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Abstract

Searching for the signature of the violation of chiral charge conservation in solids has inspired a
growing passion for the magneto-transport in topological semimetals. One of the open questions is
how the conductivity depends on magnetic fields in a semimetal phase when the Fermi energy crosses
the Weyl nodes. Here, we study both the longitudinal and transverse magnetoconductivity of a
topological Weyl semimetal near the Weyl nodes with the help of a two-node model that includes all
the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the Oth
Landau bands in magnetic fields. For a finite potential range of impurities, it is found that both the
longitudinal and transverse magnetoconductivity are positive and linear at the Weyl nodes, leading to
an anisotropic and negative magnetoresistivity. The longitudinal magnetoconductivity depends on
the potential range of impurities. The longitudinal conductivity remains finite at zero field, even
though the density of states vanishes at the Weyl nodes. This work establishes a relation between the
linear magnetoconductivity and the intrinsic topological Weyl semimetal phase.

1. Introduction

Searching for the violation of chiral charge conservation in solids started with Nielsen and Ninomiya’s proposal
in 1983 [1], in which the chiral charge is not conserved in a 1D system of two bands with opposite chirality. To
simulate the 1D chiral bands, they proposed to use the lowest Landau bands of a 3D semimetal, and expected
that the longitudinal magnetoconductance becomes extremely strong. Recently, thanks to the discovery of a
number of realistic materials of topological semimetals [2-21], there is a growing passion on their electronic
transport [22—30] and signatures of the chiral anomaly [31-35].

Earlier theories on the longitudinal magnetoconductivity arrived at various results [36—43]. In the
semiclassical limit, where the Landau levels are not well formed, a positive B> magnetoconductivity was
predicted [36, 37], and has recently been under intensive experimental investigation [44—51]. In the semiclassical
approaches, the Fermi energy should overwhelm the relaxation rate, not exactly at the Weyl nodes. The B>
magnetoconductivity is also obtained by modeling the disorder as long-range charged impurities in the
quantum limit [41]. In the scenario similar to that proposed by Nielsen and Ninomiya, different results have
been obtained so far, depending on models and treatments [37—41]. Literally, a semimetal must have a Fermi
energy crossing the Weyl nodes. Nevertheless, little attention is paid to the magnetoconduction in the exact
semimetal phase. More importantly, the Weyl nodes always appear in pairs. The intrinsic connection of the
Weyl nodes and the inter-node scattering are two factors to affect the transport properties because the chiral
anomaly occurs between two Weyl nodes.

In this work, we start with a two-node model to investigate both the longitudinal and transverse
magnetoconductivity of a Weyl semimetal near the Weyl nodes. The model describes a pair of Weyl nodes, and is
solvable in the presence of magnetic fields. The scattering potential of the impurities is modeled by using a
random Gaussian potential, in which the range of potential may vary in realistic materials. Aslongas the
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Figure 1. The energy spectrum of the bulk states (a) and the surface states at the y = 0 surface (b) of the topological Weyl semimetal. (c)
Both the bulk and surface states. (d) The real-space schematic of the topological Weyl semimetal and its surface states. We asusme that
the % and Z directions are infinitely long. The lines with arrows in the y = 0 (red) plane indicate that the chiral surface states travel
along only one direction. In contrast, a topological Dirac semimetal hosts helical surface states that travel along both the % and —%
directions. Parameters: k, = 0.1/nm, M =5eV nm?* and A =1eV nm.

potential range is finite, we show that the longitudinal magnetoconductivity is positive and linear in magnetic
field, giving rises to a negative magnetoresistance. As the field goes to zero, we have a finite minimum
conductivity, even though the density of states (DOS) vanishes at the Weyl nodes. In the transverse
magnetoconductivity, we find a crossover from linear-B dependence in the short-range potential limitto 1/B
dependence in the long-range potential limit.

The paper is organized as follows. We first introduce the two-node model and present the solution of the
Fermi arcs in section 2. We then discuss the magnetic field-induced DOS and chiral anomaly in section 3. In
sections 4 and 5, the formulas and analysis of the longitudinal and transverse magnetoconductivities in the
presence of the random Gaussian potential are given, respectively. We also discuss the paramagnetic Weyl
semimetal in section 6. The conclusions are given in section 7. The detailed calculations are provided in appndix
A-C.

2. Two-node model of Weyl semimetal and Fermi surfaces

We describe the topological semimetal with a two-node model [40],
HK) = A(kcox + kyoy) + M (k2 — ki — k; — kD)o, 1)

where oy ,, ; are the Pauli matrices, k = (ky, k,, k.) is the wave vector, and A, M and k. are model parameters.
The model is in the topological semimetal phase and describes a pair of 3D gapless Dirac cones, with two Weyl
nodeslocated at k = (0, 0, +k.) in momentum space [see figure 1(a)]. The topological properties of the two-
node model can be examined by the Berry curvature, Chern number and Fermi arcs [40, 52]. A topological
semimetal has the k,-dependent topologically protected surface states for a specific k, between the two Weyl
nodes. This is demonstrated by a non-zero Chern number as a function of k,, N, (k,) = sgn(M) for |k,| < k.,
and O for |k,| > k.. According to the bulk-edge correspondence, there a exist surface (or edge) states around the
surfaces parallel to the Z direction. The solution of the surface states can be found from the two-node model
explicitly by following the solution to the two-dimensional modified Dirac equation that describes the quantized
anomalous/spin Hall effects [53].

Suppose we have a semi-infinite system in the half plane y < 0 with open boundary conditions and with
translational symmetry along the X and Z directions, as shown by figure 1(d). k, and k, are still good quantum
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numbers but k, is replaced k, = —id, in the Hamiltonian (1). We can assume a trial wavefunction for each set of
ke, k;,as

77[])\ — eikxerikZzl:q)I/[jlile)\y. (2)

2

Substituting the trial wavefunction into the eigen equation H (ky, —i0,, k;)1» = Ei)), we have the secular
equation for the eigen energies

det|H (ky, —i\, k,) — E| = 0, 3)
which gives four solutions of A (E), denoted as f\, with 8 = £, « = 1, 2,and

JAY — 4A2M2 (K2 — k2) + 4M2E? N A2 — 2M2A

AL (E) = (=1 4
2(B) = (1) e = (4)
where Ay = k? — k2 — k2.Each 3\, (E) corresponds to a spinor state
Mg+ \) +E
T 5)
Aks + BAa)
or
A(kx - ﬂ/\a)
g = . 6
Yo [—M(Ak A+ E ©
The general wavefunction in the y direction can then be written as a superposition of the spinor states
\Ilkx,kz(E> )/) = Z Caﬁwaﬂ eﬁ/\“’va (7)

a=1,2,/=+

where the eigen-energy E as well the coefficients C, s are to be find from the boundary conditions.

We now apply the open boundary conditions: ¥y_;_(E, —c0) = W i (E, 0) = 0. The former condition
Wy, (E, —00) = 0 requires that U contains only the terms with positive 3and Re(A,) > 0 (or negative Sand
Re(A,) < 0)andthus G, = C,,_ = 0. According to equation (4), this condition can only be satisfied in two
cases: (i) Ay p > 0,and (ii) A\, = a F ibwith a, b > 0 (Notethat \; = ), corresponds to a trivial case). The
later condition Wy_;_(E, 0) = 0 then gives a secular equation

det | ¥y 1oy | =0 ®)

to determine G, ; and C, .. Substituting equations (5) and (6) into equation (8), respectively, and considering
Al Z= Ay, wearrive at

E=—M(Ar — M) + Mk (N + N), 9
E = M(Ar — NA) + Mk (N + ), (10)
which lead to
A = Ag. (11)
On the other hand, according to equation (4), we have
AN = A%k} — E)/M? + AL, (12)
N+ N = A2 /M2 - 2N, (13)

Substituting equation (11) into equation (12), we have immediately
E? = A%kL.
Using equations (11) and (13) and keeping in mind that in both the cases (i) and (ii), A, + A, > 0, we must have

A+ A = A/|M]| > 0.Hereweassume A > 0 without loss of generality. Putting this result into equation (9),
the dispersion of the surface states is finally given by

Earc (kx) kz) - Sgn(M)Akx (14)

The corresponding wavefunction can be simplified as
kok, (1) = Ce ikex+ik.z [sgnl(M)] (M — ), (15)

where Cis a normalization factorand A , = A/2|M| F J(A/2M)? — Ay. Atthe surface of y = 0, the surface
states are eigenstates of o, with a uniform effective velocity, v.¢ = sgn(M)A/ 7. Thus they are chiral surface
states around the surface parallel with the Z direction. Also in both cases (i) and (ii), we have \; A, > 0 and
henceforth Ay > 0. Therefore the solution of Fermi surface states is restricted inside a circle defined by
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Figure 2. Top left: the energy spectrum of a Weyl semimetal as a function of k, at k, = k, = 0. Top right: the Landau bands of the
Weyl semimetal in a Z-direction magnetic field (B= 0.1 T). The Oth Landau bands are in red. Bottom: the DOS in the absence and
presence of the Z-direction magnetic field. The circles indicate the DOS at the Weyl nodes, which grows linearly with the magnetic
field. Parameters: k. = 0.1/nm, M =5¢eV nm? and A =1 ¢V nm.

kZ + kZ < k2, as shown by figures 1(b) and (c). At zero Fermi energy, i.e., k, = 0, the surface states exist for all
|k,| < k. which produces a Fermi arc connecting two Weyl nodes. For a non-zero Fermi energy, the ends of the
Fermi arc are shifted away from the Weyl nodes until they vanish.

3. Field-induced density of states and chiral anomaly

After showing that the two-node model is capable of capturing all the topological properties, now we are ready to
demonstrate its transport properties arising from its chiral properties. It is well known that the DOS of a Weyl
semimetal vanishes at the Weyl nodes, following a E* dependence. This can also be captured by the two-node
model in which the DOS at small energy E is given by

E2

NE) = ——,
(E) 2m2A* Mk,

(16)

as shown in figure 2 (see appendix A for the general formulas of the DOS). When the Fermi energy locates right at
the Weyl nodes, the DOS is exactly zero. At this exact semimetal phase, it is expected to have exotic electronic
transports at zero temperature. It is found that a finite DOS can be generated by a magnetic field B along the
direction that connects the two Weyl nodes, i.e., a Z-direction magnetic field in the present work. The
Z-direction magnetic field can split the Dirac cones into a bundle of 1D bands of Landau levels dispersing with k,
[19,40, 54], as shown in figure 2. Figure 2 shows how the DOS in the absence of the magnetic field evolves into a
set of diverging peaks in the presence of the magnetic field. The divergence is due to the van Hove singularity at
the band edges of the 1D Landau bands.

In the presence of a magnetic field in the Z direction, the energies of electrons form a set of Landau bands
dispersing with k, as following [40]
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Ek”zj::w/Z + JM2 ot v >l

E{ =w/2 — Mk} + Mk}, v=10 (17)

where M, = Mk? — Mk? — wv,n = J2A/¢gand w = 2M /3. 3 = /7 /|eB| is the magnetic length. Each
Landau band has the Landau degeneracy N; = 1/27£; = |eB|/h in a unit area in the x-y plane.
In the magnetic field, the DOS near the Weyl nodes is given by

1 1
N(E) = —— ,
4m°ly M AJE + Mk? — w/2

which is contributed by the Oth Landau bands. At the Weyl nodes, the DOS reduces to
Ny, = (1/27Mk.) x (1/ 27£}), which grows linearly with the Landau degeneracy N; = |eB|/h and hence the
magnetic field B. This resulting DOS leads to a semimetal to metal transition, which is under intensive
investigation in the context of the disorder-induced DOS [55-59], instead of in the presence of magnetic field.
In the Z-direction field, the Fermi energy crosses with the Oth Landau bands at k. and —k,, where the Fermi
velocities are opposite, i.e., v = +2Mk./ /7. This chiral property of the Oth bands is exactly the scenario
required in Nielsen and Ninomiya’s proposal for the chiral anomaly [1]. As an electric field is applied along the
Weyl node direction, the changing rates of charge carriers are dN.. /dt = 4-(evg/27)E near the two Weyl nodes
at k, = %k, respectively. Thus charges can be pumped from near k. to —k,, literally leading to the non-
conservation of chiral charge, i.e., the chiral anomaly [31]. Later, we will focus on the electronic transport in this
situation when the chiral anomaly happens. In the following discussions, we will constrain to the case near the
Weyl nodes, i.e., the Fermi energy is located between two Landau bands of 1+, and at very low
temperatures, kg T < w, 7.

(18)

4. Longitudinal magnetoconductivity

At sufficiently low temperatures, i.e., kg T < w, 7, and not far away from the Weyl nodes, the electronic
transport can be effectively conducted by the Oth bands of Landau levels. When the electric and magnetic fields
are in parallel with each other, the changing rate of density of charge carriers near one node is maximal according
to the picture of chiral anomaly. In this case, the semiclassical conductivity of the 0th Landau bands can be found
with the help of the standard Green function formulism [40]. Alternatively, it can be simply figured out by using
the Einstein relation o,, = ¢?Ng D, where the DOS can be found as the Landau degeneracy times the DOS of one-
dimensional systems, i.e., Np = (1/27£3) x (1/7/wg). D = v} 72;“ is the diffusion coefficient in one
dimension. 7'2;“ is the transport time, v is the Fermi velocity in the Z direction and kr = /wg/2M is the Fermi
wave number. For the scattering among the states on the Fermi surface of the Oth Landau bands, the transport
time can be found as

7/ 0 VOZ)kz’
b = 300208 1 - "
Ty kLk! VF

where U]?x’f;% 4 Tepresents the scattering matrix elements and (...) means the impurity average (see appendix C
for details).

The transport time 7'2;” is sensitive to the scattering potential in materials. One of the convenient choices is
the random Gaussian potential

— Wi Ir-RP2d
U(r) 2 Ay e , (20)

where u; measures the scattering strength of a randomly distributed impurity at R;, and d is a parameter that
determines the range of the scattering potential. The Gaussian potential allows us to study the effect of the
potential range in a controllable way, which we find it crucial in the present study. Now we have two
characteristic lengths, the potential range d and the magnetic length 5, which define two regimes, the long-
range potential regime d > ¢j and the short-range potential limit d < 3. Note that, for a given d in realistic
materials, varying the magnetic field alone can cross between the two regimes. Empirically, the magnetic length
£ =25.6 nm /.| B| with Bin Tesla. In the strong-field limit, e.g., B > 10 T, the magnetic length £ becomes
less than 10 nm, it is reasonable to regard smooth fluctuations in materials as long-range.

With the random Gaussian potential, we can find the transport time as well as the conductivity. In particular,
at the Weyl nodes the transport time is obtained as (see appendix B.1 for details)

Vil ‘/imp Ci4dzk‘2
7'2;“  27Mk, 2d% + I

21
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and hence the longitudinal conductivity

? QMk)? d? + £5) g

e
0, (B) = —
®=5 Vip €3

(22)

where Vi, = 37, 1 /V measures the strength of the scatteringand V = L, L, L, is the volume of the system.
Ly, arethe sizes of the system along the %, § and Z directions, respectively. This conductivity is generated by
the inter-node scattering with a momentum transfer of 2k.. As the magnetic field goes to zero, the magnetic
length divergesand d/¢ — 0, and equation (22) gives a minimum conductivity

é 4(Mkc )2 e4d2k52

0., (0) =
h Vimp

(23)
even though the DOS vanishes at the Weyl nodes at zero magnetic field. A similar result was found in the absence
of the Landau levels [58].

According to d, we have two cases. (1) In the short-range limit, d = 0, then ¢,, does not depend on the
magnetic field, giving a zero magnetoconductivity, which recovers the result for the delta potential [40, 41]. (2)
Aslongas the potential range is finite, i.e., d > 0, we can have a magnetoconductivity. Using equation (22),

0, (B) — 0,,(0) _ E

Ao, (B) = ,
o= (B) 72(0) B,

(24
where By = 7 /2ed?. Thus the magnetoconductivity is given by the range of impurity potential, and
independent of the model parameters. This means that we have a positive linear Z-direction magnetoconductiv-
ity for the Weyl semimetal. A finite carrier density 1, can drive the system away from the Weyl nodes, then k. in
equation (22) is to be replaced by kr = k. + sgn(M)2m2£ ny. The finite 1y can vary the linear-B dependence,
but a strong magnetic field can always squeeze the Fermi energy to k., and recover the linear
magnetoconductivity.

Alinear-B magnetoconductivity arising from the Landau degeneracy has been obtained before [37, 39],
based on the assumption that the transport time and Fermi velocity are constant. However, in the present case,
we have taken into account the magnetic field dependence of the transport time, and thus the B-linear
magnetoconductivity here has a different mechanism as a result of the interplay of the Landau degeneracy and
impurity scattering. Also, in the presence of the charged impurities, a B> magnetoconductivity can be found in
the quantum limit [41]. A B> magnetoconductivity can also be found in the semiclassical limit [36, 37].

5. Transverse magnetoconductivity

When electric and magnetic fields are perpendicular to each other, the changing rate of density of charge carriers
near each node vanishes. In this case, because the Landau bands in the Z-direction magnetic field only disperse
with k,, the effective velocity along the % direction v, = 0E,//% 0k, = 0. Theleading-order X-direction
conductivity arises from the inter-band velocity and the scatterings between the Oth bands with the bands of 1+,
which are higher-order perturbation processes. Thus the transverse conductivity is usually much smaller than
the longitudinal conductivity.

When the Fermi energy crosses only the Oth bands, the leading-order conductivity is given by [60]

O (B) = 6x(B) + 0 (B),

e7
oL(B) = —~ > Re (Gok, Vi Gt p, i 0)s (25)
kx)kz

where G(sz =1/(Er — E ,?Z +i%n/ 27—22) is the retarded Green’s function of electrons in the Oth bands,
Gl’l, v, = 1/(Er F E llzi —in/ 27'};) are the advanced Green functions of electrons in the 1+ bands, respectively.
¢, and T}(i are the corresponding lifetimes. The inter-band velocities along the X direction v, , are given by

by 0 .0}
Vi, = ——|ncos—= + wsin —= |, 26
NG (77 2 2 (26)
(. 0 0
v, = ——|nsin — — wcos—= |, 27
0,1 \/Eﬁ (77 5 5 ( )

where cos 6}, = M, / JM; + n?. Considering that Fermi energy crosses only the Oth bands and that / /7.
and /2 / T4 are very small, equation (25) can be simplified to
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L6 —EY) 1

+
T(B) = Zk Gl A (28)
The lifetimes due to the random Gaussian potential can be calculated by using the Born approximation,
= = 271'2 |U1i°k )8 Er — EQ). (29)

kp
After lengthy but straightforward calculations, they can be obtained as (see appendix B.2 for details)

7 Vimpls 1 + e~ 44
= mp” B —— S0 F cos ). (30)
Thy 167/wvE (d* + £5/2)

The substitutions of equations (26) and (27) for vy, .. and of the results (30) for T}C?E into equation (28) give

e? 1mp fB(l + e_4d2kF)
) = S T Pk G1)

where

1 1

I (7§, ,)? sin (7§, _)? cos? —=

= +
G| (B — Eph)? (Ex, — B

f(kz) =

(32)

When the Fermi energy is at the Weyl node, the transverse conductivity o, at the Weyl nodes is given by

‘flmp f§ a+ e_4d2kfz)
h 16m2M%*k?2  (2d* + £7)?
where F = 2w? + 1%)/(4w? + 4n?),s0 F = 1/2 in the strong-field limit (/3 < M /A)and F ~ 1/4 inthe
weak-field limit (£ > M /A). We choose the value of Vi, so that the band broadening is always much weaker
than the spacing between the Oth and 1st Landau bands for an arbitrary magnetic field. It is safe to assume that
only the Oth Landau band contributes to the conductivity at half filling. There are three cases as shown in figures 3
(d)-(f). Atd =0, 0y, reduces to the result for the delta potential and o, x B, alinear magnetoconductivity as o,
but much smaller [40]. In the long-range potential limit d > &3, we have oy, ~ 1/B, which gives a negative
magnetoconductivity. For a finite potential range d, we would have a crossover of o, from B-linear to 1/B
dependence. Alternatively, as shown in figure 3 (e), for a finite d (=5 nm) comparable to the magnetic length #3,
we have a crossover of 0, from alinear-B dependence in weak fields to a 1/B dependence in strong fields. While
atd=0and d > ¢, we have the two limits as shown in figures 3 (d) and (f), respectively. For shorter d, alarger
critical magnetic field for the crossover is needed. Figure 3 also shows that the conductivity is larger for shorter d,
so the 1/B transverse magnetoconductivity in the long-range limit may not survive when there are additional
short-range scatters.

In particular, in figure 3 (f), 0, &< 1/B in the long-range potential limit. In the field perpendicular to the
x—y plane, there is also a Hall conductivity o, = sgn(M)(k./7)e*/h + eny/B, where the first term is the
anomalous Hall conductivity and the second term is the classical conductivity. In weak fields, the classical Hall
effect dominates, then both oy, and oy, are proportional to 1/B, and the resistivity p,, = 0y / (02 + aix) is
found to belinear in B. Note that here the linear MR in perpendicular fields has a different scenario compared to

O (B) =

F, (33)

the previous works [61, 62]. Abrikosov used the Hamiltonian vk - & with linear dispersion and modelled the
disorder by the screened Coulomb potential under the random phase approximation [61]. Song et al discussed a
semiclassical mechanism [62].

6. Paramagnetic Weyl semimetal

The existence of the non-zero Chern number or chiral surface states indicates the time reversal symmetry
breaking in the two-node model in equation (1). Correspondingly a quantum anomalous Hall conductance
appears. To have a paramagnetic Weyl semimetal, we have to introduce a time reversal counterpart for the two
Weyl nodes in equation (1). A straightforward extension is as follows

H = A(kyay + kya,)) + M (kX — k)3, (34)

where the Dirac matrices are o, = 0, ® oy, o, = 0x ® 0y, 8 = 0y ® 0. It contains four Weyl nodes, which
are doubly degenerate. The surface electrons around the Z direction consist of two branches with opposite spins
and opposite effective velocities. It will give rise to the quantum spin Hall effect, compared to the quantum
anomalous Hall effect in a Weyl semimetal of a single pair of nodes. The dispersions of two branches of the Oth
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Figure 3. The longitudinal conductivity o,, and transverse conductivity oy, of the Weyl semimetal in the Z-direction magnetic field B
for different potential ranges. The shared parameters: k, = 0.1/nm, M =5eV nm% A=1eVnm, Vimp = 10 (eV)? nm?®.

bandsare E.(k,) = +(w/2 — Mk2 + Mk?). Inaweak magnetic field, the magnetoconductivity is also linear in
magnetic field, as that for Weyl semimetal in equation (1). However, for a strong field, the strong field dependent
Fermi energy will give a different field dependence of conductivity as the two Oth bands shift away from each
other as increasing field. Finally it is worthy pointing out that this kind of semimetals is different from a simple
Dirac semimetal described by a pair of degenerate Dirac cones, + vk (e. g., at the phase transition point between
a3D topological insulator and trivial insulator), in which there does not exist the surface states as the two nodes
are not separated in momentum space and the model is topologically marginal. Also, the Zeeman effect may also
contribute to alinear contribution to the magnetoconductivity [63]. But its sign depends on the g-factor of
sample and usually its magnetoconductivity is negative, opposite to that in this work.

7. Conclusions and discussion

The key conclusion of the present work is the positive and linear magnetoconductivity of Weyl semimetals near
the Weyl nodes. The Fermi energy is assumed to cross only the Oth Landau bands of the semimetal at low
temperatures (Er < wand kg T < w). The magnetoconductivity depends on the types of scattering potentials,
in which the potential range is a characteristic parameter. Our conclusion is different from the theoretical
predictions of the positive B> magnetoconductivity in several previous works [36, 37], because where higher

Fermi energies (Er > kg T)and wrg;” < /2 were assumed, therefore there were many more Landau bands on
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the Fermi surface. Recently, a positive longitudinal magnetoconductivity has been observed in several different
candidates of topological semimetal [44—51], and was claimed to be related to the chiral anomaly. We believe
that the linear term is one of the indispensable ingredients in the formula of the magnetoconductivity in the
intrinsic Weyl semimetal phase. When more Landau levels come into play as the Fermi energy is shifted from
near the Weyl nodes, the magnetoconductivity is expected to deviate from linear.

The result of the magnetoconductivity is based on the Born approximation. When the magnetic length
becomes much shorter than the range of the disorder potential, electrons may be scattered by the same impurity
for multiple times. The Born approximation contains the correlation of two scattering events by the same
impurity [64]. In this situation, the validity of the Born approximation was questioned in two dimensions
[65, 66]. In three dimensions, it is still unclear whether the correlation of two scattering events in the Born
approximation is the building block for the multiple scattering under extremely strong magnetic fields [62, 67].
So far, theories in three dimensions employ the Born approximation, e.g., the quantum linear
magnetoresistance [61]. The treatment beyond the Born approximation will be a challenging topic for three-
dimensional systems under extremely strong magnetic fields.
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Appendix A. Density of states

A.1.1In the absence of magnetic field
In the absence of magnetic field, the DOS can be calculated as N (E) = >, ;.6 (E;(k) — E)/V. After the
straightforward calculations, the results of DOS are summarized as followings.

If A2 > 2M?k2, the results of DOS are given by

E {Dl(E), |E] < Mk

N(E) = — ,
472AM | Dy(E), |E| > Mk

(A1)

where

2A M (Mk? + E) + A® + 2ME
Di(E) = In Mk + B) + A +2ME
2A/M (Mk? — E) + A*> — 2ME

2AM (Mk? + E) + A® + 2ME
Dy(E) = In Mk +B) + A + .

JAM2E? 4 A* — 42 M%?

(A.2)

(A.3)

If A < 2M?k2, the DOS is instead given by

Dy(E), |E| < A*/2M

Dy(E) + Ds(E), A2/2M < |E| < Mk? (A.4)
Dy(E) + Dy(E), |E| > Mk;

N(E) =

2

where

AAMKZ — 24 + JaM2E? — A
JARM%2 — AT — AM2E?

A4M?k} — 24> + J4MPE? — A*

JAMPE?  AY — 4A2M2K]

Ds(E) = In , (A.5)

Dy(E) = In

(A.6)

Forasmallenergy E < Mk}, A2/2M (inboth the cases A> > 2M?? and A> < 2M?%*k?), the DOS can be
simplified as
E2

N(E) = ——.
(E) 2m2A Mk,

(A7)
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A.2.In the presence of magnetic field
In the presence of magnetic field, the DOS can be calculated as N(E) = (1/27£3 L)Y k. s—x0 (EE * — E).
Summing over k,and s = &+, N(E) can be written as

|E—w/2|| & 1 1
N(E) =
B = [2 R(E)\/ MkZ — v + PAE)

N_
+> ! \/ ! ] (A.8)

o PUE)\ Mk — vw — B(E)

where B,(E) = \/ (E — w/2)* — vn? and Ny are the largest integers for which Mk? — ww 4 T,(E) are positive,
respectively.
In the quantum limit, only the v = 0 term is retained and N(E) reduces to

NE) = —— 1 , (A9)
4ty JM\E + Mk? — w/2
which is approximately proportional to the magnetic field.
Appendix B. Lifetimes and transport times
B.1. Transport time 7"
The transport time TO '* at the Fermi surface is calculated as
Vok!
It(r =27 Z IUISOk k! k|2 5(EF—Ek)[ " ] (B.1)
F

Using 6 (Er — E ,?Z/) = [6(kp — k}) + 6 (kg + k.)1/7vp and substituting the expressions equation (C.16) for the
scattering matrix elements (|U> kK ),

7 1 d*q
=—> U(qQ) )impe 7426 (q, + ki — ks
T]tcr /g k)'c,k‘,ff L.L, < (Cl)> p€ (q )

F

X 6(q, + ki — k)6 (k, + kp) + 6(k; — kp)][l - VO—"] (B.2)

VE

where qj = qx2 + qyz. Changing the summations over k/, k/ to integrals, equation (B.2) can be simplified as

i 2 dagdg,
e d @r)?

- (U@, 4> 2KE) Jimpe 12572, (B.3)
kr

The substitution of the Fourier transform of the potential U (q) = ue 142 gives

fi_ 2Vimp qux da, o (P4£3/2) g~ 4dHE (B.4)
", PvE 2m)?

where Vi, = 375 1 ?/V . Performing the integral in polar coordinates and we finally obtain

7 Vimp 674d2kF

fvg 2m(d® + €2/2)

— B.5
T;; -2

B.2. Lifetimes 7} "
We assume that the impurity scattering is so weak that when the Fermi energy crosses only the Oth landau bands,
the leading order of the lifetimes 7} * of the states in the 14- Landau bands can be found as

ST = 271'2 U0 iP) 6 (Br — Eg). (B.6)
Tk

Substituting equation (C.23) for the scattering matrix elements (| Ule 0 oy /|?) and then using
§(Ep — E) = [6(ke — k) + 6 (kg + k[)1/ /v, we have

10
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i 8 dg.dg, ,
= 1 F cos b} f 454;/2
T}(it 4/71/1;( + 2 2m)? Tamp L

X [<U (qu qy: O)>imp + <U2(qx; qy: 2kF)>imp]- (B7)

Substituting the Fourier transform of the Gaussian potential and then performing the integrals, equation (B.7)
become

‘/im fZ 7d2(2k )2
o Vmplp 1 te - ’ (1 F cosb,). (B.8)
Tio lemlwy (d? + £5/2)°

F

In the strong-field limit £ — 0, cos 6}, — —sgn(M). Suppose M > 0, then in the strong-field limit,
i /Ti. = Owhile
F Viepfd1 4 etk

= . B.9
T}qj 8m/ve (d* + £5/2) )

Appendix C. Scattering matrix elements

To evaluate the square of the scattering matrix elements under the average of impurity configurations, we need
to calculate >, il (RI)I ,(Rj). The sum runs over all impurities. The integrals I, , (R;) is defined as

1 S kxr ik —
LuR) = 7 COe MU — Ry xriterioz, (C.D)
X~z

where U;(r — R;) denotes the scattering potential of a single impurity at the position R;. The y-direction
wavefunction ¢; (y)is given in equation (C.11). Fourier transforming the potential by using

Ui(r — Rj) = - (C2)

(2)

and then using the formula f = dxel = 278 (k), 1, . €an be rewritten as
— 00

d*q .
) — —iqRi[J.
L@y = [ et U@ [ 0ol )
x €8 (q, + ky — k)S(q, + ki — k). (C.3)
Using equation (C.3), >, o RHIY /(R]-) can be written as
ZL/,N(RI)I AR

viu
dsq _ig-R; / /
Zmee TRV (Q6(q, + ky, — k)o(g, + k, — k)

X f dyo" (el (e
daq/ iq"R; / ! / / /
x | —=—e9NU(q)6(q] + k. — ko) b(q. + k; — k,
Il L 1@)6(q] + ki — k)6 (] )
x f dy'e (y)w*(y’)e*%’f. (C.4)

Under the average of impurity configurations, we employ the theory of impurity average [64]

i,]

<Zei‘f"‘fiq"‘fu<q>uj(q’>> ~ DU @8- = 1) (UP(@)impd(q — €) (C5)

where (U%(q) )imp = X U?(q)/V . Then we can integrate over q' to obtain

i f = <ZIM(R,)IV, /R) >
L] imp

d3
= [ o (U @)mb (g, + K~ kb, + K~ ko

< [l e [ del (el he (C6)

11
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where we have used
2 ! Ly /
6 (qx + kx - kX) = 2_5(qx + kx - kx): (C7)
T
2 / Lz !
0% (g, + k; — k) = Eé(qz + k; — k). (C.8)
C.1. Scattering matrix element (|U>S . /I*)
In the Landau gauge A = —ByX, the corresponding eigen wavefunctions for v > 1 can be written

cos Tk Yy—1,kek, (1)
<I'|V + )kxa kz> =

v >

. 0%,
sin 7 Yy ko, ()

. 0%
sin 7 Yy— 1,k k, (1)
<1,|1/ _ :kx) kz> — s (C9)

14

0 k.
—cos - Yy kek, ()

while for v = Q as

0
0> kx) kz = 5 C.10
{x ) [¢0,kxkz (r)] (€.10)
where cos 0}, = M, / JM? + vn?. The wavefunctions Yy k.k, (1) are given by
ikyx+ik,z
VsKxKz )= —F—— v )
Yy kek, (1) T i ()
(3263 —
o (1) = e (y y"J, (C.11)
T V2V Ty 14

where y, = k. ¢} is the guiding center and H,, are the Hermite polynomials.
Using the wavefunctions equation (C.9), the scattering matrix elements between state |0, k,, k,) and state
|0, k[, k) can be written as
UpSsenr = (0 ka kJU (@10, ky, k2) = 3 oo (R)). (C.12)
i

and thus (U, ., 1) = Z¢0-With v = 0and p = 0in equation (C.6), we have

d3
Ioo= f L (U(Q))impb(q, + K. — k)

2wl L,
x 6(g, + k= ko) f der Ny, () " (C.13)
Substituting the explicit form of the wavefunction equation (C.11), we can find
f Yo ey, (el = e Hai-2inatiska)/s, (C.14)
and hence
’ f dyel ey, (e "o eudn, (C.15)
Therefore equation (C.13) becomes
(U5 i) = f %wz(q)xmpeqﬁfﬁ/zé(qx + ky — k)é(q, + ki — k). (C.16)

. . 150
C.2. Scattering matrix element (| U] )

Similarly, the scattering matrix elements between state |1 + ,k,, k.) and state |0, k., k.) can be written as

0
“ho(R), (C.17)

Uli:l;?;k;,kz’ = (1 + ks, kU ()]0, k., k}) = > sin
;

12
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0
22 LRy, (C.18)

and thus <|U,§i,;9k, k,|2> = I{:g(l F cos Q}CZ)/Z.With v = land p = 0inequation (C.6), we have

1-,0
kokaskok;

= (1 — ke k/U @0, kL, kJ) = 3" cos

d’q P
Itg:fmaﬂ(q»imp ‘f d)’@}j(}’)@i; (}’)eqﬂ"

X 8(q, + ki — k)é(q, + ki — k). (C.19)
Substituting the wavefunction equation (C.11), we can find

%(q, + iq,)

f dye (N ey, (e’ = — = e /Rl 2.4, idkeq,) /4, (C.20)
and hence
e 2pk
‘ f dyo ey, e | = qu 2142, (C.21)
Therefore equation (C.19) can be rewritten as
1,0 fé d3q 2 2 a0/ / /
I1)0 = f7<U (q)>impqle I 5(% + kx - kx)(s(qz + kz — ko), (C.22)
’ 2 2wl L,
and
fz d3 2 p2
<|Uij}£;k;’k;|2> — TB(I F cos 9}(2) f ﬁ<U2(q)>impqiequB/z
X §(q, + ky — ko) 8(q, + k. — ko). (C.23)
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