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Abstract. The present study examined the ventricular 
arrhythmic and electrophysiological properties during 
hyperkalemia (6.3 mM [K+] vs. 4 mM in normokalemia) and 
anti‑arrhythmic effects of hypercalcemia (2.2 mM [Ca2+]) in 
Langendorff‑perfused mouse hearts. Monophasic action poten-
tial recordings were obtained from the left ventricle during right 
ventricular pacing. Hyperkalemia increased the proportion of 
hearts showing provoked ventricular tachycardia (VT) from 0 
to 6 of 7 hearts during programmed electrical stimulation 
(Fisher's exact test, P<0.05). It shortened the epicardial action 
potential durations (APDx) at 90, 70, 50 and 30% repolarization 
and ventricular effective refractory periods (VERPs) (analysis 
of variance, P<0.05) without altering activation latencies. 
Endocardial APDx and VERPs were unaltered. Consequently, 
∆APDx (endocardial APDx‑epicardial APDx) was increased, 
VERP/latency ratio was decreased and critical intervals for 
reexcitation (APD90‑VERP) were unchanged. Hypercalcemia 
treatment exerted anti‑arrhythmic effects during hyperka-
lemia, reducing the proportion of hearts showing VT to 1 
of 7 hearts. It increased epicardial VERPs without further 
altering the remaining parameters, returning VERP/latency 
ratio to normokalemic values and also decreased the critical 
intervals. In conclusion, hyperkalemia exerted pro‑arrhythmic 
effects by shortening APDs and VERPs. Hypercalcemia 
exerted anti‑arrhythmic effects by reversing VERP changes, 
which scaled the VERP/latency ratio and critical intervals.

Introduction

The extracellular potassium concentration ([K+]o) is normally 
maintained between 3.5 and 5 mM. Hyperkalemia and hypo-
kalemia are defined as a serum potassium concentration above 
and below this range, respectively (1). The two are important 
clinical conditions (2), predisposing patients to life‑threatening 
ventricular arrhythmias (3,4). Of these, hyperkalemia exerts a 
wide range of effects on cardiac conduction and repolarization 
properties, depending on the degree of high [K+]o. Its most 
common electrocardiographic manifestations are flattened or 
loss of the P‑wave (5), prolonged PR and QRS intervals (6), 
and T‑wave abnormalities, particularly peaked T‑waves (7). A 
sine‑wave appearance can be observed at the most severely 
elevated levels of [K+]o (8). Calcium gluconate or 10% calcium 
chloride are used acutely to suppress ventricular arrhythmias 
in hyperkalemic patients (9,10), despite the fact that hypercal-
cemia alone has pro‑arrhythmic effects (11,12). There have 
been certain previous studies on the electrophysiological 
changes during hyperkalemia (13,14), but not on the mecha-
nism underlying the anti‑arrhythmic action of calcium in this 
situation, apart from its ‘membrane‑stabilizing effect’ (15). 
This notion has been disputed and the protective action of high 
[Ca2+]o has instead been attributed to restoration of conduction 
velocities (CVs) back to normal values (16).

Mouse systems have been extensively used for the study 
of arrhythmogenesis, as they permit the use of genetic 
and pharmacological manipulation to produce ion channel 
abnormalities with great translational potential  (17‑26). 
This has resulted in demonstrations of the following 
mechanisms (27,28). Firstly, the early‑after depolarization 
phenomena and triggered activity observed during hypo-
kalemia have been attributed to prolonged action potential 
durations (APDs) (29). Secondly, several reentrant substrates 
during hypokalemia have been identified: Prolonged 
epicardial but unaltered endocardial APDs leading to 
negative ΔAPD90 given by endocardial APD90‑epicardial 
APD90 (30). Reduced ventricular effective refractory periods 
(VERPs) leading to increased critical intervals given by 
APD90‑VERP (29). By contrast, reduced CVs were shown to 
induce ventricular arrhythmias following treatment with the 
gap junction and sodium channel inhibitor heptanol through 
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a reduction in excitation wavelengths despite unaltered APDs 
and even with increased VERPs (31,32). However, to the best 
of our knowledge, there have been no investigations of the 
arrhythmogenic effects of hyperkalemia in the mouse system.

Therefore, in the present study, the ventricular arrhyth-
mogenic properties of hyperkalemia were characterized in 
Langendorff‑perfused mouse hearts for the first time. An 
increased external calcium concentration is known to reduce 
membrane excitability at the cellular level  (33), but exerts 
pro‑arrhythmic effects in the whole heart level under normo-
kalemic conditions (34). However, as a decrease in membrane 
excitability would lead to an increase in refractoriness, it was 
hypothesized that hypercalcemia would abolish arrhythmic 
properties of hyperkalemia by increasing VERPs.

Materials and methods

Solutions. Krebs‑Henseleit solution [119 mM NaCl, 25 mM 
NaHCO3, 4  mM KCl, 1.2  mM KH2PO4, 1  mM MgCl2, 
1.8 mM CaCl2, 10 mM glucose and 2 mM sodium pyruvate 
(pH 7.4)] that had been bicarbonate‑buffered and bubbled 
with 95%  O2‑5%  CO2  (35) was used in the experiments. 
Hyperkalemic solution was prepared by increasing the amount 
of KCl added to produce a [K+] of 6.3 mM, whereas hyper-
calcemic solution was prepared by increasing the amount of 
CaCl2 added to produce a [Ca2+] of 2.2 mM.

Preparation of Langendorf f‑perfused mouse hearts. 
Wild‑type mice of the 129  genetic background between 
5 and 7 months of age were used in the study. These mice 
were housed in an animal facility at room temperature 
(21±1˚C), subject to a 12:12 h light:dark cycle and had free 
access to sterile rodent chow and water. All the experi-
ments described complied with the UK Animals (Scientific 
Procedures) Act 1986. The procedures for the preparation 
of Langendorff‑perfused mouse hearts have been described 
previously (36). Mice were sacrificed by cervical disloca-
tion in accordance with Sections 1(c) and 2 of Schedule 1 
of the UK Animals (Scientific Procedures) Act 1986. The 
hearts were quickly excised and immediately submerged in 
ice‑cold Krebs‑Henseleit solution. The aorta was cannulated 
using a tailor‑made 21‑gauge cannula that had been prefilled 
with ice‑cold buffer, secured using a micro‑aneurysm clip 
(Harvard Apparatus, Cambridge, UK) and attached to the 
perfusion system. Retrograde perfusion was started at a rate 
of 2‑2.5 ml min‑1 using a peristaltic pump (Watson‑Marlow 
Bredel pumps model 505S; Falmouth, Cornwall, UK) with the 
perfusate passing through 200‑ and 5‑µm filters successively 
and heated to 37˚C using a water jacket and circulator prior 
to reaching the aorta. Approximately 90% of the hearts that 
regained their pink colour and spontaneous rhythmic activity 
were studied further. The remaining 10% did not and were 
therefore discarded. Perfusion continued for a further 20 min 
to minimise any residual effects of endogenous catecholamine 
release prior to examination of the electrophysiology of the 
perfused hearts.

Stimulation protocols. Electrical stimulation was achieved 
using paired platinum electrodes (1 mm interpole distance) 
placed at the basal right ventricular epicardium. Pacing 

occurred at 8 Hz, using square wave pulses 2 msec in dura-
tion, with a stimulation voltage set to three times the diastolic 
threshold (Grass S48 Stimulator; Grass‑Telefactor, Slough, 
UK) immediately after the start of perfusion. This allowed 
direct comparisons with previous mouse studies of arrhyth-
mogenesis (29‑32). Programmed electrical stimulation (PES) 
was used to assess for arrhythmogenicity and thereby for 
reentrant substrates. This procedure consisted of a drive train 
of eight regularly paced S1 stimuli at a 125 msec baseline 
cycle length (BCL), followed by premature S2 extra‑stimuli 
every ninth stimulus. S1S2 intervals first equalled the pacing 
interval and were successively reduced by 1 msec with each 
nine stimulus cycle until arrhythmic activity was initiated or 
refractoriness was reached, whereupon the S2 stimulus elic-
ited no response.

Recording procedures. Monophasic action potentials 
(MAPs) recordings were obtained from the left ventricular 
epicardium using an MAP electrode (Linton Instruments, 
Harvard Apparatus). They were also obtained from the left 
endocardium using a custom‑made MAP electrode that was 
made from two strands of 0.25‑mm Teflon‑coated silver wire 
(99.99% purity; Advent Research Materials, Witney, UK). The 
tips of the electrode had previously undergone galvanic treat-
ment with chloride to eliminate DC offset. The endocardial 
electrode was introduced through a small access window made 
in the inter‑ventricular septum and subsequently positioned 
on the lateral aspect of the left ventricular cavity. All the 
recordings were performed using a BCL of 125 msec (8 Hz) 
to exclude rate‑dependent differences in APDs. MAPs were 
pre‑amplified using an NL100AK head stage, amplified with 
an NL104A amplifier and band‑pass filtered between 0.5 Hz 
and 1 kHz using an NL125/6 filter (Neurolog, Hertfordshire, 
UK) and subsequently digitized (1401plus MKII; Cambridge 

Figure 1. Representative epicardial MAP recordings obtained under 
(A) control conditions, (B) hyperkalemia alone or (C) following hypercal-
cemia treatment during regular 8 Hz pacing. Typical regular rhythms can 
be observed, with each MAP occurring directly following its preceding 
stimulus. MAP, monophasic action potential.
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Electronic Design, Cambridge, UK) at 5  kHz. Following 
this, they were analyzed using Spike2 software (Cambridge 
Electronic Design). MAP waveforms that did not match the 
previously established stringent criteria for MAP signals (37) 
were rejected. The MAPs must have stable baselines, fast 
upstrokes, with no inflections or negative spikes, and a rapid 
first phase of repolarization. The peak of the MAP was 
used to measure 0% repolarization and 100% repolariza-
tion was measured at the point of return of the potential to 
baseline (37‑39). The following parameters were measured: 
Activation latency, defined as the time difference between the 
stimulus and the peak of the MAP; APDx, defined as the time 
difference between the peak of the MAP and x% repolariza-
tion; and VERP.

Statistical analysis. All the values are expressed as 
mean ± standard error of the mean. Different experimental 
groups were compared by one‑way analysis of variance 
(ANOVA) and Student's t‑test was used as appropriate. P<0.05 
was considered to indicate a statistically significant differ-
ence. Categorical data were compared with Fisher's exact test 
(one‑tailed).

Results

Ventricular arrhythmogenicity and action potential charac‑
teristics. Ventricular arrhythmogenicity and its associations to 
action potential characteristics were examined under normo-
kalemia (5.2  mM [K+]), normocalcemia (1.8  mM [Ca2+]), 
hyperkalemia alone (6.3 mM [K+]) and hyperkalemia with 
hypercalcemia treatment (2.2 mM [Ca2+]).

Hyperkalemia exerts pro‑arrhythmic ef fects that are 
abolished by hypercalcemia. The initial experiments were 
performed on hearts extrinsically paced at 8  Hz, which 
is close to the heart rate observed in vivo under normo-
kalemic, hyperkalemic and combined hyperkalemic and 

hypercalcemic conditions. Fig.  1 shows representative 
traces of epicardial MAP recordings under these pharmaco-
logical conditions, in which stable MAPs occurring directly 
following its preceding stimulus, with consistent waveforms, 
can be observed.

PES delivering progressively premature stimuli was used 
to examine the arrhythmic tendency. It consistently failed 
to provoke any arrhythmia under the control conditions 
(Fig. 2A; S2 extrastimulus indicated by an arrow). By contrast, 
provoked ventricular tachycardia (VT) was observed under 
hyperkalemic conditions alone (Fig. 2B). This was prevented 
by further hypercalcemia treatment (Fig. 2C). The incidences 
of provoked VT observed are summarized in Fig. 2D, demon-
strating that hyperkalemia was significantly arrhythmogenic 
(Fisher's exact test, P<0.01), whereas hypercalcemia treatment 
was anti‑arrhythmic under hyperkalemic conditions (Fisher's 
exact test, P<0.01).

Shortenings in the QT interval were observed in electro-
cardiograms (ECGs) obtained from patients suffering from 
hyperkalemia (6). This may reflect alterations in APD either 
locally or transmurally across the myocardial wall. APDs at 
x=30, 50, 70 and 90% repolarization (APDx) were therefore 
assessed in the epicardium and endocardium, allowing calcula-
tion of ∆APD90 given by endocardial APD90‑epicardial APD90, 
thereby providing an indication of the transmural repolariza-
tion gradient. Epicardial APD90 was decreased from 42.2±2.6 
to 24.5±1.6 msec by hyperkalemia (P<0.001; Fig. 3A), as were 
APD70 (P<0.001; Fig. 3B), APD50 (P<0.01; Fig. 3C) and APD30 
(P<0.05; Fig. 3D). However, the corresponding endocardial 
APDx values were not altered (P>0.05; Fig. 3E‑H). These 
changes corresponded to increases in ΔAPD90 (Student's t‑test, 
P<0.05; Fig. 4A), ΔAPD70 (P<0.01; Fig. 4B), ΔAPD50 (P<0.01; 
Fig. 4C) and ΔAPD30 (P<0.05; Fig. 4D). None of the epicardial 
or endocardial APDx and ΔAPDx values were further altered 
upon hypercalcemia treatment (P>0.05 in all cases).

Epicardial VERPs were decreased from  45.9±1.7 to 
33.7±2.6 msec during hyperkalemia (ANOVA, P<0.001; Fig. 5A) 

Figure 2. Representative epicardial MAP recordings from programmed electrical stimulation (PES) under (A) control conditions, and (B) hyperkalemia alone 
and (C) following hypercalcemia treatment. (D) The incidences of provoked ventricular tachycardia (VT) demonstrate the pro‑arrhythmic effects of hyperka-
lemia (Fisher's exact test, **P<0.01) and the subsequent anti‑arrhythmic effects of hypercalcemia treatment (Fisher's exact test, ††P<0.01). MAP, monophasic 
action potential.
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Figure 3. Epicardial action potential durations (APDx) at x=(A) 90, (B) 70, (C) 50 and (D) 30% repolarization (msec) (mean ± SEM) (C) under control 
conditions, hyperkalemia alone or following hypercalcemia treatment during 8 Hz pacing (n=7). All APDx values were shortened by hyperkalemia (ANOVA, 
***P<0.001, ***P<0.001, **P<0.01, *P<0.05, respectively), which were not further altered by hypercalcemia treatment (ANOVA, P>0.05). Endocardial APDx at 
x=(E) 90, (F) 70, (G) 50 and (H) 30% repolarization (msec) (mean ± SEM) obtained under the same experimental conditions. None of these values was altered 
by hyperkalemia alone or following hypercalcemia treatment (ANOVA, P>0.05). APD, action potential duration; SEM, standard error of the mean; ANOVA, 
analysis of variance.

Figure 4. ΔAPDx (endocardial APDx‑epicardial APDx) at x=(A) 90, (B) 70, (C) 50 and (D) 30% repolarization (msec) (mean ± standard error of the mean) under 
control conditions, hyperkalemia alone or after hypercalcemia treatment during 8 Hz pacing (n=7). ΔAPD90, ΔAPD70, ΔAPD50 and ΔAPD30 were increased by 
hyperkalemia (Student's t‑test, *P<0.05, **P<0.01, **P<0.01 and *P<0.05, respectively) and were not further altered by hypercalcemia treatment (P>0.05). APD, 
action potential duration.



BIOMEDICAL REPORTS  5:  301-310,  2016 305

 and reversed by hypercalcemia treatment (P>0.05). By contrast, 
endocardial VERPs had a mean value of 36.7±2.1 msec under 
control conditions and this was not altered by hyperkalemia 
alone or following hypercalcemia treatment (P>0.05; Fig. 5B). 
Epicardial VERPs were significantly shorter compared to 
the corresponding endocardial VERPs under hyperkalemic 
conditions alone (P<0.05) but not under control conditions or 
hyperkalemic conditions following hypercalcemia treatment 
(P>0.05).

Hyperkalemia is known to cause prolongations in QRS 
durations, ref lecting slowed ventricular conduction in 
humans (6). Reduced CVs have been shown to be an important 
factor in producing ventricular arrhythmogenesis following 
heptanol treatment (31). Therefore, in the studythe activation 
latencies, which provide an indication of the CVs, were quanti-
fied to determine whether changes in these values contribute 
to the arrhythmogenic substrate. Epicardial and endocardial 
activation latencies had values of  16.7±0.8 (Fig.  6A) and 
17.0±1.1 msec (Fig. 6B), respectively, under normokalemic 
conditions. These values were not altered by hyperkalemia 
alone or following hypercalcemia treatment (ANOVA, P>0.05). 
Epicardial activation latencies were not significantly different 
from their corresponding endocardial activation latencies 
under any of the aforementioned pharmacological conditions 
studied (P>0.05).

Increased critical intervals for reexcitation have previ-
ously been associated with increased arrhythmogenicity in 
hypokalemic mouse hearts (40). To determine their possible 
roles in hyperkalemia‑induced arrhythmogenesis, these values 
were accordingly calculated for all the pharmacological condi-
tions studied. The local critical interval for the epicardium 
was ‑7.0±4.1 msec under control conditions (n=7; Fig. 7A). The 
interval was not altered by hyperkalemia alone but was reduced 
by hypercalcemia treatment to ‑23.1±4.5  msec (ANOVA, 
P<0.05). By contrast, the local critical interval for the endocar-
dium had a value of ‑1.4±3.5 msec (n=7; Fig. 7B) but this was 
not altered by either hyperkalemia alone or following further 
hypercalcemia treatment (P>0.05). The transmural critical 
interval for reexcitation of the endocardium by the epicardium 
had a value of 5.3±3.5 msec (n=7; Fig. 7C). This was reduced 
by hyperkalemia to ‑16.2±4.2 msec (Student's t‑test, P<0.01) 
and not further altered by hypercalcemia treatment (P>0.05). 
By contrast, the critical interval for reexcitation of the epicar-
dium by the endocardium had a value of ‑10.3±5.7 msec, and 
was not altered by either hyperkalemia alone or following 
hypercalcemia treatment (Fig. 7D; P>0.05).

Reductions in the wavelength of excitation, defined as the 
product of VERP and CV, increase the likelihood of arrhyth-
mogenesis (41). The VERP/latency can be used as a surrogate 
marker of wavelength (42). VERP/latency was decreased by 
hyperkalemia from 2.8±0.2 to 1.9±0.2 mm (n=8; ANOVA, 
P<0.01; Fig. 7E) and subsequently restored to 2.8±0.2 mm 
by hypercalcemia treatment, a value that was not statistically 
different from the control value (ANOVA, P>0.05).

Such reexcitation criteria employing the concept of the 
critical interval therefore correlated poorly with arrhyth-
mogenicity in this hyperkalemia model, unlike the case 
of hypokalemia described previously. This would suggest 
arrhythmogenesis may not be due to APD exceeding VERP, 
but may arise from reductions in VERP/latency ratios.

Figure 5. (A)  Epicardial and (B)  endocardial VERPs obtained under 
control conditions, hyperkalemia alone or after hypercalcemia treatment 
(n=7). Hyperkalemia alone reduced epicardial VERP (**P<0.01), which was 
reversed following hypercalcemia treatment (††P<0.01). Endocardial VERP 
was not affected by hyperkalemia alone or following hypercalcemia treat-
ment (analysis of variance, P>0.05). Epicardial VERPs were significantly 
shorter compared to the corresponding endocardial VERPs during hyper-
kalemia alone (P<0.05) but not under control conditions or hyperkalemic 
conditions following hypercalcemia treatment (P>0.05). VERP, ventricular 
effective refractory periods.

Figure 6. (A) Epicardial and (B) endocardial activation latency obtained 
under control conditions, hyperkalemia alone or following hypercalcemia 
treatment (n=7). These values were not altered by hyperkalemia alone or fol-
lowing hypercalcemia treatment (analysis of variance, P>0.05).
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Discussion

Hyperkalemia is one of the most common electrolyte abnor-
malities observed in hospitalized patients, predisposing 
them to life‑threatening ventricular arrhythmias  (43). The 
mechanisms of arrhythmogenesis have been studied using 
animal models as they permit the use of genetic or phar-
macological manipulation to study the consequences of ion 
channel abnormalities  (19,20,22,23,44‑46). In the present 
study, arrhythmogenic effects of hyperkalemia were exam-
ined in Langendorff‑perfused mouse hearts. The potential 
anti‑arrhythmic effects of hypercalcemia were also examined 
under this condition, mimicking 10% calcium chloride admin-
istration used clinically to suppress ventricular arrhythmias 
in patients suffering from hyperkalemia (10). In the present 
experiments, epicardial and endocardial MAPs were recorded 
from the left ventricle during electrical stimulation at the right 
ventricular epicardium. This led to several new conclusions.

Stable epicardial and endocardial MAP recordings were 
demonstrated under control conditions, hyperkalemia alone 
and following hypercalcemia treatment during regular pacing. 
There was no evidence of spontaneous arrhythmias under 

these conditions. This subsequently permitted the use of 
PES to assess arrhythmogenicity and detect the presence of 
reentrant substrates. No inducible arrhythmias were observed 
under the control conditions. By contrast, episodes of provoked 
VT was observed during hyperkalemia, recapitulating clinical 
findings of increased arrhythmogenicity in humans (9). These 
arrhythmogenic effects were associated with reductions in the 
epicardial APD90 and VERP in an absence of alterations in 
activation latencies, which is inversely proportional to CV. 
Endocardial APD90 and VERP were not altered. These findings 
are consistent with the shortened QT intervals observed in 
ECGs of patients suffering from hyperkalemia (6). The QT 
interval is a reflection of ventricular repolarization time that 
is determined by the balance between influx and efflux of ions 
across the cell membrane (47). Initially, increased [K+]o would 
produce hyperpolarization of the myocardial membrane, but 
upon reaching a steady state, there is a depolarizing shift in 
the resting membrane potential (RMP), as described by the 
Goldman field relationship  (48). This has been shown to 
increase the conductance of the IKr channel (49,50), which 
would accelerate repolarization durations. As well as affecting 
action potential repolarization, it also influences its initiation 

Figure 7. (A‑D) Critical intervals (APD90‑VERP) and (E) VERP/latency ratio. * and ** indicate significant differences from control values, and † indicates sig-
nificant differences from values obtained during hyperkalemia alone. Local critical intervals obtained from the (A) epicardium were not significantly affected 
by hyperkalemia alone but were reduced by hypercalcemia treatment (ANOVA, *,†P<0.05). The local critical interval obtained from the (B) endocardium was 
not altered by either hyperkalemia alone or following hypercalcemia treatment (P>0.05). The transmural critical interval for reexcitation of the endocardium 
by the (C) epicardium was reduced (Student's t‑test, *P<0.05 and **P<0.01) and not further altered by hypercalcemia treatment (P>0.05). (D) The transmural 
critical interval for reexcitation of the epicardium by the endocardium was not altered by either hyperkalemia alone or following hypercalcemia treatment 
(P>0.05; but there was a difference between K+ and K+ + Ca2+, †P<0.05). (E) VERP/latency was decreased by hyperkalemia from 2.8±0.2 to 1.9±0.2 mm (n=8; 
ANOVA, **P<0.01; K+ vs. K+ + Ca2+, ††P<0.01) and subsequently restored to 2.8±0.2 mm by hypercalcemia treatment, a value that was not statistically different 
when compared to the control value (ANOVA, P>0.05). APD, action potential duration; VERP, ventricular effective refractory periods; ANOVA, analysis of 
variance.
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and subsequent propagation through the myocardium. Thus, 
hyperkalemia produces a positive shift in the threshold 
potential (TP) to a smaller extent than the depolarizing 
shift in RMP, thereby increasing myocardial excitability 
given by 1/(TP‑RMP) (48,51). This could explain why mild 
hyperkalemia increases CV. However, hyperkalemia also 
increases the proportion of inactivated sodium channels, 
reducing dV/dtmax, and therefore the CV, of the propagating 
cardiac excitation (51,52). Activation latency was not altered 
by the hyperkalemia in the present study ([K+]o of 6.3 mM), 
suggestive of little conduction abnormalities. This may be 
due to a balance between increased myocardial excitability 
and reduced proportion of sodium channels available for 
activation. This is consistent with previous findings that QRS 
duration was increased or CV was reduced when [K+]o was 
>6.5‑7.5 mM (53).

The differing effects of hyperkalemia upon endocardial 
and epicardial APD90 led to increased ∆APD90 given by their 
difference, which is a measure of the transmural repolarization 
gradient  (54). Under normokalemic conditions, the time 
courses of repolarization are longer in the endocardium 
compared to the epicardium, giving rise to a positive ∆APD90. 
This ensures a normal unidirectional spread of the excitation 
through the heart (28,55), preventing the epicardium from 
reexciting the endocardium by phase 2 reentry. It is also 
responsible for the upright electrocardiographic T‑waves in 
the right precordial leads (56,57). ∆APD90 remained positive 
during exposure to hyperkalemia, suggesting the increased 
arrhythmogenicity here was not due to reversal of such 
gradients, as was the case in hypokalemia (29). Instead, the 
arrhythmogenesis observed can be explained by decreases in 
the VERP through shortening in the action potential, which 
would reduce VERP/latency ratios and therefore predispose 
to reentry (58). However, the critical intervals for reexcitation 
given by the difference between APD90 and VERP (40) were 
either unchanged or decreased, which would be expected 
to have no effect on or decrease, rather than increase, 
arrhythmogenicity.

Hypercalcemia treatment exerted anti‑arrhythmic 
effects during experimental hyperkalemia, complementing 
clinical findings that calcium chloride administration is 
effective in suppressing arrhythmia episodes in hyperkalemic 
patients (10). It reversed VERP changes without correcting 
for the shortenings in APDs, and left activation latencies 
unaltered. Consequently, the VERP/latency ratio returned to 
control values and the critical intervals were either unchanged 
or decreased. High [Ca2+]o causes a positive shift in the TP 
without significant effects on the RMP  (59). This effect 
can be explained by adsorption of calcium ions to the outer 
surface of the cell membrane, generating an electric field 
that shifts the threshold of INa activation to more depolarized 
potentials (60). It also has a positively inotropic effect in the 
context of hyperkalemia in a rabbit model  (15). Although 
ventricular tachyarrhythmias attributable to hypercalcemia 
has been reported in humans  (61) and mouse studies  (34) 
under normokalemic conditions, they are nevertheless rare 
occurrences (62). Due to these protective effects of calcium 
on the heart, it has been used clinically to treat patients with 
hyperkalemia acutely prior to correcting for the plasma 
levels of potassium through the use of insulin and glucose 

infusion with nebulized salbutamol (63). Notably, no further 
APD shortening was found in the presence of hypercalcemia. 
Although hypercalcemia has been shown to cause QT 
shortening, in certain instances it may be associated with a 
normal QT interval (64,65). The QT interval may therefore 
be an unreliable indicator of the level of hypercalcemia (66). 
In addition to the effects of [Ca2+]o on the RMP and TP, it 
is possible that the calcium‑dependent potassium currents 
or calcium currents are also altered, and this remains to be 
studied in the future.

There are several limitations of the present study. First, 
whilst the mouse is a common animal model for studying 
cardiac arrhythmias, certain caution must be taken when 
attempting to extrapolate the results to human findings. In 
mouse hearts, cardiac action potentials are triangular with the 
transient outward current (Ito) being the major repolarizing 
current (67). By contrast, the human action potential shows 
a characteristic plateau phase (68). Repolarization is initially 
mediated by Ito, followed by a delayed plateau phase medi-
ated by a balance between the inward calcium current (ICa) 
and outward delayed rectifier potassium currents (IKr and IKs). 
Guinea pig and rabbit hearts have the same action potential 
morphology with similar ionic contributions, and may there-
fore provide better translational results when used as model 
systems for studying human arrhythmic syndromes (69‑80).

Secondly, the MAP technique was chosen for studying 
electrophysiology in the present study, which allows electrical 
recordings to be made from intact, isolated, perfused hearts. 
This has the advantage of preserving intercellular coupling, 
meaning that the experimental system would be more physi-
ological. MAP recordings close recapitulate the intracellular 
action potential obtained from single cells (37,81,82). Previous 
studies have shown that the MAP technique is sufficiently 
sensitive for detecting alterations in activation latencies, 
APD and VERP from atrial and ventricular tissue under a 
variety of experimental conditions  (29‑32). Furthermore, 
parameters derived from MAP recordings only show small 
variations on repeated measurements and between different 
hearts, suggesting that this technique is sufficiently reliable 
for studying cardiac electrophysiology. However, certain 
limitations of the MAP technique must be noted, as recently 
reviewed (83). One major disadvantage is that MAPs, unlike 
microelectrode recordings, do not provide information on the 
upstroke velocity of the cellular action potential. Although 
the CV of the propagating excitation wave could not be 
determined, activation latency could be measured instead. 
This also permitted the calculation of VERP/latency ratios 
that are used clinically for approximating the excitation 
wavelength. Future studies can investigate further by using 
optical mapping, which would allow simultaneous measure-
ments of cellular activation from numerous recording sites, 
and CVs as well as excitation wavelength to be calculated. 
Measurement of magnetic signals, such as cardiac magnetic 
resonance imaging, has been used for the characterization of 
structural properties (84‑86), and future studies could utilize 
magnetocardiography to detect electrical abnormalities and 
predict arrhythmic risk (87‑92).

Finally, why epicardial APDs are altered by hyperkalemia 
whereas endocardial APDs are not remains to be elucidated. 
Such differences were also observed in experimental 



TSE et al:  ANTI-ARRHYTHMIC EFFECTS OF HYPERCALCEMIA308

hypokalemia, where it was noted that epicardial APDs were 
prolonged but endocardial APDs remained unaltered  (40). 
This may be due to differences in ion channel types or their 
levels of expression between these regions, but these issues 
remain to be clarified in future studies.

Taken together, the present study produced an arrhythmia 
model of hyperkalemia for the first time in the mouse, in 
which ventricular tachyarrhythmias were associated with 
shortenings in APD and VERP. Hypercalcemia treatment was 
able to prevent this arrhythmogenesis through correction of 
VERP alone without influencing APD, thereby scaling the 
VERP/latency ratio. Therefore, excitation wavelength appears 
to be a central determinant of arrhythmogenesis in this system, 
as has been demonstrated for other models (93).
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