the city, we have 

c
,

c
2,

c
1, ),(, NMmNmNmm

mm
yx   0f , where c

1, 
mNm , …, c

, NMm   are the 

boundaries of the infeasible interchanges for commodity m. It is, however, not too difficult to 

extend the model to deal with the case that ),( yxgmm nf  on boundary , where n is the 

normal vector on the boundary and mg  is a function representing the given demand 

distribution entering or leaving the city through the boundary. Denote 

 c
,

c
2,

c
1,

~
NMmNmNmm

mm
   . (5) 

as the combined boundary for commodity m, at which mm yx  ~
 ),(,0f , m = 1, 2, …, M. 

 

Denote mn  as the catchment area of interchange n for commodity m. The travel demand 

attracted to this interchange can be expressed as 

 MmNnyxqQ mmmn
mn

,,2,1,,,2,1,d),(    , (6) 

where 1mQ  is the demand that travels directly to the CBD m via the continuum only. Denote 

 MmNnQ mmn ,,2,1,,,2,1,  Q . From the flow conservation principle, at each 

interchange, we have: 

 MmNnQ mmnm
mn

,,2,1,,,2,1,0dc   nf . (7) 

 

2.3 Discrete system 

 

The discrete freeway network is described by a graph G(V, A) in which V is the set of discrete 

nodes including the CBDs, the interchanges, and the intermediate nodes and A is the set of 
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links, as shown in Figure 1b. Denote av  as the traffic flow on link a of the freeway network 

and the set of link flows as  Aava  ,v . The travel cost function on link a is described by 

  aaaaa vvc )( . (8) 

where a , a , and   are strictly positive coefficients. Let mnP  be the set of paths from 

interchange n to CBD m and the traffic flow on path p be mnph , mnPp , n = 2, …, mN , m = 

1, 2, …, M. The traffic demand mnQ  that is attracted to interchange n heading to CBD m, as 

determined from equation (7), will form the O-D demand in the discrete network, and Q 

represents the O-D matrix for the network. Denote mnpa  as the link path incidence value, 

where 1mnpa  when path p from interchange n heading to CBD m uses link a, and 

0mnpa  otherwise. We have 

     
 M

m

N

n Pp mnpmnpaa
mn

hv
1 2

. (9) 

Further denote mnU  as the equilibrium travel cost from interchange n to CBD m via the 

freeway network. Naturally, we have 01 mU . 

 

3. FORMULATION OF THE PROBLEM 

 

3.1 Continuum system 

 

The user equilibrium problem for the continuum system can be formulated as the following 

mathematical program (P1). 

  
,dd)(

1

)(Minimize

1 0

1

1

11

1 1
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m
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m
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QUZ

ff

f
f

 (10a) 

subject to 

 Mmyxqmm ,,2,1,),(,0  f , (10b) 

 Mmyx mm ,,2,1,
~

),(,  0f , (10c) 

 MmNnQ mmnm
mn

,,2,1,,,2,1,0dc   nf . (10d) 
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where boundary m
~

 for commodity m is defined in equation (5). Consider the following 

Lagrangian, 

 

 

,dd
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  (11) 

where ),( yxum ,  ),(),,(),( yxwyxwyx ymxmm w , and mn  are the Lagrange multipliers 

associated with constraints (10b), (10c), and (10d), respectively. From the variational 

principle, let  ymxmm ff  ,f , m = 1, 2, …, M, be arbitrary functions that vanish on 

boundary m
~

, i.e., 0f  m , myx  ~
),( . We can easily show that 
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By substituting mmmmmm uuu fff  )( , we have 
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According to Gauss’s integral theorem (divergence theorem), 
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 m
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n mmmmmm
mnm

uuu
1 1~ c d)(d)(d)( nfnff , 

  (14) 

we can show that 
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As mf , mq , mu , mw , mnQ , and mn , n = 1, 2, …, mN , m = 1, 2, …, M, are arbitrary 

functions in , and mf  vanishes on the boundary m
~

, m = 1, 2, …, M, the stationary point 

of the Lagrangian requires that 

   Mmyxum
m

mM

r r ,,2,1,),(,
1








 


 0
f

f
f , (16) 

 MmyxuDqqDu mmmmm ,,2,1,),(),(or)(1   , (17) 

 Mmyxqmm ,,2,1,),(,0  f , (18) 

 Mmyx mm ,,2,1,
~

 ),(,  0f , (19) 

 MmNnQ mmnm
mn

,,2,1,,,2,1,0dc   nf , (20) 

 MmNnU mmnmn ,,2,1,,,2,1,0   , (21) 

 MmNnyxu mmnmnm ,,2,1,,,2,1,),(,0 c   . (22) 

 

From equations (21) and (22) we obtain mnm Uu  , c),( mnyx  , mNn ,,2,1  , 

Mm ,,2,1  . From equations (17) and (18), the demand functions and flow conservation 

equations are automatically satisfied. Moreover, from equation (16), we can show that the 

traffic flow vector of commodity m is parallel to the gradient of the Lagrange multiplier mu  

of that commodity, i.e., Mmumm ,,2,1,// f , and 
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   m
M

r r uc 


 1
f . (23) 

Therefore, the norm of the gradient of the Lagrange multiplier that is associated with the flow 

conservation equation is independent of the commodity type, i.e., 

 Muuu  21 . (24) 

 

For each traveler at location H, the total cost on any used path p from H to CBD m via 

mnI (for the case of n = 1, which denotes when the traveler is moving directly toward CBD m 

in the continuum) can be expressed as 

 
)H()O()H(

dd

mmmmmnp mmn

p mmnpmnmnp

uuuUuU

suUscUC








ds
 (25) 

which is independent of the paths used and the interchange chosen. Therefore, the total costs 

of all used paths are equal. For any unused path p~  from H to CBD m via mnI , the total cost 

is 

 
)H()O()H(

dd

~

~~

mmmmmnp mmn

p mmnpmnmnp

uuuUuU

suUscUC








ds
 (26) 

The inequality in the above derivation occurs because, in some regions along path p~ , the 

vectors mu  and ds are not parallel, and ds mm usu d  for some segments p~ . 

Therefore, for any unused paths, the total cost is greater than or equal to that of the used 

paths. This satisfies the user equilibrium conditions (Wardrop 1952) when the elements of 

),,2,1,,,2,1,( MmNnU mmn  U  represent the corresponding equilibrium travel 

costs in the discrete network. The Lagrange multiplier associated with the flow conservation 

constraint can be interpreted as the total cost potential (which is the travel cost to an 

interchange in the continuum plus the equilibrium travel cost from the interchange to the 

CBD in the discrete network). The existence and uniqueness of the continuum models were 

recently studied by Ho et al. (2007). 

 

The optimization program (P1) can be written in the following abstract form: 

 )(UFQ   (27) 
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For a given set of equilibrium travel costs from the interchanges to all of the CBDs, program 

P1 determines the catchment of each interchange and each CBD, which will form the O-D 

demand in the discrete network. 

 

3.2 Discrete system  

 

The user equilibrium problem in the discrete network becomes one of solving the following 

mathematical program (P2): 

   


 



Aa a

a
aaAa

v
a vvcZ a 1

0 1
d)()(Minimize v

v
, (28a) 

subject to 

 MmNnhQ mPp mnpmn
mn

,,2,1,,,2,1,    
, (28b) 

 Aahv
M

m

N

n Pp mnpmnpaa
m

mn
     

,
1 2

, (28c) 

 MmNnPph mmnmnp ,,2,1,,,2,1,,0   , (28d) 

where mnQ  is the O-D demand matrix in the discrete network obtained by evaluating the 

catchment of the interchanges in equations (7). The satisfaction of the user equilibrium 

conditions can be found in the work of Sheffi (1985). Denote mnpC  as the travel cost on path 

p from interchange location n to CBD m, and mnU  as the corresponding minimum travel 

cost, i.e.,  mnmnpmn PpCU  ,min . 

 

The optimization program (P2) can be written in the following abstract form: 

 )(QGU   (29) 

For a given O-D matrix, program P2 determines the equilibrium travel costs from the 

interchanges to the CBDs. 

 

3.3 Fixed point problem 

 

From equations (27) and (29) we have 

 ))(( UFGU   (30) 
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If we can find a mutually consistent *U  such that ))(( ** UFGU  , then *U  is said to be a 

fixed-point solution that satisfies all of the functional relationships and user equilibrium 

conditions of the combined problem. 

 

4. SOLUTION ALGORITHM 

 

4.1 Continuum system 

 

The entire city region is first discretized into a set of triangular finite elements. Let EK  and 

NK  be the numbers of finite elements and finite-element nodes (FENs) in the entire 

discretized region, and O
mK  and I

mnK  be the numbers of FENs on m
~

 and on the boundaries 

of interchange n heading to CBD m, c
mn , n = 1, 2, …, mN , m = 1, 2, …, M. Because the cost 

potential to CBD m on the boundaries of interchanges n are equal to mnU , n = 1, 2, …, mN , 

the optimization program P1 can be solved by determining the stationary point of the 

following modified Lagrangian, 
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dd)(

))((

1

d

f

ff

nf

, (31) 

where e  is the subdomain of finite element e; e , e , and e  are the coefficients of the 

cost-flow relationship that are assumed to be constant within the finite element; 

 ),(),,( yxfyxf ymexmeme f  and ),( yxume  are the flow vector and cost potential, 

respectively, of commodity m in sub-domain e , xmkf̂  and ymkf̂  are the corresponding 

nodal values of the function ),( yxmf  as evaluated at node O,,2,1 mKk  , 
nkmsû  is the nodal 

value of the function ),( yxum  as evaluated at node nks , I,,2,1 mnKk  , mNn ,,2,1  , 

and 
nkms  is the corresponding Lagrange multiplier. 
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A three-node linear triangle element, the T3 element, was used to approximate the flow-

vector function, ),( yxmf , and cost potential function, ),( yxum , m = 1, 2, …, M (Cheung et 

al., 1996). Within the element, the flow vector and the cost potential can be expressed as  

 MmfyxFfyxFfyxFyxf xmkkxmjjxmiixm ,,1,ˆ),(ˆ),(ˆ),(),(  , (32) 

 MmfyxFfyxFfyxFyxf ymkkymjjymiiym ,,1,ˆ),(ˆ),(ˆ),(),(  , (33) 

 MmuyxFuyxFuyxFyxu mkkmjjmiim ,,1,ˆ),(ˆ),(ˆ),(),(  , (34) 

where i, j, and k are the corner node numbers of the element. xmif̂ , xmjf̂ , and xmkf̂  ( ymif̂ , 

ymjf̂ , and ymkf̂ ) are the nodal values of the flow intensity in the x (y) direction, and miû , 

mjû , and mkû  are the nodal values of the cost potential of commodity m. The linear shape 

functions iF , jF , and kF  are given by  

  yxyxF iiii 



2

1
),( , (35) 

  yxyxF jjjj 



2

1
),( , (36) 

  yxyxF kkkk 



2

1
),( , (37) 

where 

 jkkji yxyx  , kji yy   jki xx  , (38) 

and ),( ii yx , ),( jj yx , and ),( kk yx  are the coordinates of nodes i, j, and k, respectively.  

2/)( ijji   is the area of the element. From equations (32-38), the spatial 

derivatives of ),( yxf xm  and ),( yxf ym  can be obtained by 

   Mmfff
x

f
xmkkxmjjxmii

xm ,,1,ˆˆˆ
2

1 






, (39) 

   Mmfff
y

f
ymkkymjjymii

ym
,,1,ˆˆˆ

2

1 






. (40) 

 

By substituting equations (32-40) into equation (31), the Lagrangian can be expressed as a 

function of all of the nodal parameters, i.e., ),( *U , where  

 )ˆ,ˆ,ˆ,ˆ(Col  wuf , (41) 
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  ),,2,1,,,2,1,ˆ,ˆ(Colˆ N MmKkff ymkxmk  f , (42) 

  ),,2,1,,,2,1,ˆ(Colˆ N MmKkumk  u , (43) 

  ),,2,1,,,2,1,,(Colˆ O MmKkww mymkxmk  w , (44) 

  ),,2,1,,,2,1,,,2,1,(Colˆ I MmNnKk mmnmsnk
  , (45) 

are the control variables for a given *U . The stationary point of the Lagrangian,  , can be 

located by setting 0UUR   ),(),(    for a given *U  as follows. Let 0  be an 

approximate solution to the problem. Expanding ),(  U  by Taylor’s series around point 

0 , we have 

 )()(
2

1
)(),(),( 0T0T00    HRUU , (46) 

where ),( 0  UR   is the residual vector of the first derivatives evaluated at 0  and 

),( 02
,

 UH   is the Hessian matrix evaluated at 0 . For a stationary point, the 

derivatives of ),( *U  with respect to all variables vanish. Therefore, 

 0HRU   )(),( 0 . (47) 

After rearranging, a better solution can be obtained by 

 RH 10   . (48) 

 

Let the converged solution be  . From the implicit function theorem, the sensitivity of the 

solution   with respect to the perturbed parameters U at *U  can be expressed as (Wong et 

al., 2006) 

 
 

  ),,(),(

),(),(

2
,

12
,

1










UU

URUR

U

U
U

U







  (49) 

By substituting the results of equation (49) into equation (27) and using equation (7), we can 

determine the sensitivity of O-D matrix Q in the discrete network with respect to the 

equilibrium travel costs at interchanges U, i.e.,  

 )(UFQ UU  . (50) 
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Note that the residual vector, ),( U , and matrices, ),(2
, U   and 

),(2
, UU  , can be obtained explicitly by differentiating equation (31). 

 

4.2 Discrete system 

 

Optimization program P2 can be solved by means of the Frank-Wolfe solution algorithm 

(LeBlanc et al., 1975), and the sensitivity of the O-D travel costs U  with respect to the O-D 

demand Q can then be obtained by the method of Tobin and Friesz (1988), i.e., 

 )(QGU QQ  . (51) 

 

4.3 Newtonian algorithm 

 

The fixed-point problem in equation (30) can now be solved by a Newtonian algorithm as 

follows. The problem is to find a U such that  

 0UFGUUE  ))(()( , (52) 

where )(UE  is a column vector that measures the discrepancies in the O-D travel costs at the 

interchanges from the two optimization subprograms for the continuum and discrete systems. 

Let *U  be an approximate solution to the problem. Expanding )(UE  by Taylor’s series 

around point *U , we have 

   )()()()( *** UUUEUEUE U  , (53) 

where )( *UEU  is the Jacobian matrix evaluated at *U . For a stationary point, the 

derivatives of )(UE  with respect to all variables vanish. Therefore, a better solution can be 

obtained by 

   )()( *1** UEUEUU U


 , (54) 

where )( *UE  is evaluated by equation (52), which requires the solutions of the two 

optimization subproblems for the continuum and discrete systems, and the Jacobian matrix is 

obtained from the sensitivity analyses of the two subproblems, 

   )()()( *** UFQGIUE UQU  . (55) 
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where )( ** UFQ  , and )( *UFU  and )( *QGQ  are obtained by equations (50) and (51), 

respectively. 

 

4.4 Solution procedure 

 

The solution procedure is summarized as follows. 

Step 1. Set k = 0. Set the travel costs on all links as free-flowing costs  Aaa  , , and 

find the shortest paths from all interchanges to each CBD. Set the minimum path 

costs as )(kU . Find an initial solution * . 

Step 2. Solve optimization subproblem P1 for the continuum system. 

Step 2.1. Set l = 0. Set *)(  l . 

Step 2.2. Evaluate )( )(lR  and )( )(lH . 

Step 2.3. If 1
)( )( lR , an acceptable error, then set )(* l   and go to Step 

2.6. 

Step 2.4. Otherwise, compute )(lY  by solving the set of simultaneous equations 

)()( )()()( lll  RYH   and evaluate  )()()1( lll Y  . 

Step 2.5. Set l = l + 1 and go to Step 2.2. 

Step 2.6. Determine the O-D demand matrix )(kQ  by substituting the solution *  

in equation (7). 

Step 2.7. Conduct sensitivity analysis to determine )( )(kUFU . 

Step 3. Solve optimization sub-problem P2 for the discrete system to obtain the minimum 

equilibrium path costs )( )()( kk QGU  . Conduct sensitivity analysis to determine 

)( )(kQGQ . 

Step 4. Evaluate )()()( kkk UUE   and   )()()( )()()( kkk UFQGIUE UQU  . 

Step 5. If 2
)( kE , an acceptable error, then stop and )(* kUU  , )(* kQQ  , and *  are 

the solution. 

Step 6. Otherwise, compute )(kT  by solving the set of simultaneous equations 

  )()()( )( kkk ETUEU   and evaluate )()()1( kkk TUU  . 
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Step 7. Set k = k + 1 and go to Step 2. 

 

5.  EXAMPLE 

 

We consider an example city with two CBDs, seven interchanges, and 30 freeway links, as 

shown in Figure 2. The CBDs are located at 1O  and 2O , and the interchanges are at 1I , 2I , 

…, 7I . The travel demand functions are 

 )5.0exp(40 11 uq   (56) 

 )5.0exp(60 22 uq   (57) 

everywhere in the city, where 1q  and 2q  are measured in veh/h/km2, and 1u  and 2u  are 

measured in hours. The cost-flow relationship in the continuum system is specified as 

   2.1
21

3101.001.0 ff  c  (58) 

throughout the city, where c is measured in h/km, and 1f  and 2f  are measured in veh/h/km. 

The cost-flow relationship for the links in the discrete system is specified as 

 






















5

0 62.20.1
a

a
aa C

v
cc  (59) 

where ac  and av  are the travel cost in hours and the traffic flow in veh/h on link a, 

respectively, and 0ac  and aC  are the free-flowing travel cost in hours and the practical 

capacity in veh/h on link a, respectively. The values adopted in the example calculation are 

listed in Table I. The finite-element discretization of the continuum system is shown in 

Figure 3. 

 

The maximum acceptable errors 1  and 2  for the solution algorithm are set at 0.1%. The 

convergence characteristics of the solution algorithm are shown in Figure 4. The solution 

converges very rapidly in the first few iterations and satisfies the convergence criteria after 39 

iterations. The results of the sensitivity analyses provide a good indication of the search 

direction leading to the fixed-point solution. The flow vectors to CBD 1 are plotted in Figure 

5, from which the path from a home location to the CBD or interchanges can be traced by 

locating the streamline in the diagram. Similar results can also be plotted for the traffic flows 

to CBD 2. The catchment areas of the CBDs or interchanges can also be observed from the 

directions in which the travelers are moving. The traffic flows in the city’s continuum and 
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discrete networks are shown in Figure 6. The traffic flows in the discrete network are also 

tabulated in the last two columns of Table I. Many links in the discrete network are not used, 

and heavy traffic flows are present on the direct links between the two CBDs. Traffic 

congestion is observed at the CBDs and at all of the interchanges. 

 

[Figure 2 to be inserted here] 

 

[Figure 3 to be inserted here] 

 

[Figure 4 to be inserted here] 

 

[Figure 5 to be inserted here] 

 

[Figure 6 to be inserted here] 

 

[Table I to be inserted here] 

 

Figures 7 and 8 show the contour plots of the total travel cost, and Figures 9 and 10 show the 

travel demands from the home locations to the CBDs. The travel demand generally decreases 

along with the distance from the CBDs. However, it is interesting to note that the travel 

demand increases locally when approaching any of the interchanges to take advantage of the 

high-speed movement on the discrete network. This also reflects the realistic situation that 

high development potentials are usually concentrated at major freeway interchanges. For this 

example, the total demand generated is 40,499 veh/h, with 16,420 for CBD 1 and 24,079 for 

CBD 2. The catchments of traffic to the CBDs and interchanges are shown in Table II. 

Approximately 30% of the traffic travels directly to the CBDs within the continuum, whereas 

the rest uses the freeway system via the interchanges. The cost potentials at the CBDs and at 

the interchanges for different commodities are also listed in the table. 

 

[Figure 7 to be inserted here] 

 

[Figure 8 to be inserted here] 

 

[Figure 9 to be inserted here] 
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[Figure 10 to be inserted here] 

 

[Table II to be inserted here] 

 

6. CONCLUSIONS 

 

We developed a multi-commodity traffic equilibrium model for the discrete/continuum 

transportation system in which we consider a city with several highly compact CBDs. In this 

city, the commuters’ origins are continuously dispersed and the travel demand depends on the 

total travel cost to the CBD. The transportation system is divided into two layers: major 

freeways and the dense network of surface streets. Whereas the major freeway network is 

modeled with the conventional discrete-network approach, the dense network of surface 

streets is approximated as a continuum. The travelers to each CBD can either move within the 

continuum (surface streets) and then transfer to the discrete network (freeways) at an 

interchange (ramp) before moving to the CBD on the discrete network, or they can travel 

directly to the CBD within the continuum. Specific travel cost-flow relationships for the two 

layers of transportation facilities have been considered. In the model, the commuters follow a 

user equilibrium route choice pattern in which, for each O-D pair, no traveler can reduce his 

or her individual travel cost to the destination (CBD) by unilaterally changing routes. 

 

The problem has been formulated as a simultaneous optimization program with two sub-

problems. One sub-problem is a conventional traffic assignment problem from the 

interchanges to the CBDs in the discrete network, and the other is a traffic assignment 

problem with multiple commodities in the continuum system. This simultaneous optimization 

program belongs to the class of fixed-point problems. Based on the sensitivity analyses of the 

two sub-problems, a Newtonian algorithm is proposed to solve the resultant simultaneous 

optimization program. The advantages of the formulation and solution algorithm are that we 

can make use of state-of-the-art developments in continuum and discrete network modeling 

techniques and recent advances in sensitivity analyses in transportation modeling. A 

numerical example has been given to demonstrate the effectiveness of the proposed method. 

This multi-commodity traffic equilibrium model provides a solid theoretical foundation for 

future applications of the discrete/continuum transportation system, for example, facility 

competition problems, such as airport competition and freeway network planning. The use of 
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a discrete/continuum approach can also help to intuitively identify the sensitivity of the travel 

cost of the catchment of each interchange or CBD. This will provide insightful information 

that can be used to inform the future formulation of a detailed cordon scheme within an urban 

area with an elevated expressway network. 
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TABLES AND FIGURES 

Table I. The input and output data of the discrete network. 

Table II. The catchment of CBDs and interchanges. 

Figure 1. The discrete/continuum transportation system. 

Figure 2. The example city. 

Figure 3. The finite-element discretization of the continuum of the city. 

Figure 4. The convergence characteristics of the solution algorithm. 

Figure 5. The vector plot of traffic movements to CBD 1 within the continuum of the 

city. 

Figure 6. The traffic flows in the continuum and the freeway network. 

Figure 7. The contour plot of the total travel cost to CBD 1 in the city. 

Figure 8. The contour plot of the total travel cost to CBD 2 in the city. 

Figure 9. The travel demand to CBD 1 in the city. 

Figure 10. The travel demand to CBD 2 in the city. 
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TABLE I. 
THE INPUT AND OUTPUT DATA OF THE DISCRETE NETWORK. 

 
 

Link Input Output 

No. Start End 
Length 
(km) 

aC  

(veh/h) 
0ac  

(min) 
av  

(veh/h) 
ac  

(min) 
1 O1 O2 10.3 8,000 6.2 5,939 9.86 
2 O2 O1 10.3 8,000 6.2 3,429 6.43 
3 O1 I1 8.5 6,000 6.4 0 6.40 
4 I1 O1 8.5 6,000 6.4 2,624 6.67 
5 O1 I2 5.0 6,000 5.0 0 5.00 
6 I2 O1 5.0 6,000 5.0 3,245 5.61 
7 O1 I5 8.0 6,000 6.0 0 6.00 
8 I5 O1 8.0 6,000 6.0 1,776 6.04 
9 O1 I6 6.3 6,000 4.7 0 4.70 
10 I6 O1 6.3 6,000 4.7 2,411 4.83 
11 O1 I7 9.5 6,000 7.1 0 7.10 
12 I7 O1 9.5 6,000 7.1 3,599 8.54 
13 O2 I2 8.0 6,000 6.0 0 6.00 
14 I2 O2 8.0 6,000 6.0 3,914 7.86 
15 O2 I3 8.3 6,000 6.2 0 6.20 
16 I3 O2 8.3 6,000 6.2 2,940 6.66 
17 O2 I4 7.1 6,000 5.3 0 5.30 
18 I4 O2 7.1 6,000 5.3 4,535 8.73 
19 O2 I5 6.7 6,000 5.0 0 5.00 
20 I5 O2 6.7 6,000 5.0 4,341 7.60 
21 I1 I2 11.5 4,000 8.6 1,266 8.67 
22 I2 I1 11.5 4,000 8.6 0 8.60 
23 I2 I3 9.9 4,000 7.4 0 7.40 
24 I3 I2 9.9 4,000 7.4 1,352 7.49 
25 I3 I4 8.7 4,000 6.5 0 6.50 
26 I4 I3 8.7 4,000 6.5 0 6.50 
27 I4 I5 12.3 4,000 9.2 0 9.20 
28 I5 I4 12.3 4,000 9.2 0 9.20 
29 I5 I6 9.2 4,000 6.9 0 6.90 
30 I6 I5 9.2 4,000 6.9 1,614 7.09 
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TABLE II. 
THE CATCHMENT OF CBDS AND INTERCHANGES. 

 
 

 
CBD / 

Interchange 
Traffic to CBD 1 Traffic to CBD 2 Total flow 

(veh/h) Flow (veh/h) Cost (min) Flow (veh/h) Cost (min) 

O1 3,011 0.00 2,264 9.86 5,275 

O2 1,513 6.43 4,326 0.00 5,839 

I1 1,615 6.67 2,275 16.53 3,890 

I2 1,893 5.61 2,648 7.86 4,541 

I3 1,503 13.09 2,789 6.66 4,292 

I4 1,766 15.16 2,770 8.73 4,536 

I5 1,776 6.04 2,726 7.60 4,502 

I6 1,823 4.83 2,202 14.69 4,025 

I7 1,520 8.54 2,079 18.40 3,599 

Total 16,420 - 24,079 - 40,499 
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Figure 1. The discrete/continuum transportation system. 
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Figure 2.  The example city. 
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Figure 3. The finite-element discretization of the continuum of the city. 
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Figure 4.  The convergence characteristics of the solution algorithm. 
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Figure 5. The vector plot of traffic movements to CBD 1 within the continuum of the city. 
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Figure 6. The traffic flows in the continuum and the freeway network. 
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Figure 7. The contour plot of the total travel cost to CBD 1 in the city. 
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Figure 8. The contour plot of the total travel cost to CBD 2 in the city 
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Figure 9. The travel demand to CBD 1 in the city. 
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Figure 10. The travel demand to CBD 2 in the city. 


