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Abstract: Root caries prevention has been a challenge for clinicians due to its special anatomical
location, which favors the accumulation of dental plaque. Researchers are looking for
anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed
to develop polydopamine-induced-polyethylene glycol (PEG) and to study its anti-biofouling
effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite
disks and human dentine blocks were divided into four groups for experiments. They received
polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz
crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting
property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced
by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite
disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a
multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed
and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron
microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria
than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its
anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine
surface and thus may be used for the prevention of root dentine caries.
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1. Introduction

Dental caries is the localized destruction of susceptible dental hard tissues by acidic by-products
from the bacterial fermentation of dietary carbohydrates [1]. The disease process is initiated within the
bacterial biofilm (dental plaque) that covers the tooth surface [2]. The development of dental plaque
involves the adhesion of bacteria and subsequent colonization. The influence of the adsorbed proteins
on bacteria adhesion has been suggested as playing a major role in bacteria—tooth interactions [3].
Compared to coronal caries (dental caries development in the tooth crown), the prevalence of root
caries (dental caries development in the tooth root) is increasing. This can be due to extended root
exposure time by increased life expectancy and the special anatomical location of the root in the oral
cavity [4]. A systematic review concluded that about 40% of elderly people aged 70 suffered from
untreated root caries [5]. Dentine on the root surface is soft and porous. Bacteria penetrate further into
the tissue at an earlier stage of lesion development in root caries [6]. Thus, control of bacterial initial
adhesion to the root surface is critical for the prevention of root caries [7,8].
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Polyethylene glycol (PEG) was approved by the US Food and Drug Administration for
internalization in the human body [9,10]. It is used as an anti-biofouling material to provide a
hydrophilic environment on a substrate surface. Although the mechanism is not fully understood, it
has been suggested that the hydrophilic surfaces could act as a good anti-biofouling barrier and that
the protein and cell resistance of surface-immobilized PEG could be attributed to the large exclusion
volume, high mobility, and steric hindrance effects of the highly hydrophilic layer [11,12]. PEG
was shown to reduce protein adsorption and platelet adhesion in a blood-material interface [8]. A
study synthesized a methacryloyloxydecyl phosphate PEG for the prevention of Streptococcus mutans
adhesion on hydroxyapatite and found that its inhibitory effect on bacterial binding was diminished
by saliva protein [13].

Mechanical plaque removal methods such as tooth brushing and dental flossing have been
advocated as reducing the biofilm formation. However, these mechanical plaque removal methods
require good manual dexterity and can be difficult to implement in certain circumstances, such as in
older patients [2,14]. Exposed dentine on the root surface is more susceptible to caries than enamel.
PEG can be used as an anti-biofouling material in inhibiting dental biofilm formation on the root
dentine surface. Polydopamine is a bio-inspired polymer that can form a strong adhesive interaction
with various substrates [15]. It also provides a versatile platform for secondary reactions for diverse
functional applications [16]. Studies have indicated that polydopamine was effective in surface
functionalization and biomolecule covalent immobilization [17-20]. The covalent immobilization of
biomolecules maintained stable and long-term performance. The objectives of this study were to
develop a polydopamine-induced-PEG coating method for the dentine surface and to investigate its
anti-biofouling effect against a multi-species cariogenic biofilm.

2. Results

2.1. Characterization of the Polydopamine-Induced-PEG

The contact angles for Groups 1 to 4 were 33.8° + 2.5°,77.8° + 5.6°,43.8° + 2.8°, and 56.7° + 5.9°,
respectively (p < 0.001; Figure 1). The multiple-comparison result is shown in Figure 1. The small
contact angle of the hydroxyapatite disk treated with polydopamine and PEG indicated a strong
hydrophilic property of the surface.
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Figure 1. Contact angle (°) of PDA + PEG, PEG, PDA, and water on a hydroxyapatite disk. (A)
PDA + PEG; (B) PEG; (C) PDA; (D) Water. (A < C <D < B; p <0.001) PDA: polydopamine, PEG:
polyethylene glycol.

The change in the surface density of quartz crystal over time in Group 1 to Group 4 is shown in
Figure 2. Results of the FTIR showed peaks at 1600 and 1353 cm~! in the polydopamine spectrum,
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indicating aromatic ring chains and bonds between the phenyl groups in polydopamine, respectively
(Figure 3, PDA group). For the PEG spectrum, the peaks at 1061 and 1123 cm ™! represented the C-O
stretching vibration and the O-H bending vibration [21]. The peaks at 3172, 3278, and 3345 cm ™!
represented free -OH and -NHj3. These peaks were observed in the PEG spectrum but not in the
dopamine + PEG spectrum. This suggested that no free -OH and -NH; could be found in the dopamine
+ PEG treatment and that PEG was grafted chemically to polydopamine [22].
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Figure 2. The surface density of quartz crystal with PDA + PEG, PEG, PDA, and water over time. PDA:
polydopamine, PEG: polyethylene glycol.

o PDA
] PDA+PEG
1054, - . PEG
oo LT 8172/
SRR | \ 3345
8 1 {7~
¢ 804} . I —~
a, \ | 3278 I
g 84 . A N I
s { V! 2881 /
. (]
£ 80+ I
E 1 /
2 75 \ i
® 1 A I”
(= i :
1 1285 | l /N
|l -
85 1 1353 /1 520 2924
60 —

T T T T T T T T T T 1
500 1000 1500 2000 2500 3000 3500 4000

Wavenumber (cm')

Figure 3. FTIR spectra of PDA + PEG, PDA, PEG treatments on a silicon disk. PDA: polydopamine,
PEG: polyethylene glycol.

2.2. Mucin Absorption

The optical density from Groups 1 to 4 were 0.058 + 0.007 ng/cm?, 0.115 + 0.014 ng/cm?,
0.093 + 0.01 ng/cm?, and 0.1 + 0.015 ng/cm?, respectively (p < 0.01). The mucin absorbed by the
hydroxyapatite disks of Group 1 was significantly less than that of Groups 2, 3, and 4.

2.3. Development of the Cariogenic Biofilm

The surface morphology of the cariogenic biofilm on the dentine surface after 48 h under SEM
is shown in Figure 4. A monolayer of biofilm was found in Group 1. The bacteria were sparsely
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distributed on the dentine surface. The openings of dentinal tubules were visible. A dense biofilm
with confluent bacteria covering the dentine surface was observed in Groups 2 to 4.

Figure 4. SEM images of biofilm of different groups on dentine surface after 48 h (x1000).
(A) PDA + PEG; (B) PEG; (C) PDA; (D) Water (PDA: polydopamine, PEG: polyethylene glycol).

Figure 5 showed CLSM images of the live/dead staining of different groups on the dentine
surface after 48 h. The red-to-green ratio of Groups 1 to 4 were 0.12 & 0.05, 0.19 + 0.05, 0.11 + 0.04
and 0.04 £ 0.02, respectively (p = 0.001). Multiple comparisons showed that the red-to-green ratio
of Group 4 was smaller than that of the other groups, and the largest red-to-green ratio was shown
in Group 2.

Figure 5. CLSM images of biofilm of different groups on dentine surface after 48 h (x400).
(A) PDA + PEG; (B) PEG; (C) PDA; (D) Water (PDA: polydopamine, PEG: polyethylene glycol).
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The log (CFU/mL) of Groups 1 to 4 were 4.9 + 0.4,5.8 + 0.1,5.7 + 0.1, and 5.8 + 0.2, respectively
(p < 0.05). Multiple comparisons showed the log (CFU/mL) of Group 1 was smaller than that of the
other groups, and there was no significant difference in log (CFU/mL) among Groups 2, 3, and 4.

3. Discussion

The results of the experiments on contact angle and QCM suggested that a novel
polydopamine-induced-PEG coating on the dentine surface was developed in this study. This
polydopamine-induced-PEG coating had the anti-biofouling effect in inhibiting salivary mucin
absorption and cariogenic biofilm formation. The substrates used in this study are hydroxyapatite
disks and human dentine blocks. The hydroxyapatite disks were standardized and made from
hydroxyapatite powder. They were used for the assessment of the contact angle and mucin absorption
because these two assessments require high test-retest variability. Autoclaving was used to sterilize
both hydroxyapatite disks and dentine blocks because this would render the teeth free of viable
microorganisms [23]. Although autoclaving of teeth may reduce dentine microhardness, an in vitro
study has shown that it did not significantly alter the physical properties [24]. Contact angle
quantifies the wettability of the polydopamine-induced-PEG-coated hydroxyapatite by water via
the Young equation. Spectrophotometry is widely used for the study of chemical substances and
can determine the amount of mucin absorbed on the hydroxyapatite disk through calculations of
observed wavelengths. The early stage of bacterial invasion in the caries process involves Streptococci,
Lactobacilli, and Actinomycetes. Streptococcus mutans is the most important odontopathogens involved in
the initiation and progression of caries. Actinomyces israelii has the potential to invade dentinal tubules
and is associated with root surface caries. Lactobacillus acidophilus is one of the most abundant species
frequently found in both superficial deep carious lesions [25]. For the foregoing reasons, these three
cariogenic species were chosen to form a multi-species cariogenic biofilm. It is noteworthy that dental
caries is a polymicrobial infection process caused by over 700 species of oral bacteria [26]. In addition,
this study incubated the bacteria on the root dentine surface with no prior saliva contamination.
The results of this in vitro study need to be interpreted with caution.

After we confirmed that PEG connected to hydroxyapatite via dopamine, human dentine blocks
were used to study the inhibition effect of this polydopamine-induced-PEG coating on dentine against a
cariogenic biofilm formation. The CFU and SEM results corroborated that dopamine-induced-PEG had
inhibited the growth of a cariogenic biofilm on the dentine surface. Rinsing with distilled water did not
notably reduce the surface density after the polydopamine-induced-PEG treatment. This suggested
covalent binding between the polydopamine and PEG, which made the coating surface more stable.

QCM is a well-suited technique for monitoring mass attached to coating equipment in a vacuum.
It can be used for the investigation of the adsorption and surface reaction in the monolayer range via
changes in the resonant frequency [27,28]. The substrate of QCM is standard quartz crystal, and this is
used to detect minute changes on the surface at the nano-gram level. Since no hydroxyapatite substrate
was used, the results of QCM could only indirectly indicate the binding between polydopamine and
PEG based on changes in the surface density. A FTIR study is necessary to determine whether PEG
reacted with polydopamine. In addition, the results of the contact angle assessment demonstrated that
the polydopamine-induced-PEG modified the hydroxyapatite surface by making it more hydrophilic.

PEG is a water-swellable, non-toxic, and biocompatible polymer. Its use in biotechnology has
been reported in the literature [8,11,29]. Polymer brushes consisting of PEG opened a wide door in
biomaterials research due to the suitable properties of the polymer [30]. Polymer brushes are linear
polymer chains terminally anchored to solid surfaces. If the distance between the anchoring points
of the surface-grafted chains is small, interchain correlations occur. The tethered chains are stretched
away from the surface leading to a “brush”-like conformation. Such polymeric monolayers play
an important role in a wide range of colloid stabilization, tribology, lubrication, and rheology [30].
PEG-modified surfaces have a high degree of hydration. The modified surfaces are effective in reducing
diatom adhesion and weakening protein adsorption [12,31]. This study showed that the tooth surface
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became more hydrophilic after coating it with polydopamine-induced-PEG. The resistance to adhesion
of protein and bacteria to the PEG-modified surface can be attributed to the large exclusion volume,
high mobility, and steric hindrance effects of this hydrophilic layer (Figure 6) [12,32].
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Figure 6. Schematic diagram illustrating the anti-biofouling of polydopamine-induced-polyethylene
glycol (PEG).

The bonding of adhesives to enamel is reliable and strong because enamel is highly mineralized.
However, the bonding of adhesives to dentine is less satisfactory because dentine contains, by weight,
20% organic material (mainly collagens) and 10% water. Mussels can attach to various surfaces in
aqueous conditions, ranging from natural inorganic materials and organic materials to synthetic
materials [16]. Such adhesive properties rely on exhaustively repeated 3,4-dihydroxy-L-phenylalanine
(DOPA) and amine [33,34]. Dopamine was identified as a small-molecule compound that contains both
DOPA and amine (Figure 7). It has strong and good biodegradability and low cytotoxicity [35]. The
oxidative polymerization of dopamine in aqueous solutions spontaneously forms polydopamine [36].
It mimics repeated DOPA and amine and therefore exhibits a strong adhesive property in relation
to various substrates under wet conditions [36,37]. Polydopamine is used for biomaterial surface
modification because it is easy to obtain abundant active groups. These active groups are mostly
phenolic hydroxyl/o-quinone and amino/imino for bimolecular immobilization on the material
surface with minimal change in the chemical structure of biomaterials [38]. The plausible mechanism
of polydopamine-induced-PEG coating is shown in Figure 7. Polydopamine connects PEG with an
active group of o-quinone. It can also attach to hydroxyapatite with phenolic hydroxyl (Figure 7c). This
mechanism could be the reason for the promising anti-biofouling effect of polydopamine-induced-PEG
coating on dentine.

Mucins are the fundamental organic components of mucus in human saliva. It remains
controversial whether mucin reduces or enhances cariogenic bacterial adhesion [39]. However, mucin
may act as a receptor for accumulation and biofilm formation, and it plays an important role in the
agglutination/aggregation of a number of microorganisms [1,40,41]. The mucin absorption measured
by a spectrophotometer in this study demonstrated that polydopamine-induced-PEG coating inhibited
mucin adhesion to hydroxyapatite. This can be one of the main reasons for the biofilm-inhibitory effect
of polydopamine-induced-PEG. Likewise, polydopamine-induced-PEG showed an inhibitory effect on
cariogenic biofilm formation on dentine. The total bacterial amount of the polydopamine-induced-PEG
group was significantly lower than that of the other three groups, and the quantity of the biofilm does
increase with time. The reason might be that the “micro-brush” effect of polydopamine-induced-PEG
coating is a mechanical effect rather than a chemically antimicrobial function. It is plausible that the
accumulation of bacteria on the dentine surface weakened the “micro-brush” effect by occupying
the space for PEG movement, which in turn caused more bacteria to settle on the dentine surface.
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Thus, it is difficult to rely completely on this function to protect the tooth surface due to the complex
environment of oral biofilm. The polydopamine-induced-PEG should be applied more frequently
to sustain the anti-biofouling effect. Polydopamine-induced-PEG may be used as an anti-biofouling
agent in mouth rinse and to prevent cariogenic biofilm formation after teeth cleaning. Another clinical
application involves adding it to a varnish to protect the tooth from biofilm adhesion. This in vitro
study demonstrated the promising results of a novel anti-biofouling method to help control cariogenic
biofilm formation. Further studies aiming to simplify the coating process and to sustain the coating
are needed.
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Figure 7. Schematic diagram illustrating interfacial location of aminated polyethylene glycol,
polydopamine, and hydroxyapatite. (A) methyl-polyethylene glycol (PEG)-amine unit; (B) Immobilization
of selenocystamine via polydopamine linker [38]; (C) Interfacial location of aminated PEG,
polydopamine and hydroxyapatite [15].

4. Materials and Methods

4.1. Dentine Block and Hydroxyapatite Disk Preparation

This study was approved by the Institutional Review Board of the University of Hong
Kong/Hospital Authority Hong Kong West Cluster (IRB UW13-555). Extracted sound human third
molars were collected with patient consent. They were stored in distilled water at 4 °C and were
used within one month of extraction. Thirty dentine blocks of 2 x 2 x 4 mm?® were prepared from
a tooth root modified from our previous protocol [42]. The blocks were treated with 1% acetic acid
for 5 s and ultrasonically washed with deionized water to remove the smear layer [43]. In addition,
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36 hydroxyapatite disks were prepared by compressing hydroxyapatite powder (Sigma-Aldrich Co.,
St. Louis, MO, USA) into a circular mold (12 mm in diameter, 1 mm in thickness). They were sintered
at 900 °C for 2 h. The surfaces of the hydroxyapatite disks were polished using micro-fine 4000
grid sanding paper. Commercially available methyl-PEG-amine (mPEG-NH; Mw = 2000) (Shanghai
Science Peptide Biological Technology Co., Ltd., Shanghai, China) and polydopamine (Sigma-Aldrich,
St. Louis, MO, USA) were used in this study.

4.2. Experimental Design

The dentine blocks (2 x 2 x 4 mm?®) and hydroxyapatite disks (diameter: 10 mm) were
autoclaved for sterilization. They were randomly and equally divided into 4 experimental groups.
In Group 1, dentine blocks and hydroxyapatite disks were immersed in 2 mg/mL of freshly prepared
polydopamine solution (in 10 mM Tris buffer, pH = 8.5) at 23 °C for 12 h in the dark [16]. After rinsing
for 10 min with Tris buffer to remove non-attached polydopamine and drying under nitrogen, the
blocks and the disks were then immersed in a freshly prepared solution of 1 mg/mL of mPEG-NH;
(in 10 mM Tris buffer, pH = 8.5) at 23 °C for 4 h. They were then rinsed with Tris buffer for another
10 min to remove any extra solution [16]. In Group 2, dentine blocks and hydroxyapatite disks were
immersed in a freshly prepared solution of 1 mg/mL of mPEG-NH, at 23 °C temperature for 4 h.
They were rinsed with Tris buffer for 10 min to remove residual solution. In Group 3, dentine blocks
and hydroxyapatite disks were immersed in 2 mg/mL of freshly prepared polydopamine solution
at 23 °C for 12 h in the dark. They were rinsed with Tris buffer for 10 min to remove nonattached
polydopamine. In Group 4, dentine blocks and hydroxyapatite disks were immersed in distilled water.

4.3. Characterization of the Polydopamine-Induced-PEG

4.3.1. Contact Angle Measurement

The degree of wetting (wettability) of the hydroxyapatite disks with coating was evaluated by
measuring the contact angle using a drop-shape analyzer (DSA100. Kriiss GmbH, Hamburg, Germany)
equipped with a pendant drop module. It quantifies the wettability of the hydroxyapatite samples
by water via the Young equation. Three replicates were measured for each group, and three samples
per group were assessed. Each water drop (5 pL) was deposited onto the disk surface and kept for
15 s. Then, an image of the drop was taken by a built-in camera and analyzed using the software
(Image J 1.51a, National Institutes of Health, Bethesda, MD, USA) supplied by the manufacturer.
All measurements were conducted at room temperature.

4.3.2. Quartz Crystal Microbalance

The affinity of the polydopamine-induced-PEG to the surface was studied by quartz crystal
microbalance (QCM; Seiko QCM 922, Princeton Applied Research Inc., Oak Ridge, TN, USA). Mass
variation before and after coating was measured. The change of the effective surface mass on the
quartz crystal altered the gold resonant frequency. The differences in the resonant frequency were
recorded as a function of the potential, and the corresponding mass changes were calculated. The
experimentally determined Sauerbrey constant for the gold resonator was 176.0 Hz cm?- pg~! [44].

QCM study was carried out with 0.198-cm? standard-finished 9-MHz AT cut gold resonators
(Princeton Applied Research Inc., Oak Ridge, TN, USA) sputtered on quartz. All the experiments
were conducted by dipping the quartz crystal into 4 mL of experimental solutions in a 16-well plate at
23 °C. The quartz crystal was dipped into a sequence of reagents, which is described in Section 2.2
for Groups 1-4. Distilled water (pH = 7.0) was used to remove the unstable reagent from the quartz
crystal surface. The real-time frequency changes during the experiment were recorded using WinQCM
computer software (Princeton Applied Research Inc., Oak Ridge, TN, USA). The surface density of the
quartz crystal was calculated.
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4.3.3. Fourier Transform Infrared Measurement

The infrared spectrum of the absorption of the standard silicon disk with different treatments
were assessed by means of a Fourier transform infrared (FTIR) spectrometer (Nicolet 8700, Thermo
Scientific Instrument Co., Hudson, NH, USA).

4.4. Absorption of Mucin

Absorption of mucin on the surface of the hydroxyapatite disks with coating was evaluated.
The disks were immersed in 10 mg/mL of mucin obtained from bovine submaxillary glands
(Sigma—Aldrich, Co., St. Louis, MO, USA) for 90 min. They were rinsed with phosphate buffer
solution (PBS) to remove the residual mucin before they were stained with Alcian blue solution
(pH = 2.5). The absorbed mucin was then extracted using 30% hydrogen peroxide. The optical density
of the supernatant (200 mL) was measured spectrophotometrically at 595 nm [45]. The expected
difference is at least 10°. Six hydroxyapatite disks per group were studied.

4.5. Development of the Cariogenic Biofilm

A multi-species cariogenic biofilm was developed using a method modified from our previous
study [25]. Briefly, Streptococcus mutans from the American Type Culture Collection (ATCC) 35668,
Lactobacillus acidophilus ATCC 9224, and Actinomyces israelii were anaerobically cultured on blood
agar plates at 37 °C for 48 h. A single colony was picked from each plate to prepare 24-h broth
cultures in brain heart infusion (BHI) supplemented with 5% sucrose at 37 °C under anaerobic
conditions (95% nitrogen and 5% carbon dioxide). Subsequently, bacterial cell pellets were harvested
and resuspended in the BHI to a cell density of McFarland 2 (106 cells/mL). A 500-puL aliquot of each
bacteria culture was mixed and inoculated on each dentine block sitting in a well of a 24-well plate
with BHI. The dentine blocks were aerobically incubated in 1 mL of mixed BHI suspension (adhesion
phase) at 37 °C for 90 min. After rinsing with PBS to remove non-adherent cells, the dentine blocks
were aerobically incubated in the BHI at 37 °C (biofilm phase). The dentine blocks were taken out after
48 h for analysis; the BHI was refreshed after 24 h [45].

4.5.1. Morphology of the Cariogenic Biofilm

Scanning electron microscopy (SEM) was used to monitor the topographical features of the biofilm.
In preparation for SEM, the dentine blocks with biofilm were rinsed in 4% formaldehyde followed by
1% PBS; they were then placed in 1% osmium tetroxide solution for 60 min. The blocks were washed
in distilled water and dehydrated in a series of ethanol solutions at increasing concentrations (70% for
10 min, 95% for 10 min, and 100% for 20 min). The blocks were dried in a desiccator and sputter-coated
with gold. The surface topographies of biofilms were studied under SEM (Hitachi S-4800 FEG Scanning
Electron Microscope, Hitachi Ltd., Tokyo, Japan) at 12 kV in high-vacuum mode [25]. Two dentine
blocks per group were used in this qualitative experiment.

4.5.2. Viability of the Cariogenic Biofilm

Confocal laser scanning microscopy (CLSM) (Fluoview FV 1000, Olympus, Tokyo, Japan) was
employed to assess the viability of the biofilms. The bacteria on the dentine surfaces were labeled in situ
using two fluorescent probes: propodium iodide and SYTO-9 dye (LIVE/DEAD BacLight Bacterial
viability kit, Molecular Probes, Eugene, OR, USA). Five images from the middle layer of each biofilm
were obtained using CLSM and were analyzed using Image J (Version 1.51a, National Institutes of
Health, Bethesda, MD, USA). The red-to-green ratio was calculated to denote the ratio of dead-to-live
bacteria, respectively [25]. Two dentine blocks per group were used in this qualitative experiment.
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4.5.3. Kinetics of the Cariogenic Biofilm

Serial 10-fold dilutions of homogenized biofilm samples in 1% PBS were collected from dentine
blocks and then plated in duplicate with a spiral plater (Autoplate 4000; Spiral Biotech Inc., Norwood,
MA, USA) onto horse blood agar (Defib Horse Blood; Hemostat Laboratories, Dixon, CA, USA). The
plates were incubated aerobically for 72 h to assess the bacterial colony-forming unit (CFU) per mL.
Biofilms on six dentine blocks per group were studied.

4.6. Statistical Analysis

A Shapiro-Wilk test was used to assess the data for normality. One-way ANOVA was performed
to compare the contact angle, mucin absorption, and log CFU among the four experimental groups.
A Bonferroni test was carried out for multiple comparisons of the result. All the analyses were
conducted using IBM SPSS version 2.0 software (IBM Corporation, Armonk, New York, NY, USA).
The cut-off level for significance was taken as 5% for all the analyses.

5. Conclusions

A novel polydopamine-induced-PEG coating on hydroxyapatite was developed. This coating
has a dental anti-fouling effect in terms of the inhibition of salivary mucin absorption and cariogenic
biofilm formation.
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The following abbreviations are used in this manuscript:

PEG polyethylene glycol

QCM quartz crystal microbalance

ATCC American Type Culture Collection

PBS phosphate buffer solution

BHI brain heart infusion

SEM scanning electron microscopy

CFU colony-forming unit

ANOVA analysis of variance

DOPA 3,4-dihydroxy-L-phenylalanine
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